

GSJ: Volume 6, Issue 2, February 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com

AN ETHNOBOTANICAL SURVEY OF TREES AND SHRUBS IN MBALAGH - BURUKU LOCAL GOVERNMENT AREA OF BENUE STATE

AKESA, T.M., INJOALU, N.C. AND ZAKAWA, N.N.

Abstract

An Ethnobotanical survey of trees and shrubs in Mbalagh, Bukuru Local Government Area of Benue State was carried out between 2017. A total of 104 plant species were analysed and grouped based on their families with their scientific and local (Tiv) names, where the species of the family Euphorbiaceae (8) and Caesalpinoideae (8) were found to be the dominant tree species. Also, the various uses such as medicinal, food, contractions, craft and others were analysed in the study area and medicinal usage has the highest percentage with 44.8% while craft has the least with 8%. Parts used such as leaves, stem, fruits, flowers, seeds, bark and roots were also put into consideration of which leaves with 38.4% has the highest percentage usage. Descriptive statistics (Descriptive analysis) which include frequency counts and percentages were used to determine the level of usage of the identified plant species and the cultural importance index was analysed. It was concluded and established that plants, no doubts play important roles in the survival and existence of other living components of our ecosystem including man.

Key words: Ethnobotany, Demographic, Families, Tiv names, Usage, Plant parts.

1.0 INTRODUCTION

Ethno-botany is a vital approach in the study of natural resources management of an indigenous people and can be summed up in four words: the people, plants, interaction and uses (Aliyu, 2006). An ethanobotanist thus strives to document the local customs involving the practical uses of local flora for many aspects of life such as plants as medicine, food and clothing. Ethnobotanical knowledge encompasses both wild and domesticated species, and is rooted in observation, relationship, needs and traditional ways of knowing. Such knowledge evolves over time and is therefore always changing and adding new discoveries, ingenuity and methods.

Plants are categorized into herbs, shrubs and trees. A tree is a woody plant having one erect trunk at least 3 inches in diameter at a point four and half feet above the ground, a definitely formed canopy or crown of foliage, and a mature height of at least 13 feet. In contrast a shrub is characterized as a woody plant with several perennial stems that may be erect or may lay close to the ground. It will usually have a height less than 13 feet and stems no more than about 3 inches in diameter (William, 2014). The existence of plants species in any habitat is crucial to man and other components of the ecosystem as all plants are valuable for one purpose or the other (Olapade and Bakare, 1992). Our world has been so closely tied to plants that it is difficult to imagine human existence without them. In recent years, forest products especially the nontimber forest products (NTFPs) have attracted considerable global interest (Cavendish, 2001). This is due to the increasing recognition of their importance to community needs for improved rural livelihood; household food security and nutrition; employment generation and income supplements. Forests contribute in many ways to combating malnutrition and improving diet in local communities and rural households (FAO, 2000; Jimoh and Haruna, 2007). Wild plants constitute the main medicinal resources in many traditional societies. Furthermore, the problem of food insecurity looms large in developing countries as incidence of poverty is on the increase and defies any precise solution (Odebode, 2005). Millions of the world's most vulnerable - the rural poor, are facing starvation as food shortage bites hard and prices of food crops move upward every day (Smith and Edward, 2008). They reported that for the first time in history, the effect of food shortage is spreading from developing countries to the developed ones.

According to Smith and Edward (2008), about 36 countries all over the world now face food crisis. Forest foods can offer vital insurance against malnutrition or famine during times of seasonal food shortage. It is common for rural households to depend on forest foods. Women, in particular, count on these resources for supplementary nutrition, emergency foods, fuel wood for cooking, medicine, income and many other important products they need to ensure the nutritional well-being of their families (Jimoh and Haruna, 2007; Conservation Africa Foundation (CAF), 2008). Nigeria is blessed with diverse plant species; some of these plants have food value. These plant resources, if properly harnessed would ensure our food security (Isichei, 2005). However, many of these species are under threat of extinction as pressure on them increases. A threat to these plant species means a threat to the survival of the rural poor.

Olafide (2003) maintained that among the diverse valuable non-timber resources of natural forest are edible and highly nutritious medicinal fruits, seeds, leaves, twigs, nuts, bark, roots, rattans, gum, latex and dyes. Agbogidi and Okonta (2003) stated that a large proportion of rural population earn their livelihood from the collection or extraction and sales of NTFPs thereby improving the quality of life and standard of living of rural population living near forestlands. NTFPs range from being used as food or food additives (nuts), as plant materials (fibre, creepers and flowers), plant derivation (raffia bamboo rattan, cork and essential oil to animals (such as snails) and animal products (honey, silk). Medicinal plants for centuries have been exploited for the treatment of diseases and healthcare. The discovery of new disease and health targets coupled with the emergence of drug resistance has rekindled interest in medicinal plants as sources of bioactive compounds for drug discovery (Gray et al., 2012). Wild plant materials such as fibres, baskets, furniture, bow and arrows, dyes, paints, varnishes and glue constitute craft materials (Andel, 2000). According to (Reddy et al., 2008), handicrafts are items made by hand, often with the use of simple tools, and are generally artistic and/or traditional in nature. (Agbogidi, 2010) identified craft materials to include fibre, baskets, bow and arrow, dye-paints, glue, varnish, fish traps and local construction activities such as use of palm fronds or grasses for thatching of huts and the general use of sticks and poles for local activities. According to the source, rope making is also a craft and plants such as *Piliostigma thornningii*.

As plant collection continues in order to meet human needs, their sources and existence are under severe threat. Economic globalization, environmental degradation and cultural homogenization are also contributing factors. The rapid decline in biological diversity (species, ecosystems and genetic diversity) is one of the critical challenges of the 21st century. Just as it is with traditional beliefs which are rapidly eroding worldwide. There is therefore an urgent need to document the traditional knowledge on the uses of plants and also conserve their habitat premise also on the fact that, youths who are the elders of tomorrow have vague knowledge about their surrounding flora, there is need to collect and prevent their extinction in

future generations.

GGSJ

2.0 MATERIALS AND METHODS

2.1 Study Area

The study took place in Mbalagh community in Buruku local government area of Benue State, located at latitude 7.37⁰E and longitude 9.26⁰N. It has an area of 1,246 Km² and a population of 203,721 at the 2006 census. It shares boundary with Gboko and Tarka, Local Government Areas. The language spoken by the people is Tiv. The climate is made up of two distinct seasons, wet and dry seasons. The wet season occurs between April and October and the dry seasons occur between Novembers to March. Temperature is 26 °C and relative humidity is between 88% (Agricultural Resources in Benue State Nigeria (ARB), 2005). The study area is located in the Southern guinea savanna. Characterized by relatively fewer trees, more shrubs and predominantly tall grasses, up to 2m. Some of the species here include *Danniellia oliveri*, *Prosopis africana*, *Burkia africana*, *Khaya senegalensis*, *Stereospermum kunthianum*,

Fig 1: Map of Benue showing Buruku Local Government. (Source Google map)

Fig 2: Map of Buruku Local Government Area showing Mbalagh. (Source: Google map)

2.2 Sampling Technique and Data Collection

A combination of random and purposive Sampling technique was employed in selecting the respondents. The population sample used for the study covers the entire community. Data for the study was obtained through the use of structured questionnaire, supplemented with observation (Dau and Elisha, 2013). A total of 85 copies of the questionnaire were administered to respondents 80 questionnaires were returned due to lack of cooperation and cultural belief among the respondents (i.e afraid of spiritual attack by the verbal interview and researchers).

2.3 Data Analysis

Descriptive statistics (descriptive analysis) which include frequency counts, percentages and chart were used to determine the level of usage of the identified plant species. To estimate the cultural significance and level of utilization of each species, Cultural Importance Index (CI), as used by Pardo-de- Santayana *et al.* (2007) was used with the following formula:

$$CI = \sum_{i=1}^{i=NU} UR / N$$

Where

CI = Cultural Importance,

UR = Use Reported in every use-category,

i = Varying from only one to the NU,

NU= Total number of uses and

N= Number of informants in the survey.

3.0 RESULTS AND DISCUSSION

3.1 Demographic Survey

The demographic characteristics of the respondents are shown in Table 1. Majority of the respondents in this research are farmers which constitute 57.5% of the total respondents followed by the students (25%) and herbalists (17.5%). Respondents that falls within the range of 15-35 years are most represented (40%) followed by those within age range 36-55 years (32.5%) and lastly those with age above 56 years (27.5%). The male respondents were 60(75%) while the females were 20(25%). It was discovered that the male constituted the highest number of respondents (75%). However, the women have more cultural knowledge of plants around them compared to men as they were able to mention more trees and describe their uses. This may be as a result of the fact that, collection of these plants on a daily basis for soup making, firewood, food and probably traditional medicine is done by women. This finding disagrees with that of Jimoh *et al.* (2009) who noted that, the custody of information was not gender sensitive. The custody of information is age sensitive as the elderly whose age range above 56 years have versatile knowledge of plants while the youths, know very little about plants around them as they confess that, they only know the names of common plants. This is in line with the findings of (Jimoh, *et al.*, 2009).

3.2 Identification and Grouping of Plant Species

A total of 104 useful plant species belonging to 43 families were identified and documented during this research as shown in Table 2. In terms of species composition, Eurphobiaceae and Caesalpinoideae families have the highest number of species (eight species each), followed by papilionoideae (7 species), Rubiaceae (6 species) Mimosoideae and Moraceae (5 species each), Anacardiaceae (4 species), six families have three species each, eight families have two species each and the remaining 22 families have one species each Table 3. The finding of this research work indicates that, members of Eurphobiaceae and Caesalpinoideae have the highest species representation. The dominance of Caesalpinoideae is consistent with the findings of Jimoh, *et al.* (2009) and Shomkegh *et al.* (2016).

3.3 Plants and Uses

The use of plants by the local people was grouped into five major categories viz: medicinal, food, craft, construction and other uses which include plants used for purpose like: spiritual worship, firewood, hunting and electric poles. Sixty seven species (44.8%) were used for medicine, 40(26.7%) for food, 12(8%) for craft, 13(8.7%) for construction and 18(12%) for other uses Table 4. The part of plants utilised in the various use categories listed above include; leaves which is the most exploited part according to the respondents 63(38.4%), followed by stem 57(34.8%), fruits 24(14.6%), seeds 11(6.7%), roots 6 (3.7%) flower 2(1.2%) and bark 11(0.6%) Table 5. The results of this study reveal that, majority of the plant species identified were used for medical purpose (44.7%) for curing one disease or the other. The herbalists particularly recognised the importance of Stereospermum kunthianum, Hemenocardia acida, Antidesma venosum, Citrus cinensis, and Fluggea virosa in traditional cure. The high utility of plants for medicine by local people was also reported by Jimoh, et al. (2009) and Olapade and Barake (1992), who attributed this trend to be as a result of the harsh economic conditions that push conventional medicine beyond the rural poor and the shortage of orthodox medical personnel in rural areas. This high dependence on plants for cure may also be due to easy affordability and belief in ability of plants to meet their physiological needs in a western medicine does not (Jimoh, et al., 2009).

25

The part of plants mostly used for medicinal purpose include: leaves, roots and bark. Edible plants constitute the second highest category. Some of them are collected as fruits for example: *Maranthes polyandra, Hibiscus sarbdariffa, Citrus cinensis, Mangifera indica, Detarium microcarpum, Carica papaya, Ficus sur* and *Vitex doniana*. While others are collected as leaves and seed e.g *Ricimus communis, Parkia biglobosa* and *prosopis africana*. The use of this plant as food has also been reported by Shomkegh, *et al.* (2016). In craft making, the following species *Vitellaria paradoxa, Prosopis africana*, are particularly important and are utilized for making crafts like hoes and cutlass handles, mortar, pestles etc in the study area. The use of these plants for the purpose described has also been reported by Shomkegh, *et al.* (2016). Similarly, crafts like local beds, brooms and chairs were made using *Raphia Sudanica and Elaesis guinensis*, while *Bombax costatum and Ceiba petandra* were used for making local drums because of their light nature. In the study area, some local construction activities includes, roofing of housing using trees like *Parkia biglobosa, Prosopis africana, Pterocapus osum, Alcornia cordifolia,* construction of bathrooms using *Newbouldia laevis* Agbogidi, (2010) have made similar observation.

Parameters	Specifications	Number (%)
Age	15-35	32(40)
-	36-55	26(32.5)
	56 above	22(27.5)
Gender	males	60(75)
	Females	20(25)
Occupation	farmers	46(57.5)
-	Students	20(25)
	Herbalist	14(17.5)

Table 1. Demographic structures of respondents

Local name	scientific name	Fami	lies	Р	art Used	Uses
Yaghlegum	fluggea virosa	Euph	obiaceae	st	em	medicinal
Ligom	Canthium sp	Rubi	aceae	st	em/leaves	medicinal
Ibyohough	Gardenia erubscens	Euph	orbiaceae	ro	oot	medicinal
Chilakem	Dracaena smithii	Lilia	ceae	le	aves	medicinal
Keendeke	Plerocarpus santalino	oids Pa	apilionoideae	S	tem/leaves	medicinal
Bebah	Indigofera arreta	Pa	apilionoideae	st	em/leaves	medicinal
Kungulekuuta	men Occimum gratisi	mum I	Labiatae	le	aves/stem	medicinal
Ikyondotor	Ficusphatyphylla		Moraceae	le	aves/stem	medicinal
Yiase	Afzelia africana	(Caesalpinoidead	e le	aves/stem/se	ed food/oil
Kuegh ukuegh	Terminalia avisenoia	les C	ombretaceae	r	oots/leave fire	ewood/medicinal
Gbuugh	Quassia undulate	Si	maroubaceae	le	aves/stem fir	ewood/medicinal
Hiigbuug	– Trichilia emetic	Μ	eliceae	le	aves/stem	medicinal
Kumendul	Steculia setigera	St	erculcaceae	le	aves/stem m	edicinal/firewood
Ikyura inomso	Lophira lanceolata	C	hnaceae	le	aves/stem	medicinal
Ikyura i ukase	Sarcocephalus latifidi	ius F	Rubiaceae	le	aves/stem m	edicinal/firewood
Alomade	Maytenus senegalensi	is l	Celestraceae	le	aves	medicinal
Ibya I tiu	Maranthes polyandra	C	hrysobalanceae	e fr	uit/stem	food/firewood
Ibya I kuna	Parinari curatelli foli	a	Chrysobalan	nceae	e stem	firewood
Amenatumba	Stereospermum kunth	ianum	Bignoniacea	ie	leaves	medicinal
Nune	Parkia biglobosa		Mimosoidae	e	seed/ s	tem food/roofing
Gbaaye	Prosopis africana		Mimosoidae	e	seed/st	em food/firewoo
Ashwe	Hibiscus sabdariffa		Malvaceae		fruits/lea	aves food/medicine
Hagvambenim	biriv <i>Lannea sp</i>		Anacardiace	eae	leaves	medicinal/rope
Likwagh gban	de Hemenocardia aci	da	Euphorbiace	eae	stem/ l	eaves medicinal
Likwagh tor	Antidesma venosu	n	Euphorbiace	eae	stem	farming tools
Lwagh/kpagh	Pterocarpus osum		Papilionoide	eae	stem	furniture/roofing
Alum	Citrus cenensis		Rutaceae	fruit	ts/stem/leave	food/medicine/fire
Alum uagbeng	ge Citrus aurantifolia		Rutaceae		fruits/stem/l	eaves medicinal
Mango Mangi	fera indica	Anac	ardiaceae f	fruit	s/stem/leaves	food/medicine
Ishoho	Urena lobata	Malv	aceae	Sa	ap	craft
Agalyen Dete	rium microcarpum C	aesalp	vinoideae fruits	s/roc	ots/stem food	/medicine/firewood
Tsetsa Senna	occidentalis	Caes	alpinoideae		leaves/	stem medicinal
Gyankpande	pilostigma thonningi	Caes	alpinoideae		leaves	/stem medicinal
Kpine	Bridelia ferruginea	Euph	orbiaceae	le	aves/sap	food/craft/firewood
Makuna	Mucuna pruriens	Pipili	ionoideae	se	eed	medicinal

Table 2: Plants encountered, their local names (Tiv), families, uses and parts used

Tsamiah Tam	arindus indica	Caesalpinoidea	ae roots	medicinal
Hueza	Grewia venusta	Tiliace	ae Leaves	medicinal
Soho nor	Mytragyna intermis	Rubiac	eae fruits/b	oranchesfood/craft/roofing
Ichough	Raphia sudani	ca Palmae	•	fruits food
Mkem	Capsicum annum	Solann	aceae	leaves medicinal
Ndovurkpor	Pavetta corymbosa	Rubiaceae	leaves	medicine/food
Gor	Cola nitida	Sterculiaceae	fruits	food
Mzembe	Dacryodes edulis	Burseraceae	fruit	food
Makugh Str	ychnos spinosa	Loganiaceae	fruit/leaves/s	tem medicine
Ikyeve	Cocos nucifera	Palmae	fruits/frond	food/craft/roofing
Ayaba	Musa sapientum	Musaceae	fruits/leaves	food/medicinal
Msongum	Bambusa vulgaris	Poaceae	stem	craft/roofing
Igyedam	Jatropha curcas	Euphorbiaceae	e seed/le	aves medicinal
Dogonyaro	Azardiachta indica	Meliaceae	leaves	medicine/firewood/roof
Ityuna	Vernonia amygdalina	Asteraceae	leaves/stem	food
Tselama	Pericopsis laxifora	Papilionoidae	stem	medicinal
Vangeaundega	Commiphora kestingii	Burseraceae	stem	electric pole/medicine
Ageegh	Cissus populnea	Ampelidaceae	stem/leaves	food
Ikpikeh	Psorospermum corym	<i>biferum</i> Guttife	eraceae stem/le	eaves medicinal/firewood
Saagh	Acacia polyacantha	Mimosoideae	root	medicinal
Abur	Cola laurifolia	Sterculiaceae	stem	firewood/roofing
Genger	Bombax costatum	Bombaceae	flower/stem	food/craft
Nihar	piliostigma thonningii	Caesalpinoidea	ae leaves	medicinal
Akinde	Ficus thonningii	Moraceae	leaves/stem	food/medicine
Tyembegh	Kigelia africana	Bignoniaceae	bark	medicinal
Mho	Syzyium guinensis	Myrtaceae	fruit/stem/who	ble plant food/medicine
Jegeleje	Moringa oleifera	Moringaceae	flower/leaves/	stem spiritual worship
Sheabuter	Vitellaria paradoxa	Sapotaceae	fruit/seed/stem	n food/medicinal
Ahuugh unom	Annona senegalensis	Annonaceae	leaves	medicinal
Ngo ahuubh	Annona senegalensis	Annonaceae	fruit/leaves	medicinal
Gbagbongun	Burkea africana 🛛 🤇	Caesalpinoideae	e stem	craft
Chiha	Daniella oliveri Cae	salpinoideae	leaves/stem	firewood/roofing
Vile Elae	eis guinensis Palmae	e seed/st	em/leaves	craft/palmwine/food
Jijah Ricir	nus communis Euphor	biaceae seed		food
Kuur Bora	ssus aethiopium Palma	e seed/f	ruits/stem	craft/food//roofing
Hulugh Vitex	doniana Verba	naceae fr	uit/leaves/stem	firewood/roofing/food
Vambewa Ceil	<i>ba petandra</i> Bomba	ceae whole	plant	spiritual worship
Shase Anacar	<i>dium occidentale</i> Ana	cardiaceae	fruit/seed/stem	n food/firewood
Pyungwa Saba	florida Apocyn	naceae fruit/ste	em	craft/food
Jiagba Pterice	opis laxiflora Papilio	noideae	leaves/sap/ster	n medicine/firewood

Tuur Ficus	s sur Moraceae		fruit/leave/stem	food/medicine
Gmalina Gme	<i>lina arborea</i> Verban	bceae	seed/stem	roofing/medicine
Daanyam Syzy	vium guinensis Myrtac	ceae root	m	edicine
Asaagh Dick	nnostachys cinerea Mi	mosoideae	leaves/stem	medicine
Azizo Flug	gea virosa Eup	horbiaceae	leaves	medicine
Lele Laws	sonia inermis Lyt	thraceae	leaves	craft/decoration
Gwavee psid	ium guajava My	rtaceae	fruit/leave/stem	food/medicine
Po Ficu	s trichopoda Mo	oraceae	wax/leaves	medicine/hunting
Ngaji Coch	lospermum planchoni (Cochlospermac	eae leaves/stem	medicine
Konkua Spon	dia mombin	Anacardiaceae	leaves/fruit	food/medicine
Ihyuman Alco	rnea cordifolia	Euphorbiaceae	leaves	medicine
Kon awambe	Pterocarpus erinaceu	s Papilionoidea	e leaves	medicine
Hon	Ficus asperifolia	Moraceae	leaves	medicine
Gbengaji	Pterocarpus erinaceu	s Papilionoidea	e stem/leav	es medicine
Mbue	Carica papaya	Caricaceae	fruit/leave	s food/medicine
Nunun	Loranthus spp	Loranthaceae	leaves	medicine
Kpanhuur	Vitex latifolia	Verbanaceae	leaves	medicine
Atiever	Corchorus olitorius	Tiliaceae	leaves	food
Igyar	Celosia argenta	Amaranthacea	e leaves	food
Azurugh	Combretum molle	Combretaceae	leaves/ste	em medicine
Hughhur	Ageratum conyzoides	Aseraceae	leaves	medicine
Mondo	Colocasia esculenta	Araceae	tuber	food
Abushi	Justicia schimperi	Acanthaceae	leaves	food
Lyemen	Entada africana	Mimosoideae	leaves/stem	medicine
Ageleshi	Newbouldia laevis	Bignoniaceae	leaves/stem	bathroom construction
Ahina	Alcornea cordifolia	Euphobiaceae	stem	roofing
Atoakpiam	Pavetta crassipes	Rubiaceae	stem	medicine

Family	Number of Species	
Euphorbiaceae	8	
Rubiaceae	6	
Liliaceae	1	
Papilioniodeae	7	
Labiateae	1	
Moraceae	5	
Caesalpinoideae	8	
Combretaceae	2	
Simaroubaceae	1	
Meliaceae	3	
Sterculiaceae	3	
Ochnaceae	1	
Celastraceae	1	
Chrysobalanaceae	2	
Bignoniaceae	3	
Mimosoideae	5	
Malvaceae	2	
Anacardiaceae		
Rutaceae		
Palmae	3	
Solanaceae		
Burseraceae		
Loganiaceae		
Poaceae	1	
Musaceae	1	
Asteraceae	2	
Ampelidaceae	1	
Guttiferaceae	1	
Bombaceae	2	
Myrtaceae	3	
Moringaceae	1	
Sapotaceae	2	
Annonaceae	2	
Verbanaceae	3	
Apocynaceae	1	
Lythraceae	1	
Cochlospermacea	1	
Caricaceae	1	
Loranthaceae	1	
Tiliaceae	1	
Amaranthaceae	1	
Acanthaceae	1	

Table 3: Families of plants identified in Mbalagh community Buruku LGA

Uses	Number of Plants (%)		
Medicine	67 (44.8%)		
Food	40 (26.7%)		
Craft	12 (8%)		
Construction	13 (8.7%)		
Others	18 (12%)		

Table 4: Category of plants utilization in the study area

Table 5: Parts of plant used for various purposes in the study area

Number of Plants (%)
63(38.4%)
57(34.8%)
24(14.6%)
6(3.7%)
2(1.2%)
11(6.7%)
11(0.6%)

4.0 REFERENCES

- Agbogidi, O. M. (2010). Ethnobotanical survey of non-timber forest products in sapele local government area of Delta State. *African Journal of Plant Science*. 4(3):183-189.
- Agbogidi, O. M. and Okonta, B.C. (2003). Role of women in community forestry and environmental conservation. In: Akindele, S.O. and Popoola, L. (eds.). Proceedings of the 29th Annual Conference of the Forestry Association of Nigeria (FAN) held in Calabar. pp. 159-165.
- Agricultural Resources in Benue State Nigeria. 2005. http://www.benagric.org/contact.htmp
- Aliyu, B. S. (2006). Some ethno medicinal plants of the Savannah regions of West Africa: description and phytochemicals. Triumph Publishing Company
- Andel, T.V. (2000). Non-timber forest products the value of wild plants. Agromisa Publication and CTA, the Netherlands
- Cavendish, W. (2001). Non-timber Forest Products and Rural Poverty: An Economic Analysis. Evans J (ed) Forests Handbook Vol. 1. An Overview of Forest Science. Blackwell Science Limited; 372-390.
- Conservation Africa Foundation (CAF). (2008). Non-timber forest products: Breaking the vicious cycle of poverty and degradation in Africa. http://www.conserveafrica.org.uk/poverty.p hp
- Dau, J. H. and Elisha, A. (2013). the survey on non timber forest products in Bauchi south senatorial district. *Journal research in forestry, wildlife and environmental.* 6(1):82-97.
- F A O. (2000). Non-Wood News. An Information Bulletin of Non-wood Forest Products. Pp 95.
- Gray, A. I., Igoli, J. O. and Edrada-Ebel, R. (2012). Natural Products Isolation in Modern Drug Discovery Programs. In, Methods in Molecular Biology, 864: 515-534
- Isichei, A. O. (2005). The role of plant resources in Nigeria's economic recovery agenda. *Nigeria Journal of Botany*, 18: 1-22
- Jimoh, S. O. and Haruna, E. A. (2007). Contribution of non-timber forest products to house food security and income around Onigambari forest reserve, Oyo State, Nigeria. *Journal of Environmental Extension*, 6: 28-33
- Jimoh, S.O., Adebisi, L. A. A. and Ikyaagba, E.T. (2009). Biodiversity and Ethnobotanical potential of plant species of university of Agriculture Makurdi wild park and Ikwe game Reserve, Benue state *International journal of biological and chemical sciences.*3(6):1375-1385.
- Odebode, S. (2005). Contribution of selected non-timber forest products to household food security in Osun State, Nigeria. <u>http://www.aseanbiodiversity.info/scripts</u> /count

- Olapade, O. E. and Bakare, O. A. (1992). Medicinal plants in Ibadan under threat of genetic erosion; Our Forest, Environment and Heritage; Challenges for Our People, Akinsanmi FA (ed). Proceedings of 22nd Annual Conference of Forestry Association of Nigeria Held in Kano, Kano State, Nigeria, pp 55-58.
- Pardo-de- Santayana, M., Tardio, J., Blanco, E. and Morales, R. Z. (2007). Traditional knowledge of wild plants use in the Liberian peninsula (Spain and Portugal): a comparative study. www.ethnobiomed.com content 3127
- Reddy, K. N., Chiranjibi, P., Reddy, C. S., Murthy, E. And Raju, V. S. (2008). Plants used in traditional handicrafts in north eastern Andhra Pradesh, India. *Indian Journal of Traditional Knowledge*.
- Shomkegh, S. A., Mbakwe, R and Udeagha A. U. (2016). Uses and Relative Abundance of Nontimber Forest Plants in Farmlands of Selected Tiv Communities in Benue State, Nigeria. *Journal of Agriculture and Ecology Research International*. In press
- Shomkegh, S. A., Mbakwe, R. and Sale, F. A. (2016). Ethnobotanical survey of wild plants ultilized for craft making and local construction among Tiv people of Benue state. *Journal of agriculture and ecology research international*. 9(3):1-11.
- Smith. K. and Edward. (2008). The year of global food crisis. http://www.sundayherald.com/ news/display.var.2104849.0.2008.
- William, J.M., (2014). What's the difference between a tree and a shrub? Texas A&M agrilife extension service. Pp 1-2.