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REVIEW: ABERRANT EPIGENETIC MECHANISMS IN CANCER 

Purva Kalel 

ABSTRACT: Tumours are extensively driven by both genetic and epigenetic lesions. 

Although cancers are induced by genetic mutations more often, progressive carcinogenesis is 

difficult if not impossible to sustain without an extra helping hand of aberrant epigenetic 

behaviour. Epigenetic regulatory mechanisms that look over the stability, expression, and 

maintenance of the genome without altering DNA sequence are susceptible to dysfunctioning 

and mutations in all cancer types but partially remain in the framework of modifiable 

machinery, intensifying the necessity of learning their contribution and course of action in 

carcinogenesis. Despite the fact that the DNA methylation is the most acknowledged and 

therapeutically approached epigenetic mechanism, compelling functionalism of 

hypomethylation, post-translational histone modifications, non-coding RNAs and chromatin 

remodellers have a somewhat equally dynamic role in facilitating oncogenesis in mutation-

susceptible conditions. Over the last decade aberrant epigenetic mechanisms have found 

applications in designing prognostic, diagnostic and monitory techniques of cancer 

management. It's of immense importance to quest inside the genome and comprehend the 

underlying patterns of epigenetic mechanisms that allow cancers to invade, metastasize and 

progress towards the destruction of healthy well-being to enable a wider and more accessible 

advance in adopting epigenetic mechanisms to tackle tumors. 
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Cancer is a disease induced by aberrant genetic and epigenetic alterations.1 From the 

establishment of a single genetic mutation to a series of progressive genetic and epigenetic 

mutations lead healthy tissues to endure accumulated state of genomic abnormalities 

followed by metastasis, invasion, infiltration and destruction that exhibit uncontrolled 

proliferation of dominant tumour cells eventually setting off cancer.2  

Aberrant genetic mutations are difficult if not impossible to reversibly manipulate. The 

immense stability of these altered nucleotide sequences stands on the ground of one of the 

biggest challenges lurking above the non-invasive treatments of cancer. On the flip side, 

epigenetic mutations that manifest over-expression or silencing of vital genes do so by 

recruiting epigenetic machinery to stimulate anticipated action by altering gene expression, 

strictly limiting their activities out of the bounds of direct DNA sequence manipulation.3 This 

is an incredible phenomenon considering their relatively weak stability facilitating the 

achievement of practicable handling and management.  

All cancer types demonstrate significant epigenetic lesions when compared with genetic 

abnormalities, the sole distinction of one over another being epigenetic aberrations remain 

widely available for externally induced reversibility in contrast to altered genetic sequences 

that once laid down are highly stable and remain beyond the therapeutic capabilities for 

reversion.4 Transformability of epigenetic changes presents a bigger motivation in cancer 

management extending from serving diagnostic, interpretative, prognostic, and predictive 

purposes to delivering appreciable therapeutic value. Subsequently, studying epigenetic 

modifications in cancerous cells has become an emerging and promising field in oncology 

that aims to address and alter aberrant epigenetic lesions to predict progression of cancer, 

develop competent biomarkers, subcategorize patients bearing similar tumours and thereby 

selectively utilize relevant therapeutics to increase the life expectancy of cancer patients.5,6  

DNA methylation-driven gene silencing is by far the most extensively studied epigenetic 

modification.7 Relatively attainable screening, well-developed methodology and thorough 
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interpretation make it the most preferred and widely acknowledged but not the sole important 

aberrant epigenetic modification prevailing throughout tumorigenesis. Histone modifications 

also play a striking role in cancer development via three core mechanisms including histone 

tail modifications mediated expression or repression of genes, on-boarding chromatin 

remodelling complexes, and replacement of conventional histones with their specialized 

variants.8,9 Chromatin remodelling complexes that are responsible for sustaining dynamism of 

chromatin and can drive nuclear architecture either close to idealism as they do in healthy 

cells or instability with reference to harboured malformed functionalities amid unnatural 

entanglement of euchromatin and heterochromatin as in the majority of tumours.10,11,12 

Another groundbreaking phenomenon that addresses non-coding RNAs’ role in oncogenesis 

has had the backfoot of shortest history amongst other epigenetic modifications and yet their 

spectrum of roles in divergent types, stages and applications in cancer has secured them a 

pivotal position as a remarkable epigenetic persuader in tumorigenesis.13 Broad range of 

piRNAs (piwi interacting RNAs), siRNAs (small interfering RNAs), miRNAs (micro RNAs) 

and lncRNAs (long non coding RNAs) have the potential to effectuate sequence-specific 

gene silencing14, consequently, their usage as advancing biomarkers and anti-cancer agents is 

not too far from exceeding current research fields.15,16 

Epigenetics has far-reaching consequences from causing two genetically identical twins to 

acquire different heights and interests, regulating cellular pathways, designing one’s nature, 

induce varying susceptibility to apparently the same environment to driving diseases without 

the exception of cancer. Their ever-changing mechanisms allow them to transform and 

evolve distinctly in different individuals along with different tissues of the same individual.17 

Although, this may complicate investigating them, at the same time, it makes them extremely 

essential to put under the lens on account of their reversion abilities in various contexts that 

may enable us to alter aberrant, convenient mistakes made in cancerous cells.  

DNA METHYLATION IN CANCER  
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DNA methylation extensively occurs on the fifth carbon of cytosine that is found 5’ to the 

guanine, both generally referred together as CpG dinucleotide; ‘p’ depicting 

phosphodiesterase bond between them.18 Higher frequency regions of CpG dinucleotides, 

called CpG islands, are found at the promotor region of 60% of the human genes 

subsequently exhibiting control attributed to their privileged upstream location of 

transcriptional machinery attachment, they are inarguably considered being associated with 

controlling gene activity.19,20 Mammalian genomic DNA methylation is carried out by three 

core DNA methyltransferases (DNMTs) which are DNMT1, DNMT3B, and DNMT3A.21 

Though all three of them lay DNA methylation marks on CpG dinucleotides their 

functionality remains distinguishable.22 While both DNMT3A and DNMT3B are de novo 

methyltransferases that lay novel methylation marks during embryogenesis and primordial 

germ cell development, DNMT1 concentratedly maintains methylation marks through 

generations.23 Correspondingly, the serviceability of DNMT1 is most accounted for mitotic 

heritability of DNA methylation that is unvaryingly transferred from parent to daughter cells. 

As far as genome-wide distribution is considered, CpG islands mostly occur in an 

unmethylated state ensuring normal gene expression and functioning.24 Hypermethylation of 

CpG islands equates with repression of concerned gene activity brought about either by 

inhibition from the binding of transcription factors to DNA or recruitment of gene repressing 

proteins.25 Global hypermethylation of these CpG islands is a hallmark of almost all cancer 

types.26  

Hypermethylation and successive repression of tumour suppressor genes and 

hypomethylation followed by expression of oncogenes is a well-known trait of the spectrum 

of cancers.27,28 O6 methylguanine DNA methyltransferase (MGMT) demonstrates aberrant 

promoter methylation in an array of cancer types including colorectal cancer29, breast 

cancer30, non-small cell lung cancer31, gastric cancer32,33 and glioblastoma34 In a study 

conducted on 244 colorectal tumour samples, 71% of the samples that showed guanine to 
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adenine mutations had aberrant promoter methylation on MGMT gene which encodes a DNA 

repair protein responsible to prevent G to A transition in ras genes.35 Other studies that 

highlighted tumour suppressor gene promoter hypermethylation in cancer concluded that 

promotor of tumour repressing RASSF1A gene was frequently methylated in small cell lung 

cancer (SMLC), non-small cell lung cancer (NSCLC), and breast cancer.36,37 Distinct 

hematological malignancies portrayed varying promotor region hypermethylation profiles in 

vital cell growth restrictors p15INK4B and p16INK4A.38 The frequency of hypermethylated 

von Hippel-Lindau (VHL) gene in 26 samples of renal carcinoma was found to be low yet 

significant (19%).39 Similarly, the BRCA1 (Breast Cancer gene 1) was found to be 

hypermethylated in considerable number of samples of both ovarian tumours and primary 

breast cancers. This was observed more frequently in the state of loss of heterozygosity 

(LOH), necessary for facilitating the progression of cancer even further.40  

Although the unmethylated state of promotor regions is crucial for uninterrupted expression 

of tumour suppressor genes, methylation of CpG dinucleotides in peculiar locations is 

indispensable for stability of genome as well. For instance, methylation of CpGs in repetitive 

DNA sequences and intragenic transcriptional elements is essential to repress translocation of 

transposable elements and silencing of cryptic promotor induced activity respectively.41-43 

Hypomethylation at these sites can withdraw a variety of consequences that may act as fodder 

for tumours. DNA hypomethylation almost always accompanies DNA hypermethylation in 

all cancer types but not all cancer samples, and always in a context that benefits cancer, rarely 

otherwise.44 Narayan et al. studied 25 breast adenocarcinoma samples, half of which 

demonstrated hypomethylation of satellite 2 which is a long heterochromatic region near the 

centromere of chromosome 1 which in healthy tissues is highly methylated.45 Ubiquity of 

hypomethylation does not stop here, it has far-reaching consequences in a variety of cancer 

types. For instance, satellite 2 has also been found to be frequently hypomethylated in the 

cases of ovarian carcinoma46,47, Wilms tumour48, and hepatocellular carcinoma49. 

Additionally, satellite 1, satellite 3, α-satellite, LINE-1, LTR containing repeats and ALU 
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sequences consistently undergo hypomethylation in a variety of tumours.50 Having said that, 

hypomethylation of single-copy genes is as recurrent as repeated sequences. Extensively 

studied MAGE-A gene which exhibits expression exclusively in the placenta and testicular 

germ cells while being highly methylated in somatic cells has been found to depict partial 

hypomethylation in an array of cancers including renal carcinoma, gastric cancers51, lung 

cancer52 and cancer cell lines from rhabdomyosarcoma.53 Simultaneously, the list of 

hypomethylated genes in tumorigenesis only seems to extend over both time and research. To 

name some, MAGE-B54, MAGE-C54, Maspin55-62, XIST63,64, HOX 1165, CAGE66 have shown 

substantial hypomethylation in different cancers and more importantly so, to varying extents.   

Another prevalent and commonly observed corollary of hyper and hypo-methylation is loss 

of imprinting (LOI) wherein both gene copies remain sequentially unchanged yet behave 

functionally aberrant owing to loss of parent-of-origin-specific gene expression to either 

instigate its overexpression owing to the eccentric activation of silent parental allele or 

downregulation of certain genes due to silencing of its usually active state on its parent 

locus.67  In cancers it's common for imprinting aberration to yield upregulation of oncogenes 

and downregulation of tumour suppressor genes to disrupt the normal functioning of cell 

metabolism68. A widely studied example of imprinting would be IGF2/H19 locus. H19, a 

maternally expressed extensively studied long non-coding RNA, is known to possess growth 

regulatory properties highly dependent on the unmethylated state of the imprinting control 

region (ICR). Unmethylated ICR on maternal allele binds CTCF, an insulator protein 

sensitive to ICR methylation, that ensures H19 expression but insulates IGF2 from upstream 

enhancers resultantly blocking its expression.69 On the contrary IGF2 is paternally active by 

means of a hypermethylated state of ICR that blocks CTCF from binding resultantly enabling 

IGF2 expression.70   

In cancer types such as colorectal71, bladder72, lung73, ovarian74, and Wilm’s tumour75,76 

where the loss of imprinting via hypermethylation of ICR on maternal allele has been found 
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to cause abnormal biallelic expression of IGF2, thereby facilitating tumour growth. Another 

imprinting aberration is observed in a maternally imprinted cyclin dependant kinase inhibitor 

1C (CDKN1C) which is described as a tumour suppressing gene owing to its ability to 

restrict cell growth at the G1/S phase.77 CDKN1C encounters imprinting disruption by loss of 

DNA methylation in Beckwith-Wiedemann syndrome78, bladder cancer79, rhabdoid tumour80 

and oesophageal tumour81. Additional genes like MEST and DIRAS3 repeatedly encounter 

loss of imprinting in several cancer types.82,83 As much as we would like to limit the list of 

genes there, it only seems to lengthen as we take the liberty to look closely along with the 

cancer types and through the variations of the same cancer. The superficial overview over 

disrupted imprinted genes is simpler to state yet difficult to draw any conclusions from. Its 

complexity only seems to intensify when observed in an immense number of tumour samples 

in different cell lines on the backdrop of healthy tissues. 

HISTONE MODIFICATIONS IN CANCER CELLS 

Discovery and analogy between post-translational histone modifications and RNA synthesis 

were established in 1964 by Allfrey et.al85 but it wasn’t until 1988 when the underlying 

interconnection between histone modifications and gene expression via transcriptional 

control was recognized.86   The N and C tails of histone octamers composed of pairs of H2A, 

H2B, H3 and H4 that protrude out from nucleosome tend to act as a platform for various 

covalent modifications such as methylation of arginine and lysine, phosphorylation of serine 

and threonine, ubiquitylation or sumoylation of lysines and so on.87,88 Irrespective of how 

portrayed superficially, histone tail modifications have far from benign percussions in 

maintaining genomic stability and therefore undergoing disruption in the carcinogenic 

environment. When chemical covalent marks say, methylation, acetylation or ubiquitylation 

are laid on a specific amino acid in defined quantity and on the desired histone, they produce 

a characteristic sequence of the marks hovering over the DNA called histone code which 

signify predetermined implication in the context of expression or repression.89,90 However, 
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histone modifications are not entirely devoted to controlling gene expression and providing 

reliable package material as their role in recombination, replication and DNA repair is 

increasingly recognized90. Exclusive histone codes unique for every expected follow-up 

mechanism determine the DNA accessibility for transcription by their ability to be read and 

interpreted by either inhibition or recruitment of transcriptional machinery.91 Histone code is 

assembled, decoded and re-established by means of absolute co-ordination between writer 

proteins that accurately navigate and lay down histone marks, reader proteins that 

comprehend these marks, and utilize machinery to bring about the anticipated action and 

erasers that function to remove laid histone marks eventually exposing them for de-novo 

histone modifications.92 An aberrant co-ordination of writers, readers or erasers or no 

functioning of at least one of them at all has a key role to play in major cancer types, 

evaluation of which has a promising future in delivering value with regards to cancer 

prognosis, diagnosis and therapeutics.93,94,95  

Some post-translational histone modifications have fore-destined implications in a healthy 

state which if subjected to disruption may lead to subsequent reverberations. For example, 

histone acetylation is generally attributed to gene activation.96 The competency of histone 

acetylation to stimulate gene activation serves an invaluable purpose in the constitution of 

tumours as an aberrant acetylation profile can activate proto-oncogene and bring about the 

repression of tumour suppressor gene by incurring hypoacetylation.97 On the other side, both 

histone methylation and phosphorylation are followed by rather complex outcomes in terms 

of expression or regulation depending upon several factors.98-100  

Loss of monoacetylation on H4Lys16 and trimethylation on H4Lys20 is extensively co-

related with several cancer types and is assumed to indicate poor prognostics in breast 

carcinomas.101,102 Circulating blood of colorectal cancer patients have been found to contain 

nucleosomes with low levels of H3Lys9 trimethylation and H4Lys20 trimethylation when 

compared with healthy individuals, thereby, flagging their emergence as a novel biomarker 
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for colorectal cancer.103,104 Multitude of cancers has depicted mutations and or or an aberrant 

functioning in writer, reader and eraser proteins. For instance, genes responsible for the 

production of histone methyltransferases such as EZH2105,106, G9a107, and PRMT1/5108 are 

repeatedly subject to erratic functionality that seems to facilitate tumour progression in a 

wide range of carcinomas. Similarly, histone demethyltransferases109, histone acetyl 

transferases108 and histone deacetyltransferases108, 110 are found to be dysfunctioning in 

numerous cancer types.  

Another groundbreaking discovery pertaining to the contribution of histone variants in 

maintaining genomic stability is hastily establishing its own identity in cancer research. 

Although at a relatively naïve stage of research today, histone variants may be playing a 

bigger role in genomics than originally thought of. Take, for example, H2A.X, one of the six 

minor variants of H2A, which responds to DNA double-strand breaks and is presumed to be 

involved in DNA repair mechanisms, is mapped to a genomic locus which is recurrently 

altered in numerous tumour types depicting disruption of DNA repair mechanisms during the 

progression of cancer.111-113 H2A.Z, another variant of H2A is overexpressed in colorectal 

cancer114, breast cancer115-118, melanoma119, and prostate cancer.120-122 Equivalently, more 

histone variants including mH2A.1, mH2A.2, CENP-A, H3.3 and others have shown aberrant 

expression patterns in diverse human cancers.123                  

Histone modifications have found escalating usage in oncology as biomarkers for effective 

prognosis and categorization of tumours in subtypes.124To illustrate further, lowered levels of 

both H3Lys4 dimethylation and H3Lys18 acetylation indicate a higher probability of 

recurrence in prostate cancer.125 Lower levels of H3Lys4 dimethylation and H3Lys18 

acetylation act as a prognosticator of minimum survival possibility in lung and kidney cancer 

patients.124 Another histone modification called H3Lys9 dimethylation shows lower levels in 

prostate or kidney patients with poorer clinical outcomes.114  Loss of H3Lys9 dimethylation 

mark also accompanies thoroughly noted in imprinting disruption of CDKN1C  
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Although histone modifications impart many prominent consequences solely by their 

influence, often their interaction with chromatin re-modellers and DNA methyltransferases is 

overlooked. As far as tumorigenesis is concerned, understanding inter-connection between 

DNA methylation and histone modifications is imperative as their global interdependence 

remains at the center of many silencing mechanisms and shall not be studied exclusively for 

the sake of a comprehensive understanding, deciphering functional linkage and application-

based approach. Inevitably, addressing the role of histone modifications in inducing, 

facilitating or restricting DNA methylation is important. The interplay between histone 

modifications and DNA methylation can be appreciated from an example of SETDB1, a 

histone methyltransferase and DNMT3A, a de-novo DNA methyltransferase which has been 

perceived to co-function together to induce silencing at the promoters of commonly repressed 

genes in cancer cell lines.126 In addition to what has been demonstrated, LOI in CDKN1C is 

not driven solely by aberrant DNA methylation but is enthusiastically accompanied by loss of 

H3K9 dimethylation78. Though many other observations remain discrete and 

incomprehensible due to their poorly understood mechanisms, the visible outcomes are 

significant and unignorable. This obvious and contemplated cross-talk between DNA 

methylation and histone modifications is becoming ever so prominent and more importantly 

complex over time.127    

CHROMATIN REMODELING AND CANCER 

Chromatin remodelers alter genomic condensation via ATP dependant mechanisms for better 

access of binding sites to transcriptional machinery128. They do so by three core mechanisms 

including sliding of nucleosome along the DNA to gain more exposure for transcriptional 

machinery binding128,129, eviction of octamers to generate histone-free DNA130,131, or 

replacement of canonical core histones with histone variants to allow specialized genomic 

remodelling.132    
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As discerned from DNA methylation, Histone tail modifications and non-coding RNAs, a 

recurring theme of dependency and small-scale impact seem persistent contrary to the 

chromatin remodellers who occupy a rather bigger role in the nuclear architecture 

manifesting developments that are often irreversible. 

Widely studied subunits of ATP-dependant SWI/SNF (SWitch/Sucrose Non Fermentable) 

chromatin remodelling complex have been found to be dysfunctional in a variety of tumours, 

many times as a consequence of prior genetic aberration and sometimes as the causal factor 

of tumorigenesis133. SNF5, one of the core subunits of SWI/SNF complex and an important 

tumour suppressing component is found mutated in almost all malignant rhabdoid tumours134-

136, some familial schwannomatosis137, hepatoblastoma138, round cell soft tissue sarcoma139, 

epithelioid sarcoma140, familial meningioma141 and chordomas.142 In an extensive study 

conducted on mice, 100% of subjects developed lymphoma or rhabdoid tumour by the 

employment of reversibly inactivating conditional SNF5 allele within a median short span of 

11 weeks is enough to emphasize the tumour suppressing potential of SNF5.143 PBRM1 

which encodes BAF180, another important component of SWI/SNF complex, has been found 

to undergo mutation in renal cell carcinomas144and breast cancers145. Tumour suppressing 

activity of ARID1A is systematically appreciated from a detailed study addressing the vitality 

of ARID1A for regular cell cycle arrest.146 ARID1A is also found mutated in 50% of OCCCs 

(ovarian clear cell carcinomas)147, 30% of endometrioid carcinoma148, medulloblastomas149, 

primary breast cancers150 and lung adenocarcinoma150. Other constituents of SWI/SNF such 

as BRM151-153, BRG1152-158 and BRD7159 have been identified to undergo aberrant 

downregulation or undetermined derangement in an array of cancers. It is important to note 

that simply downregulation of components by monoallelic disruption of chromatin 

remodellers is not enough. Their complete depletion in a way that they utterly fail to 

contribute in effective genomic remodelling is a highlight of many tumours as suggested by 

Knudson’s two-hit hypothesis.160 Many cancers that harbour heterozygous expression of 

tumour suppressing genes often undergo homozygous disruption to completely seal tumour 
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suppressing activity as seen in the case of SNF5.161 Aberrancy of other chromatin 

remodelling components such as p400, CHD4/5, ARID2, etc. can be addressed and 

comprehended from a variety of studies.97  

As mentioned before, chromatin remodelling complexes share an intertwined co-relation with 

histone tail modifiers to accomplish complete gene repression or activation. BAF180 has the 

ability to recognize acetylated histones by utilization of their constitutional six tandem 

bromodomains162. Similarly, BRM targets acetylated histones via carboxy-terminally located 

bromodomains.163 Recruitment and utilization of HDAC1 by SNF5 has implications in the 

deactivation of cyclin D1 supported by successive removal of acetyl marks164. 

Although a naïve overview over insights of chromatin remodelling complexes and their 

abnormal behaviour in cancer is not enough to understand detailed intercommunication over 

and above genome that strives to maintain integrity, functionality, stability and metabolism in 

each cell of the three trillion of them in the human body but is sufficient to appreciate its 

complexity and work on our ignorance towards better understanding and even superior non-

invasive, painless and effective cancer treatments. 

NON-CODING RNAS IN CANCER 

It was implied from Crick’s central dogma that the expression of RNAs was a purely 

intermediatory step in protein synthesis from DNA until the early 1970s when the non-coding 

RNAs (ncRNAs) along with their possible functionalities came into light. It was assumed for 

the genome that does not code for proteins to be referred to as junk DNA, but it was soon 

realized with the emergence of ever extensive technology that they were anything but that. 

When it was understood that merely 2% of DNA is coding for proteins but 90% of DNA is 

being transcribed165, it was evident that genome-wide transcriptional activity, yet lesser 

translational output has a greater objective to serve in cell biology. Noncoding RNAs have 

managed to support promising findings in almost all fields of human physiology including 

cancer within not more than their truly short ten years of history, development and research. 
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Their role in controlling gene expression has cross-disciplinary implications in carcinogenesis 

and if understood and interpreted well, they are likely to stay and grow as effective 

biomarkers, prognosticators, and even decisive therapeutic agents.  

ncRNAs are divided into two main classes, small ncRNAs which are usually 20kb to 200kbs 

in length and long noncoding RNAs which extend longer than 200kbs166. Small ncRNAs are 

further subcategorized into piRNAs, miRNAs and siRNAs amongst which both miRNAs and 

siRNAs act post-transcriptionally on mRNAs rather than directly on DNA.167 This contradicts 

the definition of epigenetics as it literally refers to mechanisms that act on genes and not their 

transcriptome. Although they accomplish the ultimate goal of controlling gene expression 

since our study aims to review epigenetic influence solely, we will be excluding both 

miRNAs and siRNAs only for their divergent mode of action. With that being said, their 

crucial role in tumour progression and its management is thoroughly appreciated. piRNAs too 

depict post-transcriptional control of gene expression but their partial role as transcriptional 

gene silencer is undisputable.168 24-31 kb long piRNAs or piwi complex interacting RNAs 

bring about gene silencing by assisting in laying H3K9me3 repressive mark, removing 

activating H3K4me2 mark with the aid of Lsd1 (Lysine-specific demethylase 1), recruiting 

HP1 (heterochromatin protein1) and DNMT to methylate CpG sites.169,170 Evidently, one can 

expect aberrant expression of piRNAs in a spectrum of cancers as their key role in silencing 

tumour suppressor genes and upregulating oncogenes by their own downregulation can serve 

a valuable purpose in advancing tumorigenesis in many cancer types. Upregulation of 

different piRNAs is observed in breast171, lung172-174, gastric175,176, colorectal177-180, 

hepatocellular carcinoma181,182, kidney cancer183,184, hematological malignancies185-188, and 

ovarian cancer189 while their downregulation was reported in breast190, lung172, gastric191-193, 

kidney183, gliobastoma194-197, fibrosarcoma198, and pancreatic cancer199. It's important to note 

that, different piRNAs depict varying up or down expressions in distinct cancers. This is 

becoming increasingly important as their consideration as a biomarker, monitor and 

prognostic contributor is being investigated.168  
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Long noncoding RNAs facilitate epigenetic regulation by directly acting in a cis or trans 

manner to target genes by recruitment of epigenetic machinery.200 One of the most widely 

studied lncRNA called HOTAIR has been found to depict aberrant expression in almost 26 

cancer types.201 HOTAIR, a trans-acting lncRNA, is expressed as an antisense strand of the 

HoxC gene and acts on genes other genes such as HoxD4202. It is capable of recruiting PRC2 

(polycomb repressive complex 2) which lays repressive H3Lys27 trimethylation marks on 

target genes to induce its silencing.203 Additionally, HOTAIR can also recruit Lsd1 to 

regulate gene expression by removing the methylation mark on H3Lys4. 204,205 By illustrated 

mechanisms you can begin to appreciate and predict the intertwined significance of 

overexpressed HOTAIR in oncogenesis. It has a deliberate contribution to make in the 

progression of carcinogenesis206, fostering malignancy207, encouraging metastasis208, 

proliferation209,210, invasion211, aggression212 and inhibiting apoptosis209.  

Along with HOTAIR other lncRNAs like HULC, ANRIL, GAS5, NKILA, H19. Etc. bear 

aberrancy over a range of cancers and to varying degrees. A comprehensive overlook 

demonstrates various applications of apparent abnormalities in lncRNAs such as their 

utilization to approach monitoring 213, prognosis214, and therapeutic responsiveness.215,216  

Targeting both transcriptionally and post-transcriptionally acting ncRNAs is a novel field that 

is hypothesized as a future of cancer treatment. Not only the practicality of targeting ncRNAs 

is more promising than other genetic and other epigenetic modifications but is much more 

accurate, economical, and opportunistic. Their all-inclusive involvement in cancer 

management to meet several intentions including inhibition of metastasis, controlling 

proliferation, effective monitoring, prognostic contribution and delivering therapeutic value is 

by far the most highlighting feature than any other epigenetic modification.  

CONCLUSION:  

Epigenetic aberrations are global and their spread in cancers is highly variable. Though 

virtually rendered more accessible than genetic aberrations, they harbour complexity that can 
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hardly be assessed juxtaposing genetic mutations. The interplay between chromatin 

remodelers, histone modifiers and histone methyltransferases impart one of the most complex 

cross-talk that remains yet to be clearly deciphered in both healthy tissues and cancer cells. It 

also stands as a wall between epigenetic drugs and carcinogenesis since we can’t administer 

drugs without a transparent understanding of the mechanisms we are presumed to deal with. 

DNA methylation aberrations are what we have managed to close the most distance with to 

fully understand and effectively manage with the aid of marketed drugs and yet the 

specificity of DNA demethylating drugs remains extremely poor. In addition to that, while 

aiming to demethylate hypermethylated DNA remains alive and kicking, fear of accidentally 

demethylating oncogenes or intragenic regions which may even worsen tumour progression 

continues to hang over the cancer treatments. As for the erratic expression of non-coding 

RNAs is concerned, they have been rather more used for both diagnostic and prognostic 

purposes with an eye for developing efficacious anti-cancer agents in the near future.  

Abnormal behaviour is the nature of cancer, the unchangeable one. What current 

chemotherapy and radiation therapies attempt to do is kill as many cancer cells as they can. 

The fact that cancer cells can be treated with something other than lethal agents was out of 

the equation until epigenetic aberrations that amputated several core mechanisms but kept 

room for the possibility for reversion emerged. Epigenetic mechanisms and their ability to be 

modified can be looked at as the opportunity that presents us with an option to alter, to give 

cells a chance to right what they wronged. If these aberrations are comprehended thoroughly 

and well, the day when targeted epigenetic therapies coupled with conventional cancer 

therapies that would fasten diagnosis, make accurate predictions and prolong the life 

expectancy of cancer patients isn’t far. 

List of abbreviations:  

1. piRNAs (piwi complex interacting RNAs) 

2. siRNAs (small interfering RNAs) 
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3. miRNAs (micro RNAs)  

4. lncRNAs (long non-coding RNAs) 

5. DNA methyltransferases (DNMTs) 

6. O6 methylguanine DNA methyltransferase (MGMT) 

7. small cell lung cancer (SMLC) 

8. non-small cell lung cancer (NSCLC) 

9. von Hippel-Lindau (VHL) 

10. BRCA1 (Breast Cancer gene 1) 

11. loss of heterozygosity (LOH) 

12. loss of imprinting (LOI) 

13. imprinting control region (ICR) 

14. cyclin dependant kinase inhibitor 1C (CDKN1C) 

15. SWI/SNF (SWitch/Sucrose Non Fermentable) 

16. OCCCs (ovarian clear cell carcinomas) 

17. non-coding RNAs (ncRNAs) 

18. Lsd1 (Lysine-specific demethylase 1) 

19. PRC2 (polycomb repressive complex 2) 
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