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ABSTRACT 

Partial discharge (PD) is a common method for detecting faults in power equipment like 

generators and cables. These faults often result in power outages and costly repairs. The 

traditional method for detecting PD relied on field workers to identify specific pulses in 

the equipment using their expertise and hand-crafted features, particularly in rural 

areas. This research project aimed to predict partial discharge occurrences based on a 

ten-year manual record of field workers' observations of 200 transformers in a 

33/0.415kv distribution line and 56 transformers in an 11/0.415kv distribution line in a 

rural area. The researchers used a novel approach that involved transforming non-

image data into image maps and used parallel convolutional neural networks to classify 

partial discharge occurrence best. This research offers two key contributions: first, it 
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provides a fast and efficient way to extract features and detect PD by transforming non-

image data into image maps. Second, it provides interpretability of the results for new 

domain experts by identifying the immediate record, which could lead to the detection 

of PD in an area. The performance was evaluated using binary classification metrics 

such as confusion matrix, accuracy score, and F1-score. 
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13  

  

CHAPTER ONE  

INTRODUCTION  

1.1 BACKGROUND OF STUDY  

Electrical power distribution and transformation between different voltage levels are crucial to 

a country's power grid, which is why substations play a vital role. However, the high voltage 

levels during long transmissions increase the risk of partial discharges. To prevent these 

discharges, which cause power loss and pose a risk to workers, it is essential to provide adequate 

protection through healthy insulators. The need for good insulators is a critical factor for the 

functioning of any substation. Eroded insulation can result in partial discharges and is often 

caused by defects or irregularities in the insulating material. Unfortunately, this erosion can 

lead to the destruction of city power grid substations (Martirano, L., Chavdarian, 2015). Partial 

discharge (PD) detection in power distribution grids is crucial in ensuring the high-voltage 

equipment's reliability and preventing power outages. Traditionally, PD detection has been 

performed through manual inspection or conventional techniques such as Ultra-High 

Frequency (UHF) and Acoustic Emission (AE) analysis (Du and Wang, 2020). 

Moreover, regular monitoring of power distribution grids is necessary to ensure the reliability 

of high-voltage equipment such as generators, motors, transformers, and power cables and to 

reduce maintenance costs. When a distribution grid failure occurs due to electrical insulation 

failure, it takes a long time and is expensive to manually locate the damaged lines. This can 

result in power outages, which can be caused by partial discharges - a type of electrical 

discharge that does not completely bridge the gap between insulation systems. Partial 

discharges gradually harm the power lines and, if left unchecked can lead to power outages or 

start fires (Wu et el., 2015). Renforth et al. (2015), measuring partial discharge can be done in 

two ways namely: electrical method (based on IEC 60270-2000 standard) with high-frequency 
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current transform (HFCT) and detecting impedance. Another way is through a  non-electrical 

method with acoustic, optic, and ultra-high frequency (UHF). 

Recently, the use of deep learning algorithms in PD detection has gained popularity due to their 

ability to automatically identify patterns and anomalies in data, resulting in more accurate and 

efficient detection of PD events (Zhou et al., 2020). In a study by Chen et al. (2021), a deep 

learning approach was used to detect PD in a national grid distribution network, demonstrating 

improved accuracy compared to conventional techniques. The use of deep learning algorithms 

in PD detection provides a promising solution for improving the reliability and efficiency of 

power distribution grids. Further research is needed to fully validate this approach's 

effectiveness and investigate its potential for widespread implementation in real-world power 

distribution networks (Wu et al., 2015). 

However, it has been established by Niasar et al. (2021) that using excitation voltages at 

variable frequency during measurement do increase the charging power of the measuring 

equipment; a more efficient way is to use a power-frequency (50/60 Hz) sinusoidal voltage, 

which reduces the charging power while measuring. Either electrical or non-electrical, the 

research conducted by Khan et al. (2019)  on End‑ to‑ End Partial Discharge Detection in Power 

Cables has shown that PD signals is a standardized diagnostic tool that can be used to monitor 

the state of different electrical apparatus. The method uses PD pulses as input with one-

dimensional convolutional neural networks (CNNs) to automatically extract meaningful 

features for waveforms of PD pulses and finally detect PD. In this research, PD signals daily 

of affected areas within the Akoko metropolis of Owo in Ondo State, Nigeria, from 2011 until 

2021, manually recorded using megger- an insulation tester.  These records would be used to 

predict failure on the distribution grid on a new installation of electrical components.   
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1.2 MOTIVATION  

Many researchers have worked on predicting the occurrence of partial discharge. Pereira et al. 

(2020) worked on the prediction of partial discharges in the stator insulation system of a hydro-

generator using lambda architecture which combines real-time and batch processing 

techniques. The prediction accuracy was increased by developing a forecasting model which is 

updated by the real-time data generated from the speed layer in lambda architecture. However, 

it was discovered that the partial discharge monitoring system that includes sensors, data 

architecture, and the autoregressive forecasting model was implemented in the plant under 

unsupervised scenarios. The researchers do not have enough data to comprehensively analyze 

the hydro generator condition. Thus, this methodology gives way to the high influence of 

outliers in data on the forecast performance evaluation and therefore has lowered the reliability 

of the results.  

According to Yeo et al. (2020), the complications resulting from the outliers during prediction 

resulted from nonstationary noise influence. A coherent multi-step PD prediction model by 

applying a Discrete Wavelet Transform (DWT) on the measurement to de-noise the noise from 

PD pulses without affecting the integrity of the waveform was proposed by Yeo et al. (2020). 

The result is further analyzed with a deep learning system that combines recurrent neural 

network (RNN) and Long Short-Term Memory (LSTM) to identify the PD accurately. The state 

of art on PD detection has shown that deep learning is efficient in predicting the occurrence of 

partial discharge. Therefore, the focus is to explore the convolutional neural network, an aspect 

of deep learning in detecting the occurrence of partial discharge on the distribution grid within 

the Akoko metropolis.  

1.3 SCOPE OF STUDY  

The scope of this project was to study PD within the Akoko metropolis of Owo in Ondo State, 

Nigerian based on manual records (dataset) of investigated partial discharge in the past ten (10) 

years, as well as developing a method to identify potential PD in substations before the 
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insulating material reaches a critical level of corrosion. This is needed to perform needed 

maintenance, preventing component failure and thus increasing the safety of personnel.  

The study of partial discharge within the Owo Business unit of Benin Electricity Distribution 

Company (BEDC) Akoko has been on for the past ten years under the supervision of the 

researcher Aina (2022) using a manual way to keep the records associated with partial 

discharge.  

1.4 STATEMENT OF PROBLEM  

A lot of research has been done on detecting partial discharge with different methods. Each 

researcher mostly generates the data used in a particular domain to implement the research. In 

this research, the downtime rate of electricity supply to the population of Akoko land is very 

alarming and has resulted in a high degree of control over the condition of the electrical 

machines used in the area. From a financial point of view, the cost for maintenance on the part 

of the BEDC is too high, and this occurrence is yearly. Many costumers had lost a lot financially 

because of the downtime of electricity due to unceasing partial discharge at various locations 

with the Akoko Distribution network of Benin Electricity Distribution Company in Ondo State, 

Nigeria. Tracing the faulty point on the network has also been a challenge for the fieldmen who 

supervised the region.   

Could there be a way to develop an effective classifiers using the ten (10) years of data to 

continuously monitor power lines for faults within the Akoko community on an installation of 

new equipment (for instance, a meter) within the metropolis? Hence, this research used a deep 

learning approach to solve this problem.   

1.5 AIMS 

This study aims to predict the occurrence of partial discharge on distribution network.    

1.6 OBJECTIVES  

The objectives of this research are to:  
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i. To create a dataset from manual records of partial discharge events of power 

distribution in the Akoko metropolis for the past ten years.  

ii. To develop an optimized Convolutional Neural Network (CNN) model in TensorFlow 

to rightly classify the dataset resulting from the investigation in objective (i).  

iii. To evaluate the model in objective (ii) with binary classification metrics such as 

confusion matrix, F1-Score, and an accuracy score.  

1.7 METHODOLOGY   

The Distribution network of the distribution line in Benin Electricity Distribution of Akoko 

Area has 200 transformers on 33/0.415kv distribution lines and 56 transformers on 11/0.415kv 

distribution lines. All records of partial discharge occurrence and all associated with it are 

manually recorded in a central book located in a control room. A Megger meter is mainly used, 

especially when the down time has exceeded 72 hours. The tool determined the condition of 

the insulation on the wire, generators, and motor windings. Agile method was used to convert 

the manual records to a soft-form (dataset) for easy computation.  

CNN architectures, a method that uses the successive application of convolutional layers to an 

input (image) and periodically down-sampling the spatial dimensions while increasing the 

number of feature maps, was used to classify whether there is partial discharge or not. The 

dataset was transformed into an image using the DeepInsight method. The output was passed 

as an input to a convolution neural network architecture.   

1.8 TOOL USED  

Google Colab was used as a tool to implement this research. The programming language used 

was Python.   
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CHAPTER TWO  

LITERATURE REVIEW AND THEORETICAL REVIEW 

2.1 INTRODUCTION  

Effective smart diagnosis of the problem (this time, partial discharge) on the distribution line 

is essential to avoid expensive electrical network system outages, especially in cases where 

there is no established control room, as this could result in a blackhouse for the entire region. 

Measurements and analyses of partial discharges (PD) are frequently employed in electrical 

equipment, including transformers, rotating machines, medium-voltage cables, and gas-

insulated switchgear, as a diagnostic indicator of insulation damage (Montanari, 2013; Stone, 

2005). With the development of smart technology, smart diagnosis is now being implemented 

using more automated procedures, which makes diagnosis quicker and more accurate, 

necessitating its consideration in the identification of partial discharge on the distribution line. 

Aside from this, considering the age and size of the usage of most electrical substation-installed 

plants (for instance, transformer), the increasing and overall failure trend will continue to grow 

unless a directed maintenance program is implemented (Harry, 2022). For example, Akoko 

metropolis, the area of focus in this research, has 45% of their distribution network substation 

with an average age of failed cable of 15.6 years that were first installed 33 years ago. These 

utilities need a predictive maintenance tool to allow proactive maintenance before unplanned 

customer outages. By using a smart diagnostic measure, it is hoped to accomplish termination 

or splice replacement before failure and to provide scheduled cable system maintenance. 

Additional budget information will be gathered to reduce costs and target replacement money 

(Harry, 2022).  
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Both off-line and on-line diagnostics are commercially available to determine the condition of 

cable and cable accessory insulation. However, the one used mostly in the area of interest for 

this research is off-line. According to Harry (2022), two major types of insulation degradation 

occur in cable systems. One is an average or overall condition caused by chemical aging and 

water treeing. The diagnostics used for this type of aging include dissipation factor (loss angle), 

harmonic analysis, return voltage, isothermal relaxation current, dielectric response, or dc 

leakage current (Willem, 1999; Kraig, 1998).  The second type of degradation is discrete or 

incremental condition assessment that utilizes dissipation factor measurements or partial 

discharge (PD) level measurements. This research focused on PD diagnostics applied explicitly 

to detecting degradation in cable accessories on 33/0.415kv and 11/0.415kv distribution lines. 

No matter the type of diagnostic used, it is always applied in a non-destruction manner so that 

the diagnostic itself does not reduce cable or accessory life (Harry, 2022). Table 1.1 shows the 

summary of diagnostic techniques used to determine the condition of cable and cable accessory 

insulation, as Harry (2022) discussed.  
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Table 1.1: Summary of Diagnostic Techniques for condition of cable.  

Destructive   Non-Destructive Off-line  Non- 

Destructive,  

On-Line  

Dissection and  

Microscopic  

Examination  

Electrical Tests  Methods to  

Detect  

Singular  

Faults  

Integral  

Measurement  

Methods  

Integral &  

Singular  

Measurement  

Methods  

Contaminants, Voids, 

and Water Trees  

60 Hz step tests, 

acbd tests, radial 

"power factor."  

PD at 60 Hz  

Kinectrics  

Dissipation  

Factor at 0.1  

Hz  

BAUR,  

Kinectrics  

Leakage Current  

Sumitomo  

Chemical Evaluation  

FTIR, DSC, DMA,  

OIT, DP, PIXE  

DC hipot  

Resonant Cct   

0.1 Hz Sine  

Oscill.Wave  

Impulse  

PD at 0.1 Hz  

KEMA  

Dielectric  

Spectroscopy  

ABB  

DC Component  

Fujikura  

Mechanical  

Evaluation  Tensile,  

Elongation,   

Burst test  

DIACS  PD Location  

System  

(<2U0)  

(IMCORP)  

LIpATEST  

Powertech  

Harmonic  

Current   

Sumitomo &  

NRC  

    CDA &  

OWTS  

PD 

Lemke & 

Univ.  

Delft  

Isothermal  

Relaxation  

Current  

SINTEF  

PD, Power   

KEMA, DTE,  

Sumitomo &  

Eaton  

      Return Voltage  

Hagenuk &  

Univ. of  

Siegen  

  

 (Source: https://municipalinfonet.com/energy/magazine/44/article/Partial-Discharge-

Testingof-In-Situ-Power-Cable-Accessories-An-Overview-.htm)  
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Furthermore, Cable accessories are treated quite differently from cables. For example, the 

accessory design is not always properly tested. They are man-made in the field, so the 

workmanship is a concern, and they are not properly tested after installation. Most cable 

accessory materials are more resistant to partial discharge activity than the cable and will 

withstand PD and treeing activity longer than the adjacent cable insulation. However, there are 

likely more defects in a cable accessory than in a cable, so PD detection is more applicable to 

cable accessory assessment (Willem, 1999).  

  

2.2 PARTIAL DISCHARGE BACKGROUND   

Partial discharge is a phenomenon caused by electrical field stress concentrated at one point. A 

localized electrical discharge partially bridges the insulation between conductors and can or 

cannot occur adjacent to a conductor (International Electrotechnical Commission, 2015). When 

the PD phenomenon occurs, it results in an extremely fast transient current pulse with a rise 

time and pulse width that depends on the discharge type or defect type, as shown in Figures 

2.1a and 2.1b.  

 
  Figure 2.1a: Partial discharge waveform in time-domain(Barrios et al., 2019)  
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Figure 2.1b: Phase-resolved Partial Discharge (PRPD) Pattern(Barrios et al., 2019)  

According to Danikas (1997), the energy inherent in a partial discharge leads to damage to the 

material surface surrounding the void or cavity of an insulator, as shown in Figure 2.1b. In the 

graph, surface erosion occurs, and electrical trees initiate and grow in the body of the insulating 

material. The process becomes self-perpetuating until the electrical tree bridges the insulation, 

and a complete breakdown occurs. Partial discharge accompanies the whole process.   

2.2.1 PARTIAL DISCHARGE BASIC THEORY  

Based on IEC 60270-2000 standard, partial discharge is partly (locally) electric breakdown 

which only connects insulation between conductors partially (Khayam, 2015). It is caused by 

electrical field stress concentrated at one point, either inside the insulation material or at the 

insulation surface, which is caused by heterogeneity in insulation shape, void or contaminant 

in insulation material, and imperfection of insulation shape (for example, a crack in insulator). 

A partial discharge within solid insulation is shown in Figure 2.2. When a spark jumps the gap 

within the gas-filled void, a small current flows in the conductors, attenuated by the voltage 

divider network Cx, Cy, and Cz in parallel with the bulk capacitance Cb (Partial Discharge, 

2021).  
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  Source: https://en.wikipedia.org/wiki/Partial_discharge  

  Figure 2.2: Mechanism of partial discharge caused by a void in solid insulation   

The occurrence of PD usually differs in cable accessories. Firstly, it usually begins within voids, 

cracks, or inclusions within a solid dielectric, at conductor-dielectric interfaces within solid or 

liquid dielectrics, or in bubbles within liquid dielectrics. Since PDs are limited to only a portion 

of the insulation, the discharges only partially bridge the distance between electrodes (Partial 

Discharge, 2021).  Secondly, PD can occur along the boundary between different insulating 

materials within gas-filled voids in the dielectric. When the dielectric constant of the void is 

considerably less than the surrounding dielectric, the electric field across the void is 

significantly higher than that across an equivalent distance of dielectric (Partial Discharge, 

2021). Also, PD can occur along the surface of solid insulating materials if the surface 

tangential electric field is high enough to cause a breakdown along the insulator surface. This 
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phenomenon commonly manifests itself on overhead line insulators, particularly on 

contaminated insulators during days of high humidity (Partial Discharge, 2021).   

According to Koch and Kruger (2012), partial discharge can cause primary and secondary 

winding damage in a transformer. 34% of transformer failure reasons lie in frequent partial 

discharge with no intervention. In high-voltage motors, partial discharge can cause stator 

winding damage which causes 37% of motor failure (Renforth et al., 2013). Figure 2.3 shows 

the partial discharge patterns in natural liquid insulation for High Voltage Applications.  

  

 

Figure 2.3: The electrode system of natural oil discharges and electric field distribution 

(Sipahutar et al., 2013)  

According to Sipahutar et al. (2013), natural liquid (mineral oil) is still widely used as an 

insulating material for transformers. Many factors do affect the quality of the mineral oil. These 

include moisture, electrical stress, particle, thermal stress, and other factors. These stresses 

generate Partial Discharge (PD), which may lead to a complete breakdown of insulation while 

the degradation of insulation material occurs (Muhr et al., 2004; Sally et al., 2012). Therefore, 

continuous monitoring is needed to maintain the condition of the transformer oil. One of the 

𝑪 𝒃   

𝑪 𝒚   

𝑪 𝒛   
  



GSJ: Volume 11, Issue 2, February 2023                                                                           645 
ISSN 2320-9186  
   

GSJ© 2023 
www.globalscientificjournal.com 

methods used to monitor oil conditions in a transformer is PD measurement. This method is an 

important diagnostic technique used as a non-destructive test for high-voltage insulation (Muhr 

et al., 2004). PD in mineral oil is strongly associated with cavity formation within the mineral 

oil, as shown in Figure 2.3.   

In Figure 2.3, the insulating liquid is represented as capacitances 𝐶 . The discharge is 

represented by capacitance 𝐶𝑦 in parallel with a spark gap. The charge in the capacitance 

depends on the value of capacitance and the applied voltage across the capacitance. This charge 

strongly relates to the partial discharge magnitude. 𝐶𝑧 represents the capacitance of the sound 

part of the natural oil insulation, while the rest of the sample is represented by a capacitance 

𝐶𝑏.  

For the externally applied voltage of  𝑉(𝑡), the voltage applied to the PD capacitance before 

any discharge take place can be expressed mathematically as shown in equation 2.1 as:  

                 (2.1)  

When a partial discharge takes place, the voltage on the discharge site falls to a very low value 

of residual voltage 𝑉𝑟. The magnitude for the first discharge will then be proportional to the PD 

capacitance and the different between PD voltage and residual voltage. In other words, the PD 

magnitude M can be expressed as  

    𝑀 = 𝐶𝑦𝑘(𝑉(𝑡) − 𝑉𝑟)             (2.2)  

where 𝑉𝑟 is the residual voltage after a discharge occurs. According to (Suwarno & Sutikno, 

2011), the residual voltage after the discharge 𝑉𝑟 is much smaller than V(t). The small residual 

voltage is resulting in a small phase shift of PD occurrence. K is the proportionality constant  
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2.2.2 PARTIAL DISCHARGE DIAGNOSIS MECHANISM  

According to (Khayam, 2015), the partial discharge diagnosis system has some mechanisms. 

These mechanisms can be detected and measured in signal processing or pattern recognition.  

2.2.2.1. Partial discharge detection and measurement  

Two methods are involved in this mechanism. These include the electric method (based on IEC 

60270-2000 standard) with HFCT (high-frequency current transform) and detecting impedance 

and non-electric method with acoustic, optic, and UHF (ultra high frequency) methods.  

2.2.2.2. Partial discharge signal processing  

The methods used under this mechanism include the envelope method, Fast Fourier Transform 

(FFT)/Inverse Fast Fourier Transform (IFFT), wavelet transform, and filter (band pass filter, 

low pass filter, high pass filter).   

A signal processing tool has been used by Josef and Martin (2010) to diagnose PD using a 

developed on-line application. A field-programmable gate array (FPGA) mechanism was 

employed to detect partial discharge in the insulator, as shown in Figure 2.4. This method 

extracts the PD patterns only concerning the frequency and not with respect to time. Hence, an 

effort is made to characterize the PD patterns/types directly in the time domain for quick 

removal of insulation defects (Priyanka, 2019).  

 

  

      Figure 2.4: Digital partial discharge detection meter  
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Vitor et al. (2020) applied wavelet transform in characterizing the evolution of partial discharge 

to identify the moment of failure and the frequency spectrum. The energy of all approximation 

wavelet levels is checked to see if it increases with the level of PD. To evaluate the effectiveness 

of the proposed wavelet-based technique in characterizing the PD evolution, an electrode with 

a gap of 5 mm was placed in the transformer to produce the failure activity. A piezoelectric 

transducer (sensor) was attached to the transformer wall to capture the acoustic emission waves 

produced by the failure. Wavelet transformation is applied to the result to detect partial 

discharge on the transformer.  

2.2.2.3. Pattern recognition and judgment system  

This mechanism analyzes partial discharge patterns and parameters (pulse quantity, phase 

angle, and electric charge) using the statistical method and artificial neural network. The output 

of these methods usually determines if there is a damage level and the type of partial discharge 

that occurs. In the case of the statistical method, statistical parameters, such as mean, variance, 

standard deviation, skewness, and kurtosis, have been used to identify the type of partial 

discharge. Kothoke et al. (2020) used a statistical method to analyze Phase-resolve partial 

discharge patterns to detect the type of partial discharge that occurred, such as void, surface, or 

corona. The data extracted for the processing involves the stage edge 'φ,' the charge extent 'q,' 

and the number of pulses 'n' and voltage ‘v.’ The phase-determined trends are obtained from 

the analysis, as shown in Figure 2.5   

  

  

 

  Figure 2.5: Flow diagram of partial discharge analysis for (n-q) where 

SD = Standard Deviation Sk = Skewness  Ku= Kurtosis  
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2.3 IMPROVISED METHODS USED FOR DETECTION OF TYPES OF PD  

In recent years, two methods have been introduced for higher accuracy in classifying PD 

patterns and its speedy detection. These methods are the Support vector machine and neural 

network methods.   

Candela et al. (2000) combined Weibull distribution and neural network to detect the type of 

PD. The approach was used for both time and phase-resolved classification. The former is 

considered the only variation of q with respect to time, which is very high for accurately 

noticing a chosen time interval. However, the phase-resolved partial discharge patterns (φ-q, 

φ-n, and n-q) consider not only q but also φ and n variations and hence obtain more accurate 

statistical parameters to be given as an input to ANN to detect the type of PD.  

According to Kothoke et al. (2019), Neural Networks have an advantage in that once they are 

trained for a sample of data, they can predict the desired results for the next data. Artificial 

neural networks can also allow the modeling of nonlinear processes, thereby creating more 

ways to solve many classification problems, clustering, regression, pattern recognition, 

dimension reduction, structured prediction, machine translation, anomaly detection, decision-

making, etc. Therefore, the researchers proposed the Back Propagation method (BPM) of ANN, 

which has the advantage of repeating the training process until the error in iterations between 

n versus q, φ versus q, and φ versus n becomes zero (Kothoke et al., 2017). It was tried on both 

Matlab and Python software, and a better accuracy of 89% was realized in both software.   

Self-Organizing Map (SOM) of Artificial neural network (ANN) has been used on different 

voltage equipment, such as transformers and cables to examine and display a plotted graph of 

phase-resolved patterns of PD separately for each discharge (Chang & Yang, 2008). SOM is 

useful in a neural network for visualization and data analysis.  It uses a two-dimensional space 

graph to create a feature map. In a nutshell, SOM is a competitive learning method that is also 



GSJ: Volume 11, Issue 2, February 2023                                                                           649 
ISSN 2320-9186  
   

GSJ© 2023 
www.globalscientificjournal.com 

a form of unsupervised learning, where constituent elements compete to produce a satisfying 

result, and only one gets to win the competition. However, the quality of the feature map has 

always been a problem of SOM because it tries to create a map of the input data in the multi-

dimensional space to the less dimensional space that is usually two-dimensional (Anh Tu, 

2020).  The heat map in Google Colaboratory of Python has been used as an alternative by 

Kothoke et al. (2019) to display the visualization directly for all known and unknown data of 

discharges merged. This approach is adopted in this research as well.  

Random Forest (RF) Method, a supervised machine learning technique, has been known for 

classification tasks more effectively (Kothoke et al., 2019). This technique considers multiple 

decision trees before giving an output. So, it is an ensemble of decision trees. This technique is 

based on the belief that more trees would converge to the right decision. For classification, it 

uses a voting system and then decides the class. According to Kothoke et al. (2019), RF works 

well with large data sets with high dimensionality. It envisages more decision trees that can be 

found for the particular type of data available from PD sensors to improve the resulting 

accuracy for PD-type identification further.  

Support Vector Machine (SVM) using Python learning has also been used for partial discharge 

classification, where data input is very important. Using correlation techniques, Hao and Lewin 

(2010) applied wavelet analysis to pre-process measurement data from PD sensors and cluster 

the discharges into different groups. Then they applied SVM techniques to identify the type of 

different PD discharges. However, they concluded that the technique over-identified the void 

discharge being mixed with internal cavity discharge. Hence, the exact segregation was shifted 

to their future scope to get the output with full clarity.  According to the review by Kothoke et 

al. (2019), the accuracy of the BPM method of ANN is 89%. From the RF method, it is 95%, 

and from the SVM method, it is 100 %. Hence, SVM can be considered the best method for 

classification.  



GSJ: Volume 11, Issue 2, February 2023                                                                           650 
ISSN 2320-9186  
   

GSJ© 2023 
www.globalscientificjournal.com 

2.4 PARTIAL DISCHARGE CLASSIFICATION USING DEEP LEARNING METHODS  

The previous section shows the effort made using neural networks and support vector machines 

to classify partial discharge on voltage equipment such as transformers and cables. The survey 

report by Barrios et al. (2019) shows that the most efficient among the methods were those with 

Machine Learning (ML), and that itself was only a semiautomated classification because the 

input data has to be previously given by the user, who must have knowledge about which 

features are essential for the algorithm, and as such includes a lot of bias. In other words, much 

effort and expertise are required to get a good result.  A review of different techniques for 

feature extraction and PD classification methods has been shown by Raymond et al. (2015). 

Mas’ud et al. (2016) further investigated the application of conventional Artificial Neural 

Networks (ANN) for PD classification through a literature survey. Currently, with the advent 

of computational technology and precisely on data storage, the focus has been on automated 

features extraction and classification by Deep Learning (DL) algorithms with Deep Neural 

Networks (DNN), where the expert is not so necessary (Barrios et al.,2019).   

Artificial Intelligence is a broad field that comprises many subsets, one of which is Machine 

Learning. Deep Learning is a subfield of Machine Learning, as shown in Figure 2.6. ML uses 

algorithms to parse data, learn from that data, and make informed decisions based on what they 

have learned, but usually, they need some manual feature engineering, as illustrated at the 

topright of Figure 2.6. On the other hand, the DL model is based on ANNs (precisely Deep 

Neural Networks) built by many layers and nodes that can learn and make intelligent decisions 

or predictions, including automatic feature extraction. This model is described at the bottom-

right of Figure 2.6.  
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Figure 2.6: Link between Artificial Intelligence, Machine Learning, and Deep Learning 

(Barrios et al., 2019).  

2.4.1 DEEP NEURAL NETWORK (DNN)  

The use of “deep” in neural networks came from the research conducted by Hinton et al. (2006), 

where the procedure of training a DNN was described in detail. Any ANN with more than two 

hidden layers may be considered as deep. Some DNN models have been used for PD 

classification in recent years. Some of them are presented as follows.  

2.4.1.1 RECURRENT NEURAL NETWORK (RNN)  

This model predicts time series data based on analyzing the feedback connections. The 

architecture is shown in Figure 2.7. At the left of Figure 2.7, one hidden layer receives inputs, 

produces an output, and sends that output back to itself. If the RNN is expanded in a temporal 

frame, as shown on the right side of Figure 2.7, at each time step t, this recurrent layer receives 

the inputs x(t) and its outputs from the previous time step, y(t - 1).  

 

Figure 2.7 represents a simple Recurrent Neural Network (RNN) Architecture.  
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Each recurrent neuron has two sets of weights: one for the inputs 𝑥(𝑡) and the other for the 

outputs of the previous time step 𝑦(𝑡– 1). Assuming these weight vectors are 𝑊𝑥 and 𝑊𝑦. If we 

consider the whole recurrent layer instead of just one recurrent neuron, then the weight vectors 

can be placed in two weight matrices, 𝑊𝑥 and 𝑊𝑦 . The output vector of the whole recurrent 

layer can be computed as shown in Equation 2.1, where b is the bias vector, and 𝜑 (·) is the 

activation function (e.g., ReLU).  Equation 2.1 is the output of a recurrent layer for a single 

instance.  

        (2.1)  

Since the output of a recurrent layer’s feed-forward neural networks can be computed in one 

shot for a whole mini-batch (Vaswani et al., 2017) by placing all the inputs at time step t in an 

input matrix 𝑥(𝑡). Therefore, the outputs of a layer of recurrent neurons for all instances in a 

mini-batch can be represented mathematically as follow:  

𝑦(𝑡) = 𝜑(𝑥(𝑡) ∗ 𝑊𝑥 + 𝑦(𝑡−1) ∗ 𝑊𝑦 + 𝑏)  

                                = 𝜑 ([𝑥(𝑡)    𝑦(𝑡−1)] ∗ 𝑊 + 𝑏)                        (2.2)  

with    

 𝑦(𝑡) is an 𝑚 × 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠 matrix containing the layer’s outputs at time step 𝑡 for each instance in 

the mini-batch (m is the number of instances in the mini-batch and 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠  is the number of 

neurons).  

𝑥(𝑡) is an 𝑚 × 𝑛𝑖𝑛𝑝𝑢𝑡𝑠 matrix containing the inputs for all instances (𝑛𝑖𝑛𝑝𝑢𝑡𝑠 is the number of 

input features).  
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𝑊𝑥 is an 𝑛𝑖𝑛𝑝𝑢𝑡𝑠 × 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠  matrix containing the connection weights for the inputs of the current 

time step.  

𝑊𝑦 is an 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠  × 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠   matrix containing the connection weights for the outputs of the 

previous time step.  

𝑏 is a vector of size 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠  containing each neuron’s bias term.  

The weight matrices 𝑊𝑥 and 𝑊𝑦 are often concatenated vertically into a single-weight matrix  

𝑊 of shape (𝑛𝑖𝑛𝑝𝑢𝑡𝑠 + 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ) × 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠    

The notation [𝑥(𝑡)    𝑦(𝑡−1)] represents the horizontal concatenation of the matrices 𝑥(𝑡) and 

𝑦(𝑡−1).  

From Figure 2.7, it shows that 𝑦(𝑡) is a function of 𝑥(𝑡) and 𝑦(𝑡−1), which is a function of 

𝑥(𝑡−1)and 𝑦(𝑡−2) which is a function of 𝑥(𝑡−2) and 𝑦(𝑡−3), and so on. This makes 𝑦(𝑡) a function 

of all the inputs since time t = 0 (that is 𝑥(0), 𝑥(1), …, 𝑥(𝑡)). At the first time step, t = 0, there 

are no previous outputs, so they are typically assumed to be all zeros.  

 

The main drawback of RNN is that recurrent neurons have a short-term memory of the previous 

state. Moreover, the DNN structures may suffer from the vanishing gradients problem. When 

updates from Gradient Descent leave the layer connection, the weights are virtually unchanged 

for initial inputs when time series are very long. Training does not converge to a suitable 

solution (Barrios et al., 2019). One way to solve this problem involves a neural network layer 

that will preserve some state across time steps, called a memory cell.  A typical memory cell 

example is the Long Short-Term Memory model (LSTM) (Hochreiter and Schmidhuber, 1997).  
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2.4.1.2 AUTOENCODERS (AES)  

These kinds of models are a specific type of feed-forward neural networks that are unsupervised 

(or self-supervised) which generate an efficient representation of the input data (feature 

extraction). Autoencoders (AEs) aims to output a replication of their inputs. Therefore, the 

outputs are often called reconstruction, and its cost function contains a recognition loss that 

penalizes the model when the reconstructions differ from the inputs (Arden, 2022; Barrios et 

al., 2019). In Figure 2.8, the number of neurons in the output layer must equal the number of 

inputs. The encoding compresses the input into a lower-dimensional code called latent-space 

representation, and the decoding part converts this internal representation to the outputs.  

    

  

  

 
  

    Figure 2.8: Simple autoencoder architecture with one hidden layer  

An autoencoder consists of 3 components: encoder, code, and decoder. The encoder compresses 

the input and produces the code. The decoder then reconstructs the input only using this code 
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(Arden, 2022). AEs are mainly a dimensionality reduction (or compression) algorithm with a 

couple of important properties:  

It is data-specific: Autoencoders can only compress data meaningfully similar to what they 

have been trained on. Since they learn specific features for the given training data, they differ 

from a standard data compression algorithm like gzip (Arden, 2022). So it is not possible to 

have an autoencoder trained for handwritten digits to compress landscape photos.  

It has a lossy effect: The quality of the output of the autoencoder is not exact with the input 

data, it will be close, but some quality will be lost during the process. To have a lossless 

compression, an autoencoder should not be used at all (Arden, 2022).  

It is unsupervised: Training an autoencoder system just the input of raw data at it. It is 

unsupervised because it does not need any explicit labels to train on. In other words, they are 

self-supervised as they generate their labels from the training data (Arden, 2022).  

Vincent et al. (2008) have shown that AEs can be applied only when the hidden layer contains 

few nodes than the inputs. It can function well as a feature extractor and a data dimensionality 

reducer. The number of nodes in the hidden layer determines the extracted features' quality. 

However, this could be a problem when training the AE if the number of hidden neurons is 

larger than the optimum number of features (Barrios et al., 2019). A typical solution to this 

problem is a Sparse AE, which can manage more nodes in the hidden layer than inputs by 

forcing the generation of a sparse encoding during the training phase (Ng, 2022). Sparse feature 

learning algorithms range from sparse coding approaches (Olshausen & Field, 1997) to training 

neural networks with sparsity penalties (Nair & Hinton, 2009; Lee et al., 2007). According to 

Barrios et al. (2019), when AEs have multiple hidden layers, they are called Stacked AE or 

deep autoencoders. The autoencoder also behaves as a generative model; it can generate new 

data from the input data that are very similar to the original set.  
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2.4.1.3. GENERATIVE ADVERSARIAL NETWORKS (GANS)  

Goodfellow et al. (2014) was the researcher who proposed Generative Adversarial Networks  

(GAN) to synthesize data through deep generative modeling. The framework, as shown in 

Figure 2.9, has two stages, each having neural networks. These stages are the generator network 

and the discriminator network. The generator tries to emulate random data as input called latent 

space (representation) in a probability distribution form. The discriminator then estimates the 

sampled probability, whether from the real data or the generator. The training ends when the 

discriminator can no longer differentiate between the real and the fake data, and the generator 

network can be used to generate new simulated data, with the hope that it has been trained to 

identify correctly. GAN is mostly used in computer and communication networks, including 

mobile networks, network analysis, the internet of things, physical layer, and cyber-security 

(Navidan et al., 2021).  

 
  

      Figure 2.9: Generative Adversarial Network Architecture (Barrios et al., 2019)  

  

GAN has a generative design with a broader history and scope beyond the ML space (Krish, 

2011). Also, an optimally trained GAN recreates the training distribution, allowing people to 

explore. However, as an ML system, it has a “black-box” quality which is the fundamental 
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difference between ML and heuristics-driven systems. The outputs of these systems are often 

not easily explained, mainly when errors occur (Hughes et al., 2021).  

  

2.4.1.4. CONVOLUTIONAL NEURAL NETWORK (CNN)  

The concept behind Convolutional Neural Networks (CNNs) was based on the brainʹs visual 

cortex but are not restricted to visual perception; they can also be used with signal processing 

and recognition. CNN typically has convolutional layers, pooling (or sub-sampling) layers, and 

then is usually followed by fully connected (FC) layers (Khan et al., 2019). The principal task 

of CNN is to take in an input image, assign importance (learnable weights and biases) to various 

aspects/objects in the image and be able to differentiate one from the other. It is for image 

classification to obtain a class or a probability of classes that best describes an input 

image(Barrios et al., 2019). The CNN algorithm was designed to recognize features (edges, 

curves, ridges) and their compositions by itself (LeCun et al., 2010). A basic CNN architecture 

is shown in Figure 2.10, whose basic layers are:  

(i). Convolutional layer: each filter (also called Kernel) is applied to the image in successive 

positions along the image and generates a features map through convolution operations.  

(ii). Nonlinear layer: a non-linear activation function, such as ReLu (Rectified Linear Unit) 

function, is used to avoid linearity in the system.  

(iii). Pooling (down-sampling) layer: This aims to reduce the computational load by 

reducing the size of the feature maps and introducing positional invariance.  

(iv). Fully connected layers: This is an ANN that takes the convolutional features 

(previously flattened) generated by the last convolutional layer and makes a prediction 

(e.g., softmax function). The loss function establishes the output error to inform how 

accurate the network is and uses an optimizer to increase its effectiveness.  
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  Figure 2.10: Architectural design of Convolutional Neural Network  

  

Many authors have recently reported using convolutional neural networks (CNN) to classify 

PD sources (Tuyet-Doan et al., 2020; Puspitasari et al., 2019; Barrios et al., 2019). Different 

formats have also been employed for the input of PD source identification; some formats 

include waveform spectrogram, time-domain waveform signal, and phase-resolved partial 

discharge (PRPD) patterns. In the case of waveform spectrogram data, Lu et al. (2016) used 

CNN to detect PD signals with varying noise and interference signals. The input to the network 

was an image showing the time-frequency spectrum of sound clips, which were measurements 

recorded from a switch gear using the transient earth voltage method (TEV). CNN showed 

superior detection accuracy and time performance compared to other methods prevalent in the 

industry. Che et al. (2019) used 2D- CNN to classify three PDs sources in Cross-linked 

polyethylene (XLPE) cable: internal PDs, corona PDs, surface PDs, and noise.   

  

Wang et al. (2019) use 64 by 64 images that were down-sampled originally from a 600 by 438 

time-resolved partial discharge (TRPD) image as input in CNN for partial discharge detection 

in GIS. Song et al. (2018) passed PRPD patterns for six different sources of partial discharge 

represented as a 72 by 50 matrix into CNN for classification of partial discharge. The accuracy 

achieved was 89.7%. The application of convolutional neural networks to a sequence of partial 
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discharge images was presented by Florkowski (2020). The aim is to recognize the stages of 

aging of high-voltage electrical insulation based on PD images. Partial discharge images are 

phase-resolved patterns revealing various discharge stages and forms.  The four distinguishable 

classes of the electrical insulation degradation process are a start, middle, end, and 

noise/disturbance. The process is for monitoring electrical insulation deterioration.  

According to Ganguly et al. (2020). All prior methods reported above depend on the availability 

of training data from multi-source or single-source PD inputs. There are several drawbacks 

associated with this choice. Such training data is difficult to collect in practice and time-

consuming. However, the accuracy is still noteworthy since it involves the usage of  CNN.  

Convolution Neural Network (CNN) architecture has a lot of advantages. For instance, deep 

neural networks accept a sample as an image (i.e., a matrix of size m × n) and perform feature 

extraction and classification via hidden layers (such as convolutional layers, RELU layer, max-

pooling layers) (Sharma et al., 2019). CNN does not require additional feature extraction 

techniques as it automatically derives features from the raw elements. The second advantage is 

that it finds higher-order statistics of image and nonlinear correlations. Third, convolution 

neurons process data for their receptive fields or restricted subarea, relaxing the need to have a 

very high number of neurons for large input sizes and enabling the network to be much more 

profound with fewer parameters (Habibi et al., 2017). Therefore, another distinguishing 

attribute of CNN is weight sharing; i.e., many receptive fields share the same weights and biases 

(or filters), reducing the memory footprint compared to conventional neural networks.  

  

2.5 MACHINE LEARNING AND PARTIAL DISCHARGE IMAGE RECOGNITION  

Machine learning (ML), a subdomain of artificial intelligence, refers to the ability of algorithms 

with tunable parameters that are adjusted automatically and adapted accordingly to previously 

seen data (Florkowski, 2020). ML is the brain behind computer learning. It learns based on 
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experience, leading systems to behave more intelligently by generalizing rather than only 

operating on data elements, in contrast to a conventional dataset system. ML can be classified 

into unsupervised learning and supervised learning. The unsupervised learning approach aims 

to group and interpret data based only on input data, whereas the supervised learning method 

relies on predictive models based on input and output data (IBM Cloud Education, 2020).  

According to Florkowski (2020), unsupervised learning implies that the algorithm will find 

patterns and relationships among different data clusters. The dataset in machine learning 

usually consists of a multi-dimensional entry associated with several attributes or features. 

Unsupervised learning can be further divided into clustering and association. Clustering refers 

to the automatic grouping of similar objects into sets. At the same time, the association is a type 

of unsupervised learning technique that checks for the dependency of one data item on another 

data item and maps accordingly so that it can be more profitable (IBM Cloud Education, 2020). 

Supervised learning implies an algorithm’s ability to recognize elements based on provided 

samples to recognize new data based on training data. Its algorithms include decision trees, 

support vector machines (SVM), naive Bayes classifiers, k-nearest neighbors, and linear 

regressions (Florkowski, 1995; Dai, 2019; Tuyet-Doan, 2020).  

Supervised learning can be further divided into classification and regression: classification 

means that samples belong to two or more classes to predict the class of unlabeled data from 

the already-labeled data and thus identifying to which category an object belongs; regression is 

understood as predicting an attribute associated with an object (IBM Cloud Education, 2020).   

Florkowski (2020) states that machine-learning workflow consists of several steps. The first 

step is preprocessing, i.e., data preparation in a form on which the network can train. This 

involves collecting images and properly resizing and labeling them up to the normalization 

stage (for example). The second step refers to the definition of the neural network in terms of 

the number of layers to be used in a model, the size of the input and output layers, the type of 
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the implemented activation functions, whether or not dropout will be used, the number of 

epochs, the sizes of the training sets and many other factors. Setting up all of the 

hyperparameters of a neural network framework is an art and relies greatly on experience.   

According to Candela et al. (2000), PD recognition is complicated. Only experts with extensive 

personal experience can discriminate between various discharge phenomena and assess the risk 

of potential insulation breakdown. Initially, experts mainly relied on the apparent charge 

magnitude; later, the pulse density, phase, and amplitude distributions were considered after 

the introduction of acquisition systems. In the early 1990s, the introduction of PD phase-

resolved acquisition and 3D representation, as well as ultra-wideband detection and pulse 

registration, created new possibilities and tools for automatic pattern recognition and expert 

systems. A phase-resolved PD pattern is treated as an image; therefore, image-processing 

algorithms are used to extract and distinguish an image's features (Florkowski, 2020).  

Partial discharge images have also introduced a new category in PD evaluation, referring to 

qualitative analysis and defect discrimination. A kind of system that requires no calibration in 

absolute units (pC, mV, mA, etc.) and in which qualitative discrimination could be performed 

by analyzing the shapes of statistically accumulated images which would be of most 

importance, especially on-site or monitoring measurements. This direction has been an area of 

interest in PD expert systems over the last few decades (Florkowski, 2020).  

2.6 RECAP  

Recent research has been done in detecting partial discharge with trending technology using 

the deep learning approach with the best accuracy. This research adopts a Convolutional Neural 

Network (CNN) based on our review of partial discharge detection. To achieve the best 

performance, the data used is converted to 2d-image using the deep insight method, which is 

explained in the next chapter.  
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CHAPTER THREE  

METHODOLOGY  

3.1 INTRODUCTION  

In this chapter, a binary classification of partial discharge (PD) was carried out as to whether 

PD would occur at an installation of a new meter in a location within the Akoko metropolis in 

Ondo State, Nigeria. A non-image dataset was used in this research with about 965 records. A 

DeepInsight model was adopted to transform the non-image dataset to an image-based one. The 

classification was processed using this same model's parallel Convolutional Neural Network. 

Some of the metrics used in evaluating the performance of the model were adopted from 

Durand et al. (2019), which include: accuracy score, confusion matrix, and F1-Score  

3.2 GATHERING OF DATASET  

The distribution line network in Benin Electricity Distribution of Akoko Area has a total of 256 

transformers comprising 200 transformers on 33/0.415kv distribution line and 56 transformers 

on 11/0.415kv distribution line. All records of partial discharge occurrence and all associated 

with it for the eleven (11) years have always been recorded in a central book located in a control 

room manually. A Megger meter is mainly used, especially when the down time has exceeded 

24 hours to take some readings. This tool can be used to determine the condition of the 

insulation on the wire, generators, and motor windings. 965 records of partial and non-partial 

discharge occurrence in the recent 11 years were gathered and fine-tuned (pre-processed) using 

the agile method. This method was used to convert the manual records to a soft form used as a 

dataset for this research.  

The agile method for dataset conversion involves three (3) processes: Data mapping, Data 

Integration, and Data Transformation, as shown in Figure 3.1. The data is recorded from the 

central station anytime there is patrol to troubleshoot distribution lines, usually including year, 

month, pole-number, phase, location, the total number of the pole in that area, the last signal 
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values on each phase (indicated as Red, Yellow, and Blue) and class the incidence belongs 

(partial or non-partial discharge). From the list of attributes, the mapped-out data used in this 

research were all except the year. The data were captured from the daily field tracing faults on 

distribution lines from 2011 to 2021 in the Akoko metropolis.  The attributes are described in 

Table 3.1  

  

Table 3.1: Description of dataset attribute  

Attribute Name  Description  

Month  The month that field tracing was done  

Pole-Number  The label number inscribed on the pole that the fault was detected on  

Phase  The phase (number) where the partial discharge occurred  

Location  The area or territory where tracing/troubleshooting was done  

Total Pole Number  This is the total number of poles in the location where troubleshooting 

was done.  

PhasePD_Red  This is the phase1  on the three lines that comes from the distribution 

station  

PhasePD_Yellow  This is phase 2 on the three lines from the distribution station.  

PhasePD_Blue  This is the phase3  on the three lines that comes from the distribution 

station  

Signal  The signal value where the partial discharge occurred.  

  

A DeepInsight model is adopted to transform these captured data into an image-based format 

for Convolutional Neural Network (CNN) classification.  
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3.3 DEEPINSIGHT MODEL FOR NON-IMAGE TRANSFORMATION  

Artificial Intelligent Model is a field that enables machines to use cognitive functions like 

humans to perceive, learn, reason, and solve problems. The model can efficiently classify 

objects and guide well (as in the case of driverless cars) using CNN due to its high performance. 

CNN is used in AI for high performance when the input is image-based and gives a highly 

accurate result during processing. Similarly, DeepInsight Model is used for high performance 

when dealing with nonimage input samples. The procedure used is so that samples (impossible 

to envisage as an image) can be transformed into images and processed by CNNs, as shown in 

figure 3.1. 

 

The main function of DeepInsight is to transform a feature vector x to an image matrix M such 

that CNN can now be used to perform the target classification. A profound transform is then 

used on the features 𝑔1 to 𝑔𝑑. Assuming from Figure 3.1 that the first feature 𝑔1 is closely 

related to g3 and g1 is also related to 𝑔6, and 𝑔6 is related to 𝑔𝑑, so basically, the features 

which are closely related are mapped together (as the case of 𝑔3, 𝑔1, 𝑔6, and 𝑔𝑑) while the one 

which is not closely related are located far apart (as the case of 𝑔7). The location of features in 

the Cartesian coordinates depends on the similarity of features. Once the locations of each 

feature are determined in a feature matrix, the expression values or feature values are mapped. 

This will generate a unique image for each sample (or feature vector).  

      

 

  

  

  

  

  

  

  

 

𝑀   ( 𝑓𝑒𝑎𝑡𝑢𝑟𝑒   𝑚𝑎𝑡𝑟𝑖𝑥 )   

𝑥   ( 𝑓𝑒𝑎𝑡𝑢𝑟𝑒   𝑣𝑒𝑐𝑡𝑜𝑟 )   

Transform deep   

𝑥 → 𝑇     𝑀      
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    Figure 3.1: An Illustration of DeepInsight transformation  

During the transformation 𝑇 of feature 𝑥 to 𝑀 from Figure 3.1, the following activities were 

performed.  

1. Defining a d-dimensional feature vector to a  2-dimensional space   

2. Find a rectangle that encompasses all the data (for data framing)  

3. Adjust the rectangle and data horizontally/vertically.  

4. Find the number of rows and columns (A, B)  

5. Transform from Cartesian coordinates to pixel frames  

    

3.3.1 DIMENSIONALITY REDUCTION TO 2D-SPACE (GENE-WISE, NOT SAMPLE-WISE)  

Figure 3.2 shows how the input data (dataset) is converted to a 2D-space using a gene-wise 

approach. 𝑔 represents the value in each cell of the tabula data. 𝑑 represents the dimension or 

number of features in the dataset, 𝑥 is the sample, and 𝑛 represents the number of samples in 

that dataset.  
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    Figure 3.2:  A 2D-space dimensional reduction process for dataset  

 

There are some dimension reduction techniques built-in functions in DeepInsight model which 

include the kernel Principal Component Analysis (PCA) and t-distributed stochastic neighbor 

embedding (t-SNE) (Maaten and Hinton, 2008).  The latter is taken as a 

default in the DeepInsight model. From the 𝑑 dimension feature vector, by applying t-SNE, a 

2D matrix form having all the 𝑑 features mapped into 𝑔𝑗  as shown in Figure 3.3 and Figure 3.4 

where 1 ≥ 𝑗 ≤ 𝑑.  

    

Figure 3.3: 2D matrix formed after applying t-SNE or Kernel PCA  

  

 

  Figure 3.4: 2D image space formed after applying t-SNE or Kernel PCA  

  

      

      

            

  

  

  

t - SNE/ kPCA   

                    

  

  

  

  

  

                    

  

  
 

𝑗 = 1 , 2 , … , 𝑑   

𝑔 1   

𝑔 𝑗   
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3.3.2 DATA FRAMING USING CONVEX HULL ALGORITHM  

The DeepInsight model applies a Convex Hull algorithm on a 2D-space from Figure 3.4. The 

Convex Hull technique carved out the smallest convex polygon that contains all the points in 

the set of points in the 2D-space plane. The result, after the convex hull algorithm is applied, is 

shown in Figure 3.5.  

  

 
    Figure 3.5: The smallest rectangle consisting of all the data  

  

3.3.3 ADJUSTING RECTANGLE AND DATA HORIZONTALLY AND 

VERTICALLY  

In Figure 3.5, the image formed is not in a stable condition. So there is a need for rotation of 

the image to align it both vertically and horizontally. To rotate the image, the gradient of the 

two corner points of the tilted rectangle was found, as shown in equation 3.1. The angle for 

the rotation was calculated using equation 3.2  

             (3.1)  

        𝜃 = tan−1(𝐺)    (3.2)  

The rotation matrix       (3.3)  

The output of the image after rotation is shown in figure 3.6  

  

  

  

  

  

t - SNE/ kPCA   

Convex hull  

Algorithm   



GSJ: Volume 11, Issue 2, February 2023                                                                           668 
ISSN 2320-9186  
   

GSJ© 2023 
www.globalscientificjournal.com 

    

  

 

  Figure 3.6: Plot showing the rotated data points and the smallest bounding rectangle  

  

3.3.4 IMAGE FRAME HORIZONTAL AND VERTICAL LENGTH   

The horizontal and vertical length of the image frame provided by the rotation matrix from 

Figure 3.6 is calculated using equations 3.4 and 3.5  

    

Cartesian Horizontal axis     𝐴𝑐 = |𝑥2 − 𝑥1|      (3.4)  

Cartesian Vertical axis     𝐵𝑐 = |𝑦3 − 𝑥2|      (3.5)  

  

  

  

  

  

  

  

  

  

  

  

  

  𝐵 𝑐   

𝐴 𝑐   

t - SNE/ kPCA   

Convex hull  

Algorithm   

Rotation   
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3.3.5 TRANSFORMATION OF IMAGE FRAME TO PIXEL FRAME  

It is required to convert the Cartesian coordinates to pixel forms for fast processing. This was 

done by determining the minimum distance between the two closest points  of the mapped 

genes. The pixel coordinate is represented in equation 3.6 and 3.7 as  

          (3.6)  

           (3.7)  

Where () is the product's ceiling value, precision will define the resolution. The  and 

values will help to convert Cartesian coordinates to pixel coordinates using equations 3.8 and 

3.9 as  

       (3.8)  

       (3.9)  

Where x-axis and y-axis are coordinates in the Cartesian plane and  are 

coordinates in the pixel frame.  

3.3.6 FEATURE MAPPING ON PIXEL LOCATION  

The mapping of genes/features on pixel locations could be overlapped, as shown in Figure 3.7. 

The feature locations are defined using the training set and map feature values to these 

locations. If two or more features occupy the same location, then their averaged values are used, 

leading to lossy compression of features; otherwise, the feature will maintain its location if no 

overlap occurs.  
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Figure 3.7: Features mapping using pixel coordinates.  

The mapped features from pixel coordinates, as shown in Figure 3.8, are then normalized using 

norm-1 and norm-2 techniques.  

3.3.6 .1 NORMALIZATION OF MAPPED FEATURES  

Two types of normalization are embedded in DeepInsight: norm-1 and norm-2. For norm-1, 

each feature is normalized by its minimum and maximum. This will bring a feature between 0 

and 1. This normalization will assume that features are mutually independent as a feature is 

normalized by its extrema values. The minimum and maximum values for norm-1 can be 

computed as shown in equation 3.10 to 3.14 as follow:  

           (3.10)  

           (3.11)  

 Where 𝑋𝑡𝑟 is the training set and (𝑗, : ) refers to all the samples of the 𝑗th feature or attribute. 

Therefore, 𝑀𝑎𝑥𝑗 and 𝑀𝑖𝑛𝑗 are the maximum and minimum of the 𝑗th attribute. These extrema 

values are used to normalize training, validation, and test sets as  

          (3.12)  

          (3.13)  

  

  

  

{ 𝑔 1 , 𝑔 1 , … , 𝑔 𝑘 }   

Feature overlapping  will  

occur at the location   

( 𝑎 1 , 𝑏 1 )   

𝑔 𝑚       ( 𝑎 2 , 𝑏 2 )   
one gene ( )   

  

  

Pixel 
  

In this case feature has no  

overlapping   
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          (3.14)  

  

Where 𝑗 = 1, 2,…, 𝑑, and 𝑑 is the dimension of the samples in the dataset, if after normalization 

any feature value of the validation set or test set is less than 0 or greater than 1, then such feature 

values are clamped between 0 and 1 to maintain the consistency.  

The norm-2 normalization method adjusts the minimum value for each feature or attribute. 

Then a global maximum is used in the logarithmic scale to place the feature values between 0 

and 1. The norm-2 uses equation 3.10 to calculate the minimum of the 𝑗th attribute, and further 

process is done using equation 3.15 to 3.17 to get the logarithmic scaling as follow:  

             (from equation 3.10)  

    𝑋𝑡𝑟(𝑗, : ) = log (𝑋𝑡𝑟(𝑗, : ) + |𝑀𝑖𝑛𝑗| + 1)    (3.15)  

             (3.16)  

              (3.17)  

The validation and test sets are adjusted using the training extrema values for normalization. In 

case, after adjusting by the minimum values (𝑀𝑖𝑛𝑗), any element of validation or test set is less 

than 0, then it is clamped at 0. Similarly, if after normalizing by the maximum value (Max), 

any feature from the validation and test sets is above 1, then it is clamped to 1.  

DeepInsight method employs these two types of normalizations (norm-1 and norm-2), and the 

validation error is evaluated on both norms. The norm, which gives the lowest validation 

error, is used for further processing. The pixel frame size is fixed at 120 × 120.  
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The normalized output is passed into two parallel CNN architectures consisting of four 

convolutional layers and tuned using the Bayesian Optimization technique for classification.  

 

Figure 3.8: Parallel CNN for classification of mapped features from pixel coordinates  

 

Basically, the adopted DeepInsight method used in this research can perform three main actions: 

element arrangement via mapping, feature extraction, and classification via CNN. During 

mapping, Dimensionality Reduction Techniques (DRTs), like t-SNE and Kernel PCA, mapped 

the dataset from high-dimensional to 2D space in a non-linear fashion. The samples with 

similarity were mapped close to each other, and the ones with dissimilarity were mapped apart. 

Many linear DRTs map data to a 2D plane, however, mapped samples are highly convoluted, 

and it becomes very challenging for clustering algorithms to find a reasonable level of 

groupings. However, t-SNE has the potential which maps very high-dimensional data to a 2D 

plane while keeping the data topology. The in-built t-SNE algorithm uses Euclidean distance to 

compute probabilities. However, in DeepInsight, cosine distance was used. The processing of 

t-SNE can be prolonged. Therefore, for faster processing, the Barneshut algorithm has been 

incorporated into DeepInsight, which is then used to approximate joint distributions instead of 

the exact distribution.  
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CHAPTER FOUR  

RESULT AND DISCUSSION  

4.1 INTRODUCTION  

This research was implemented using Colab, a free notebook environment that runs entirely in 

the cloud. It lets one and team members edit documents anywhere online, just like how Google 

Docs works. Colab supports many popular machine learning libraries which can be easily 

loaded in a notebook. However, it has limited space and Time: Google Colab platform stores 

files in Google Drive with a free space of 15GB; any bigger datasets will require more space, 

making it difficult to execute. This, in turn, can hold most of the complex functions to execute. 

The result of the implementation of Colab on the effective prediction of partial discharge is 

discussed in the next section.  

4.2 DATASET  

The dataset has seven headings: month, poleno, phase, pdarea, total pole, sigalval, and 

discharge. This was explained in chapter 3, Table 3.1. Figure 4.1 shows a part view of the 

dataset. Since this research used a supervised learning approach in prediction, the dataset was 

partitioned into two. The first part contains the value of the attribute used in the training and 

testing process: month, poleno, phase, pdarea, total pole, and sigalval, as shown in Figure 4.1 

with 965 records. The second part contains an attribute with the predicted value, pdischarge. 

Each part is divided into two again for training and testing using 80% and 20%, respectively.  
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  Figure 4.1:Cross-section of the dataset with the headings  

4.3 APPLICATION OF T-SNE ON DATASET  

t-SNE (t-distributed Stochastic Neighbour Embedding) is a dimensionality reduction algorithm, 

as discussed in chapter three. The real training of the dataset occurred at this stage.  The learning 

rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data 

may look like a ‘ball’ with any point approximately equidistant from its nearest neighbors. If 

the learning rate is too low, most points may look compressed in a dense cloud with few 

outliers. If the cost function gets stuck in a bad local minimum, increasing the learning rate may 

help. The number of parallel jobs (n_jobs) to run for neighbors search is -1, as indicated in 

Figure 4.2. This means all processors in the virtual machine are used for parallel computation. 

Further explanation of parameters used in the t-SNE is shown in Table 4.1  

 

Figure 4.2: Implemented code for t-SNE and its parameters  
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Table 4.1: Detail description of t-SNE parameters used in dimensionality reduction.  

t-SNE Parameters   Description  

n_components  Dimension of the embedded space. It is a 2D plane, so 2 was used 

during the implementation  

random_state  Number of reproducible results passed across multiple function calls 

during training and dimensionality reduction. In this research, 1515 is 

used for better performance. It checks whether the results are stable 

across several different distinct random seeds. This also controls the 

rotation of the features.  

metric  The metric to use when calculating the distance between instances in a 

feature array. It is used by t-SNE to compute probabilities of the 

distance between instances in a feature array. It can either be Euclidean 

distance or Cosine. In this research, Cosine is used for high 

performance.   

verbose  A verbose parameter is usually available to either display logs or not. 

By default, it is set to False (no loggings). Verbose logs are usually 

printed to Standard Output, as shown in Figure 4.3.  

learning rate  The learning rate is a critical parameter. It should be between 100 and 

1000. However, for t-SNE, it is between 10 and 1000. The default 

value (200) is used in this research for better performance.  

perplexity  The perplexity is related to the number of nearest neighbors used in 

other manifold learning algorithms. The range is [5, 50]. Larger 

datasets usually require a larger perplexity. The choice is not extremely 

critical since t-SNE is insensitive to this parameter.  
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The t-SNE computation computed one hundred and fifty-one (151) nearest neighbors and 

indexed seven hundred and seventy two (772) samples within 0.001 seconds. The computed 

neighbors for 772 samples were done within 0.135 seconds on a mean sigma value of 0.155. 

The sigma value describes how far a sample or data point is away from its mean. The Kullback-

Leibler divergence between the joint probabilities of the low-dimensional embedding and the 

high-dimensional data is minimized after 1000 iterations to 0.492, as shown in Figure 4.3. The 

computation of t-SNE lapsed for 5.72 seconds  

 
Figure 4.3: Logs of t-SNE computation  

The graph of a created probability distribution that represents similarities between neighbors is 

shown in Figure 4.4  

 
  Figure 4.4: A 2D probability distribution of computed neighbors  
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4.4 DATA FRAMING  

Data framing is a process to carve out the smallest convex polygon that contains all the points 

in the set of points in the 2D-space plane of the train image transformer on the training dataset. 

Figure 4.3 is the result of the plot showing the reduced features (blue points), convex Hull (red), 

and minimum bounding rectangle (green) prior to rotation.  The edges of the polygon indicate 

the density area of the reduced features. Figure 4.5 shows the convex polygon at random_state 

of 1515.  

 
  

    Figure 4.5: Convex Hull transformation of reduced features   

  

4.5 FEATURE DENSITY  

The feature density matrix extracted from the trained transformer to view the overall feature 

overlap is shown in Figure 4.6.  
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      Figure 4.6: Overall pixel frame of feature density matrix  

  

4.6 TRAIN SET IMAGE MATRICES   

The following plots in Figure 4.8 show the image matrices of the first three samples of the 

training set. Figure 4.7 shows the indexed trained samples. Figure 4.9 and 4.10 shows the 

indexed test samples and the image matrices of the first three samples of the test set.  

 

   

  

  

  

  

  

  

  

  

  

  

  

  

Figure 4.7:   The cross - section of trained samples   
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    Figure 4.8: Image matrices of first three trained samples  

    

  

 

  

  

  

Figure 4.9: The cross - section of test samples   
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Figure 4.10: Image matrices of first three test samples  

  

4.7 PROCESSING IMAGE MATRICES WITH CNN  

The image matrices produced from Figures 4.9 and 4.10 are then used as input for the CNN 

model for effective classification. Conv2d pytorch with 512 channels both for input and output. 

It contains two classes (1, 0), indicating whether there is partial discharge. The size of the 

convolving kernel and the stride that controls the cross-correlation are represented in a tuple of 

two integers (1, 1). The first integer is used for the height dimension and the second integer for 

the width dimension. The transform numpy image format is then converted to a PyTorch tensor 

using the untrained network (image matrices) in other to generate pyTorch datasets and data 

loaders for training and testing sets. The dataset stores the samples and their corresponding 

labels, and Dataloader wraps an iterable around the Dataset to enable easy access to the 

samples.  

The training is conducted for 20 epochs. The loss for training, its valid accuracy, and valid 

losses are shown in Figures 4.11, 4.12, and 4.13, respectively.   
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  Figure 4.11: CNN pytorch training loss and accuracy at each epoch  

 

  Figure 4.12: Graph of CNN pytorch valid accuracy  
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    Figure 4.13: Graph of CNN pytorch valid losses  

The overall accuracy and f1_score for training and testing are shown in Figure 4.14. F-score 

(F1Score) measures a model's accuracy on a dataset.  

 

  Figure 4.14: Screen-shot of train accuracy and F1-Score   

  

The Confusion matrix during training was also recorded, as shown in Figure 4.15. Confusion 

matrix is a very popular measure used while solving classification problems. It can be applied 

to binary classification as well as to multiclass classification problems.  
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  Figure 4.15: Confusion matrix on the target class   

4.8 ENVIRONMENT FOR IMPLEMENTATION  

This research was implemented on Google Colab (short for Collaboratory), as shown in Figure 

4.14. It is a product offered by Google Research that allows machine learning researchers to 

work on projects in the browser. It is similar to Google Docs, allowing one to share projects 

between many people, and best of all, it gives free access to GPUs to train models quickly 

without any signup.  

When working on projects, testing code on a portion of a dataset on one’s computer or Google 

Colab initially is the best. The tools can be used as a quick way to see if code has bugs or if the 

output of a model is reasonable. After testing, the code can then be copied with the full dataset 

to a group's Amazon Web Services (AWS) instance to run the full version of the model. Testing 

a model locally / on Colab is free, whereas, on AWS, it will require using credits for running 

on AWS).    
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  Figure 4.16: Colab IDE for writing python language    
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CHAPTER FIVE  

  

CONCLUSION AND RECOMMENDATION  

5.0   CONCLUSION  

Application of a convolutional neural network has been explored on non-image data using 

DeepInsight as an intermediary to convert the non-image data to partial discharge and 

nonpartial discharge images to recognize when a partial occurred or not. The presented dataset 

refers to the monitored electrical insulation deterioration that occurs on different substations 

within Akoko Metropolis in Ondo State. The performance of the applied architecture was 

assessed based on the recognition score, confusion matrix, and accuracy metric.   

 

The generated PD images from the DeepInsight algorithm represent a new category of a 

diagnostic evaluation, referring to qualitative analysis and with no bias. The system performed 

by analyzing the shapes of statistically accumulated images, which would be very desirable, 

especially in on-site diagnostics or monitoring situations.  

  

5.1 RECOMMENDATION  

One way to leverage the stress on field workers in BEDC is by predicting a likely situation in 

a particular area with some predefined data. This research has focused on this area, which will 

be highly recommended for rural or urban locations, especially where new field managers are 

posted.  Based on the research. The study provides the below policy recommendation:  

i. Implement deep learning algorithms for partial discharge detection in the national grid 

distribution network in Edo, Benin City. 

ii. Provide training for technical personnel to effectively use deep learning-based partial 

discharge detection systems. 
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iii. Develop a monitoring and maintenance program for partial discharge detection systems, 

including regular system updates and data analysis. 

iv. Collaborate with relevant stakeholders such as power companies and universities to 

gather data for deep learning algorithms to improve the accuracy of partial discharge 

detection. 

v. Encourage power companies to adopt partial discharge detection systems as a standard 

practice in their operations. 

vi. Provide incentives for power companies to invest in partial discharge detection systems, 

such as tax breaks or subsidies. 

vii. Implement regulations requiring power companies to regularly report partial discharge 

detection results to relevant government agencies. 

viii. Establish a database for partial discharge detection data, allowing for centralized data 

analysis and improved decision-making. 

ix. Encourage research and development in the area of deep learning-based partial 

discharge detection, with a focus on improving accuracy and reducing costs. 

x. Work with international organizations and experts to share knowledge and best 

practices for partial discharge detection in the national grid distribution network. 

 5.2 CONTRIBUTION TO KNOWLEDGE  

The effort put into this research will reduce or eliminate harmful environmental impacts, help 

to reduce maintenance costs, and prevent power outages. The field workers would also have 

what to leverage instead of taking many days to solve partial discharge issues.  

  

5.3 FUTURE RESEARCH  

This research direction is a visible trend in future autonomous PD expert systems.  
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Although the most challenging aspects of today’s partial discharge image recognition are 

related to multi-source and multi-labeled PD classification, the separation between real internal 

PDs, and both noise and disturbances, thus, future work will focus on adjusting the CNN 

architecture and hyperparameters for PD recognition for diagnostic applications in this areas.  
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APPENDIX I  

from sklearn.model_selection import train_test_split 

import pandas as pd import numpy as np  

  

from matplotlib import pyplot as plt 

import seaborn as sns from 
google.colab import drive  

  

from sklearn.preprocessing import MinMaxScaler from 

sklearn.manifold import TSNE  

import matplotlib.ticker as ticker  

https://municipalinfonet.com/energy/magazine/44/article/Partial-
https://municipalinfonet.com/energy/magazine/44/article/Partial-
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drive.mount("/content/gdrive")  

expr_file = "/content/gdrive/My Drive/Colab Notebooks/dataset2.csv"  

  

expr = pd.read_csv(expr_file) y = 

expr['pdischarge'].values 
X=expr.drop('pdischarge',axis=1)  

#divide the dataset into 80% train and 20% test  

X_train, X_test, y_train, y_test = train_test_split(  

    X, y, test_size=0.2, random_state=23, stratify=y)  

#from 80% train, divide the traindataset into 60% train and 20% validation  

X_train, X_val, y_train, y_val = train_test_split(  

    X_train, y_train, test_size=0.25, random_state=23)  

#In this way, train, val, test set will be 60%, 20%, 20% of the dataset respectively.  

  

Normalize data using StandardScaler and create tsne class  

  

mmsc = MinMaxScaler()  

X_train_norm = mmsc.fit_transform(X_train)  

X_test_norm = mmsc.transform(X_test).clip(0,1)  

  

tsne = TSNE(     

n_components=2,  

    random_state=1515,metric='cosine',     n_jobs=-

1)  #1701  1515  

#tsne = TSNE(  

#    n_components=2,  

#    random_state=3000, learning_rate= 1000, perplexity = 50, metric='cosine', verbose = 1, #    

n_jobs=-1)  #1701  1515  

  

#tsne = TSNE(n_components=2, perplexity=30, metric='cosine',  

 #           random_state=1515, n_jobs=-1)  

  

#it = ImageTransformer(feature_extractor=tsne, pixels=50)  

  

from sklearn import metrics from 

__future__ import print_function 
import time  

time_start = time.time() #1701  

1515  metric='cosine',  

#tsne = TSNE(n_components=2,random_state=1515,  #    

n_jobs=-1, verbose=1, perplexity=30, n_iter=300) 
tsne_results = tsne.fit_transform(X_train_norm)  

print('t-SNE done! Time elapsed: {} seconds'.format(time.time()-time_start))  

  

tsne_results  
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plt.figure(figsize=(5, 5))  

plt.plot(tsne_results[:,0],tsne_results[:,1])  

  

  

Initialize image transformer.  

  

it = ImageTransformer(     
feature_extractor=tsne,      pixels=32)  

  

Train image transformer on training data. Setting plot=True results in  

  

at a plot showing the reduced features (blue points), convex full (red)  

  

, and minimum bounding rectagle (green) prior to rotation.  

  

time_start = time.time() 

plt.figure(figsize=(5, 5)) it.fit(X_train_norm, 
plot=True)  

print('t-SNE done! Time elapsed: {} seconds'.format(time.time()-time_start))  

  

Train image transformer on training data and transform training and testing sets. Values should 

be between 0 and 1.  

  

X_train_img = it.fit_transform(X_train_norm)  

X_test_img = it.transform(X_test_norm)  

X_val_img = it.transform(X_val_norm)  

  

The feature density matrix can be extracted from the trained transformer in order to view overall 

feature overlap.  

  

X_train_imgThe following are showing plots for the image matrices first four samples of the 

training set.  

  

fig, ax = plt.subplots(1, 3, figsize=(15, 5)) for 

i in range(0,3):  

    ax[i].imshow(X_train_img[i])  

    ax[i].title.set_text("Train[{}] - class '{}'".format(i, y_train[i])) plt.tight_layout()  

  

print (pd.DataFrame(y_train),"\n",pd.DataFrame(X_train))  

  

Transforming the testing data is done the same as transforming the training data.  

  

X_test_img = it.transform(X_test_norm)  

  

fig, ax = plt.subplots(1, 3, figsize=(15, 5)) for 

i in range(0,3):  

    ax[i].imshow(X_test_img[i])  

    ax[i].title.set_text("Test[{}] - class '{}'".format(i, y_test[i])) plt.tight_layout()  
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print (pd.DataFrame(y_test),"\n",pd.DataFrame(X_test))  

  

X_val_img = it.transform(X_val_norm)  

  

fig, ax = plt.subplots(1, 3, figsize=(15, 5)) for 

i in range(0,3):  

    ax[i].imshow(X_val_img[i])  

    ax[i].title.set_text("Test[{}] - class '{}'".format(i, y_val[i])) plt.tight_layout()  

  

print (pd.DataFrame(y_val),"\n",pd.DataFrame(X_val)) 

import torch device = torch.device("cpu") import 

torchvision.transforms as transforms from 

torch.utils.data import TensorDataset, DataLoader 
import torch.nn as nn  

import torch.optim as optim  

  

from sklearn.preprocessing import LabelEncoder  

from sklearn.metrics import accuracy_score  

  

import warnings;   

warnings.simplefilter('ignore')  

  

Encode labels as integers.  

  

le = LabelEncoder() y_train_enc = 

le.fit_transform(y_train)  

y_test_enc = le.transform(y_test)  

  

net = torch.hub.load(  

    'pytorch/vision:v0.6.0', 'squeezenet1_1',      

pretrained=False, verbose=False).double()  

net.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1),   

                              stride=(1,1)).double()  

Transform numpy image format to 

PyTorch tensor. Using an untrained 

network, so normalization as specificed 

in SqueezeNet documentation is not 
required.  

  

preprocess = transforms.Compose([     

transforms.ToTensor()  

])  

  

X_train_tensor = torch.stack([preprocess(img) for img in X_train_img]) y_train_tensor 

= torch.from_numpy(le.fit_transform(y_train))  

  

X_test_tensor = torch.stack([preprocess(img) for img in X_test_img]) y_test_tensor 

= torch.from_numpy(le.transform(y_test))  
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X_val_tensor = torch.stack([preprocess(img) for img in X_val_img]) y_val_tensor 

= torch.from_numpy(le.transform(y_val))  

  

Generate pyTorch datasets and dataloaders for training and testing sets.  

  

batch_size = 1  

  

trainset = TensorDataset(X_train_tensor, y_train_tensor)  

trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True  

  

Specify loss function and optimization algorithm  

  

criterion = nn.CrossEntropyLoss()  

optimizer = optim.SGD(net.parameters(), lr=1e-4, momentum=0.9)  

  

Train SqueezeNet for 20 epochs  

  

xaxis = [] yaxis 

=[]  

zaxis =[] num_epochs = 20 for epoch in 

range(num_epochs):     total=0.0     

correct=0.0     running_loss = 0.0     for i, 

data in enumerate(trainloader, 0):  

        # get the inputs; data is a list of [inputs, labels]         

inputs, labels = data  

  

        # zero the parameter gradients  

        optimizer.zero_grad()  

  

        # forward + backward + optimize         

outputs = net(inputs)         loss = 

criterion(outputs, labels)         
loss.backward()         optimizer.step()  

  

        running_loss += loss.item()     

# print epoch statistics  

    print('[%d] train_loss: %.5f  Accuracy : %.3f' %  

          (epoch + 1, running_loss / len(X_train_tensor) * batch_size),)  

    #print('[%d] train_loss: %.5f ' %  

    #      (epoch + 1, running_loss / len(X_train_tensor) * batch_size))  

      

    xaxis.append(epoch + 1)  

    yaxis.append(running_loss / len(X_train_tensor) * batch_size)     

zaxis.append(running_loss / len(X_test_tensor) * batch_size)  

  

plt.plot(xaxis,yaxis, color='y', label='train') plt.plot(xaxis,zaxis, 

color='g', label='test')  
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# naming the x axis 

plt.xlabel('epoch') # 
naming the y axis  

plt.ylabel('loss')  

  

# giving a title to my graph plt.title('Model 

loss Graph!')  

# Adding legend, which helps us recognize the curve according to it's color plt.legend()  

# function to show the plot plt.show()  

  

Calculate accuracy of prediction  

  

train_outputs = net(X_train_tensor)  

_, train_predicted = torch.max(train_outputs, 1)  

  

test_outputs = net(X_test_tensor)  

_, test_predicted = torch.max(test_outputs, 1)  

  

print("The train accuracy was {:.3f}".format(accuracy_score(train_predicted, y_train_tensor)))  

print("The test accuracy was {:.3f}".format(accuracy_score(test_predicted, y_test_tensor)))  


