
GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 39

GSJ© 2017
www.globalscientificjournal.com

GSJ: Volume 5, Issue 9, September 2017, Online: ISSN 2320-9186
www.globalscientificjournal.com

A SURVEY OF ANDROID PERMISSION PROBLEM
Omid Movaghar

Abstract

Android security has been a hot spot recently in both academic research and public concerns due to

numerous instances of security attacks and privacy leakage on Android platform. Mobile devices get

smarter and increasingly provide access to sensitive data. Smart phones and tablet computers

present detailed contact information, e-mail messages, appointments, and much more. Users often

install apps on their devices to get additional functionality like games, or access to social networks.

Too often, such apps access sensitive data and take privacy less serious than expected by users. In

this survey, we discuss the existing Android security permission and existing security enforcements

solutions between 2010_2015 and try to classify works and review their functionalities. As a result,

mobile users are left to decide for themselves whether an app is safe to use.

Keywords: Android, Security, Permission, Attack

http://www.globalscientificjournal.com/

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 40

GSJ© 2017
www.globalscientificjournal.com

1. INTRODUCTION

Android is a Linux-based operating system for mobile devices like smart phones and tablet

computers. It is developed by the Open Handset Alliance led by Google. Android apps can be

downloaded from online stores like Google’s app store Google Play (formerly Android Market) and

also from third-party sites. People use smartphones for many of the same purposes as desktop

computers: web browsing, social networking, online banking, and more. Smartphones also provide

features that are unique to mobile phones, like SMS messaging, constantly-updated location data,

and ubiquitous access. As a result of their popularity and functionality, smartphones are a

burgeoning target for malicious activities. Current mobile devices offer a large amount of services

and applications than those offered by personal computers. At the same time, the increasing

number of security threats that target mobile devices has emerged. In fact, malicious users and

hackers are taking advantage of both the limited capabilities of mobile devices and the lack of

standard security mechanisms to design mobile-specific malware that access sensitive data. Android

smartphones are protected by a permission based framework which restricts third-party

applications’ accesses to sensitive resources such as SMS database and external storage in Android

smartphones. The accesses to sensitive resources may lead to money loss. For example, Android

malware may send premium rate messages, make premium rate calls, and generate large amount of

network data without users’ acknowledgment. Such permission based framework is criticized as

coarse-grained. Many applications tend to request much more per- missions than necessary. In most

cases, a user has to either grant all permissions an application requests or abort the installation

process, instead of granting the permissions one by one. At install time, a user is shown with a list of

permissions which an application requests. The user must either grant or deny all of these

permissions together. After the user approves the permission request and installs the application,

the application owns its permissions throughout its lifetime and it does not need to request them

again at run-time. Android controls Inter-Component Communication (ICC) through a reference

monitor. The reference monitor provides a Mandatory Access Control (MAC) enforcement on how

applications access components by evaluating whether the applications are granted with necessary

permissions. In this paper, we Survey the behavior of current mobile permission, and discuss about

the feature of them.

2. Android Applications Architecture

In this section we describe the architecture of the Android and its applications. Android is being

developed and maintained by Google and promoted by the Open Handset Alliance (OHA). Android is

placed on top of the Linux kernel and it includes the middleware, libraries and APIs written in c

language, and application software running on an application framework which includes Java-

compatible libraries. Android’s source code is released by Google under open source licenses.

Android operating system is a stack of software components, which is roughly divided into five

sections and four main layers. Application layer is located at the top of the Android software stack.

These comprise both the pre- installed apps provided with a particular Android implementation and

third-party apps developed by individuals (unofficial) app developers. Examples of such apps are

Browser, Contacts Manager, and Email apps. More examples of such applications can be found from

many official and unofficial app markets.

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 41

GSJ© 2017
www.globalscientificjournal.com

 Figure 1: Android operating system architecture

Linux kernel

At the bottom of the layers is Linux - Linux 3.6 with approximately 115 patches. This provides a level of abstraction

between the device hardware and it contains all the essential hardware drivers like camera, keypad, display etc. Also, the

kernel handles all the things that Linux is really good at such as networking and a vast array of device drivers, which take

the pain out of interfacing to peripheral hardware.

Libraries

On top of Linux kernel there is a set of libraries including open-source Web browser engine WebKit, well known library libc,

SQLite database which is a useful repository for storage and sharing of application data, libraries to play and record audio

and video, SSL libraries responsible for Internet security etc.

Android Libraries

This category encompasses those Java-based libraries that are specific to Android development. Examples of libraries in

this category include the application framework libraries in addition to those that facilitate user interface building, graphics

drawing and database access.

Android Runtime

This is the third section of the architecture and available on the second layer from the bottom. This section provides a key

component called Dalvik Virtual Machine which is a kind of Java Virtual Machine specially designed and optimized for

Android. The Dalvik VM makes use of Linux core features like memory management and multi-threading, which is intrinsic

in the Java language. The Dalvik VM enables every Android application to run in its own process, with its own instance of

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 42

GSJ© 2017
www.globalscientificjournal.com

the Dalvik virtual machine. The Android runtime also provides a set of core libraries which enable Android application

developers to write Android applications using standard Java programming language.

3. Security Measures

A game may, for example, need to activate vibration but should not need to read messages or access

contact information. After reviewing the permissions, users can decide whether to install an

application. Protected resources include camera, location data (GPS), Bluetooth, telephony,

SMS/MMS, and network/data connections. Granted permissions are applied to applications as long

as they are installed. Android’s permissions are some form of Mandatory Access Control, or MAC for

short. In contrast to DAC which stands for Discretionary Access Control, access is not controlled by

users or by user ids, but rather by permission labels that are assigned system functions. Accessing a

resource requires the call of system functions. If an application wants access to a resource, it needs

the permissions required by the appropriate system functions .Smartphone operating system

vendors use curated markets and/or application permissions to protect users. Smartphone operating

systems may also protect users by requiring user consent before an application can access sensitive

information or dangerous capabilities. User-approved permissions can alert users to the activities of

gray ware or malware, although malware may seek to circumvent permission systems. Permissions

do not prevent the installation of personal spyware because the attacker can grant all necessary

permissions during installation.

Analysis of Android security issues

Android has been designed with security in mind from the very inception with the aim to protect

user data, apps, the device and the network [30]. However, overall security depends on the

developers’ willingness and capability to employ best practices. Also, user must be aware of the

effect that some app can have after installation, on its data and device’s security. Anti-malware

solutions on Android cannot handle malware aggressively due to security model enforced on apps.

For example, anti-malware apps have limited scanning and/or monitoring capability for other apps

or file-system in the device.

Coarse granularity of permissions

Although Android defines 130 permissions, most of them are of coarse granularity. Especially, the

INTERNET permission the READ_PHONE_STATE permission and the WRITE_SETTINGS permission are

coarse-grained as they give an application arbitrary accesses to certain resources [1]. Taking the

INTERNET permission as an example, the INTERNET permission allows an application to send HTTP(S)

requests to all domains, and connect to arbitrary destinations and ports [2].As a result, the

INTERNET permission provides insufficient expressiveness to enforce control over the Internet

accesses of the application.

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 43

GSJ© 2017
www.globalscientificjournal.com

Incompetent permission administrators

Unfortunately, both developers and end-users usually lack professional knowledge. In addition, the

developers and end- users may have conflict of interest (Han et al., 2013). When a developer writes

a manifest file requesting permissions for his or her application, the developer may not know in

detail what is at risk for end-users if the application is granted with these permissions [3]. While

some enthusiastic developers might take time to learn what each of the 130 permissions does and

request them appropriately, other developers might choose to simply over-claim permissions so as

to make sure their applications work anyway.

Insufficient permission documentation

Google Inc. provides a great deal of documentation for Android application developers, but the

content on how to use permissions on Android platform is limited. As investigated by Felt et al., the

lack of permission usage information may lead to developers’ errors. In Android 2.2 documentation,

permission requirements are provided for 78 methods; however,[2].’s test reveals permission

requirements for 1259 methods, which is a sixteen-fold improvement over the documentation. The

documentation lists additional permissions in several class descriptions, but it is not clear which

methods of the classes require the stated permissions. Moreover, six errors are identified in Android

permission’s documentation. The insufficient and imprecise permission information confuses

Android application developers, who may write applications with guesses, assumptions and

repeated tries. Consequently, this leads to defective applications which become threats with respect

to security and privacy of Android users[4].

Over-claim of permissions

Over-claim of permissions is probably the most severe threat to Android security. It directly breaks

the principle of least privilege (PLP)[5]. This violation of PLP exposes users to potential privacy

leakage and financial losses. For example, if a standalone game application requests for the

SEND_SMS permission which is unnecessary, the permission can be exploited to send premium rate

messages without users’ acknowledgment[2]. identified that 56% of the over-privileged applications

have only one extra unnecessary permission and 94% have 4 or fewer extra permissions.

Permission escalation attack

In contrary to the general belief that the damage imposed by an Android malware is limited to an

application’s sandbox, the permission escalation attack allow a malicious application to collaborate

with other applications so as to access critical resources without requesting for corresponding

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 44

GSJ© 2017
www.globalscientificjournal.com

permissions explicitly[6]. In addition, the collusion attack can be carried out by multiple applications

in generating a joint set of permissions which enables them to perform an unauthorized or malicious

actions[7]. The collusion attack can be further classified by the way applications communicate with

each other, into direct collusion attack, where applications communicate directly, and indirect

collusion attack where applications communicate via a third application or component in be- tween.

The indirect collusion attack usually involves another application or component as a mediation

which can provide either overt channels or covert channels. Overt channels, such as buffers, files

and I/O devices, use a data object as the entity to hold certain information. In other words, the

entity is an object that is normally viewed as a data container[8].

TOCTOU attack

The vulnerability of TOCTOU (Time of Check to Time of Use) exists in Android mainly due to naming

collusion. No naming rule or constraint is applied to a new permission declaration. Malicious

application developers may exploit this flaw[9]. Suppose a malicious developer manages to trick a

user into installing malicious application A which declares permission P’, and another malicious

application B which requests permission P’. The name of permission P’ is the same as permission P

which protects accesses to a critical resource. Afterward the user uninstalls application A and installs

benign application C which declares permission P. Now the malicious application B would be able to

use permission P0 to access the critical resource. According to Shin et al., this TOCTOU flaw exists in

Android 1.5, 1.6, 2.0 and 2.1, on both emulators and actual devices.

 Figure 2: Comparison among the countermeasures to over-claim of permissions.

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 45

GSJ© 2017
www.globalscientificjournal.com

4. Enhanced designs and implementations

Some important work has been done to deal with these problems is referenced below.

Countermeasures to over-claim of permissions

Detection of over-claim of permissions. As for detecting over- claim of permissions in Android

applications [2]. manually reviewed the top free and top paid applications from 18 Google Play

categories in 2011 [2]. For each of the applications, Felt et al. compared its functionalities with the

permissions it requested by exercising its user interface. Four out of 36 applications were over-

privileged, while the INTERNET permission accounted for three of the over- privileged applications

[11].

Finer-grained permissions

Finer-grained permissions can be used to address the issues of coarse-grained permissions. Finer-

grained permission implementations can be categorized into install-time policy enforcement and

run-time policy enforcement[12]. The install- time policy enforcement aims to stop malicious

applications from being installed on user’s devices. It provides finer policy enforcement at install-

time rather than asking users to decide whether to grant all permissions or nothing. More factors,

such as permission combinations, permission and action string combinations, and signatures of

requesting applications, are taken into consideration. If an application violates one of the preset

policies, the installation of the application would be aborted. On the other hand, the run-time policy

enforcement allows users to set finer-grained restrictions at run-time[12]. proposed Secure

Application INTeraction (Saint) in 2009 whose install-time policies regulate the granting of

application defined permissions[11]. In addition to Android’s protection level-based permission

granting policy, an application can define the conditions under which the permissions defined by the

application can be granted to other applications at install- time.

Countermeasures to permission escalation attack

Demonstration of permission escalation attack. In 2011[13]. presented Soundcomber, a Trojan with

few and innocuous permissions that can extract targeted private information from the audio sensor

of a phone. Defense mechanisms. Along with presenting Soundcomber, [13]. proposed a defense

mechanism[13] which maintains a list of critical numbers and blocks all applications from accessing

the audio data during a sensitive phone call[12].

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 46

GSJ© 2017
www.globalscientificjournal.com

Facilitating permission administration

Three roles are usually involved in the Android permission administration: developers declare which

permissions the application will request application marketers verify whether the application is

legitimate or not by an automatic tool or manual review users decide whether to approve the

permission requests[14]. These three roles are usually performed by those who are not well-trained

in policy based management. In 2012, Google announced that a service named Bouncer had been

deployed on Google Play Store (Google, 2012). Bouncer scans Google Play automatically for

potentially malicious applications without disrupting the user experience of Google Play Store or

requiring developers to go through an application approval process.

5. Permission-Granting Mechanisms

Permission systems can grant permissions to applications using four basic mechanisms: automatic

granting, trusted UI, runtime consent dialogs, and install-time warnings. We discuss these

permission-granting mechanisms in order of preference, based on the amount of user attention that

they consume.

Automatic Grant

An automatically-granted permission must be requested by the developer, but it is granted without

user involvement. We propose that permissions should be automatically granted if they protect

easily-revertible or low-severity permissions. For example, changes to the global audio settings are

easily revertible, and vibrating the phone is merely annoying. Currently, any web site can play audio

or generate pop-up alerts without re- questing permission from the user; although this can lead to

annoyance, the web is still usable. Web users simply exit web sites that have unwanted music or

alerts.

Trusted UI

Trusted UI elements appear as part of an application’s workflow, but clicking on them imbues the

application with a new permission. To ensure that applications cannot trick users, trusted UI

elements can be controlled only by the platform. Trusted UI has been incarnated in many forms,

including CapDesk [15], access control gadgets , and sensor-access widgets[16]. Trusted UI elements

require effort to design because they need to fit applications’ workflows and accommodate as much

functionality as possible. They also con- strain the appearance of applications, so their design needs

to be neutral enough to fit most applications. To help trusted UI blend into applications, the

platform could allow some degree of customization or allow developers to choose between multiple

designs. For ex- ample, developers could choose the size, placement, or color scheme of an element.

Ideally, their design would involve input from application developers.

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 47

GSJ© 2017
www.globalscientificjournal.com

Install-Time Warnings

Install-time permission warnings integrate permission granting into the installation flow. Installation

screens list the application’s requested permissions. In some platforms (e.g., Facebook), the user can

reject some install-time permissions. In other platforms (e.g., Android and Windows 8 Metro), the

user must approve all requested permissions or abort installation[17].

6. Some drawbacks of the Android permission system

There are some drawbacks of the Android permission system.

Static permissions

Android’s permission system is rather rigid and lacks flexibility. Users can only install applications by

granting all permissions requested by that application. It is not possible to withdraw any permission,

neither during installation nor after the installation process. The only option users have is to

uninstall an application[18].

Missing control

Users have no control over their resources. Once an application has been installed, it can access

resources with the permissions that have been granted during installation. Users cannot neither

watch which resources an application accesses, nor can they permit or deny any such access[18].

Over-privileged applications

Applications sometimes are over-privileged, which means they require access to resources they do

not need to function. Over-privileged applications increase the impact of vulnerabilities[18].

Permission granularity

Some standard permissions are defined at a coarse granularity, e.g., INTERNET,

WRITE_EXTERNAL_STORAGE. Applications with the permission INTERNET have arbitrary access to

the Internet. There is no way to restrict access for example to specific domains or services[18].

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 48

GSJ© 2017
www.globalscientificjournal.com

7. RELATEDWORK

Previous studies of Android applications have been limited in their understanding of permission

usage. Our permission map can be used to greatly increase the scope of application analysis[12].

apply Fortify ’s Java static analysis tool to decompiled applications; they study their API use.

However, they are limited to studying applications’ use of a small number of permissions and API

calls. In a recent study[2]. manually classify a small set of Android applications as over privileged or

not, but they were limited by the Android documentation. provide a tool that performs an over

privilege analysis on application source code. Their tool could be improved by using our permission

map; theirs is based on the limited Android documentation. Our static analysis tool also performs a

more sophisticated application analysis. Unlike their Eclipse plugin, Stowaway attempts to handle

reflective calls, Content Providers, and Intents.

Sarma et al. proposed to better inform policy administrators whether the risks of installing an

application was commensurate with its expected benefit. Specially, Sarma et al. proposed to

capture the benefit of an application by using the category and sub-category of the application, and

capture the risk by using the usage percent- age of the permissions among the applications in the

same category. When a user sees a warning triggered by an application, he or she should be more

cautious about the risk of the application being installed. When a developer sees a warning triggered

by his or her application, he or she should consider how to make the application avoid triggering the

signal.

In 2012, Fragkaki designed and implemented Sorbet, which allows developers to define policies to

mitigate undesired in- formation flows and confused deputy attack. Sorbet tracks the permissions of

all components on a call stack. When a component A is called, and A is protected by the permission

P, Sorbet evaluates if every component on the call stack has P.

In 2012, Wei et al. applied Stowaway to a set of 237 evolving third party applications covering 1703

versions. The result showed that the overall tendency was towards over-claim of permission (Wei et

al., 2012). In particular, 19.6% of updated versions of applications were over-privileged due to added

permissions, and 25.2% of applications were initially over- privileged and stayed over-privileged

during their evolutions. On the other hand, 11.6% of applications resorted from over-privileged to

legitimate.

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 49

GSJ© 2017
www.globalscientificjournal.com

 .8 CONCLUSION AND FUTURE WORK

The security issues and countermeasures of Android systems have been rigorously studied since the

first Android device was shipped to the market. In recent years, the problem of Android security has

become even more severe, partially due to the vulnerabilities in the design of Android systems, and

partially due to the huge success of Android devices in the market. Motivated to provide a

systematic overview of the current research on Android security, we identify six issues in Android

security, including coarse granularity of permissions, incompetent permission administrators,

insufficient permission documentation, over-claim of permissions, permission escalation attack, and

TOCTOU attack. The former three are indirect issues, while the latter three are direct issues, which

may lead to financial loss or privacy leakage directly. In order to empower all end-users with flexible

permission control, it will be necessary to include more flexible permission control into the regular

Android system. Based on comprehensive analysis on the issues and countermeasures, we argued

that Android security can be improved by developing data-driven tools to strengthen Android

framework, and maintaining consistency between application intentions and implementations.

As future work, we can raise users awareness of permissions and a summary of our relationship with

permissions. Another option is to write applications that will encrypt and decrypt all private data as

they are accessed in order to assure its confidentiality, also we will examine Android application

family classification more extensively and also investigate the implications of data leakages in benign

applications. We will also extend DroidBox to provide more detailed API monitoring. Increasing ways

to improve “permission gap” Can be an important contribution to malware detection. Security API

enables users to install the apps and if the built-in security of Android is not able to prevent the

unauthorized access of critical data, then this enhanced security framework will provide necessary

safeguards. We identified a set of issues that are impeding awareness and comprehension. In

particular, category headings are confusing, some users cannot connect resource-based warnings to

risks, some users cannot reason about the absence of permissions, and some users are experiencing

warning fatigue. We provide a set of recommendations to address these issues.

REFERENCES

[1] Barrera D, Kayacik HG, van Oorschot PC, Somayaji A. A methodology for empirical analysis of

permission-based security models and its application to android. In: Proc. of ACM CCS. ACM; 2010. pp. 73e84.

[2] Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D. Android permissions: user attention, comprehension,

and behavior. In: Proc. of SOUPS. ACM; 2012. p. 3.

[3] Han W, Lei C. A survey on policy languages in network and security management. Comput Networks

2012;56(1):477e89.

[4] Vidas T, Christin N, Cranor L. Curbing android permission creep. In: Proc. of the Web, vol 2; 2011.

[5] Saltzer JH. Protection and the control of information sharing in multics. Commun ACM 1974;17(7):388e402.

[6] Bugiel S, Davi L, Dmitrienko A, Fischer T, Sadeghi A, Shastry B. Towards taming privilege-escalation attacks

on android. In: Proc. of NDSS; 2012.

GSJ: VOLUME 5, ISSUE 9, SEPTEMBER 2017 50

GSJ© 2017
www.globalscientificjournal.com

[7] Dietz M, Shekhar S, Pisetsky Y, Shu A, Wallach D. Quire: lightweight provenance for smart phone operating

systems.

[8] Schmidt A,Schmidt H, ClausenJ,YukselK,Kiraz O, Camtepe A, et al. Enhancing security of linux-based android

devices. In: Proc. of 15th International Linux Kongress.Lehmann;2008.

[9] Shin W, Kwak S, Kiyomoto S, Fukushima K, Tanaka T. A small but non-negligible flaw in the android

permission scheme. In: IEEE POLICY. IEEE; 2010. pp. 107e10.

[10] Fragkaki E, Bauer L, Jia L, Swasey D. Modeling and enhancing android’s permission system. In: Computer

SecurityeESORICS 2012. Springer; 2012. pp. 1e18.

[11] Nauman M, Khan S, Zhang X. Apex: extending android permission model and enforcement with user-

defined runtime constraints. In: Proc. of ACM ASIACCS. ACM; 2010.

[12] Enck W, Ongtang M, McDaniel P. On lightweight mobile phone application certification. In: Proc. of ACM

CCS. ACM; 2009. pp.

[13] Schlegel R, Zhang K, Zhou X, Intwala M, Kapadia A, Wang X. Soundcomber: a stealthy and context-aware

sound trojan for smartphones. In: Proc. of NDSS; 2011. pp. 17e33.

[14] Han W, Fang Z, Yang LT, Pan G, Wu Z. Collaborative policy administration. IEEE TPDS 2013;24(1):1.

[15] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan. User-driven access control:

Rethinking permission granting in modern operating systems. In Proceedings of the IEEE Symposium on

Security and Privacy, 2012.

[16] J. Howell and S. Schechter. What you see is what they get: Pro- tecting users from unwanted use of

microphones, cameras, and other sensors. In Proceedings of the Web 2.0 Security & Privacy Workshop (W2SP),

2010.

[17] R. B¨ ohme and S. K¨ opsell. Trained to accept? A field experiment

on consent dialogs. In Proceedings of the ACm Conference on Human Factors in Computing Systems (CHI),

2010.

[18] M.KEN MICRO FOCUS Borland Software Corporation Linz, Austria

