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ABSTRACT 

This paper fit a time series model to the monthly food inflation rate price in Nigeria from 2014 to 2018 and also provided a year 

forecast for the likely food inflation rate in Nigeria. The study attempts to outline the practical steps which need to be 

undertaken to use autoregressive integrated moving average (ARIMA) time series models for forecasting Nigeria’s food inflation 

rate. Inspecting the ACF and the PACF at the lag, k = 1,2,3…, we discovered that the tentative model is a subset of 

ARIMA(3,1,3), and the model ARIMA(1,1,2) was preferred base on the AIC &BIC. Then the ACF plot of the residuals shows 

that the residuals of the model is stationary, and the normal quantile plot indicates that the residuals is normally distributed. 

Finally, we compared the forecasts for the months of January, February, March, April, June & July to the original values in 

2019, and RMSE of 2.999.  
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1   Introduction 

Inflation is a general rise in the price of goods and services in a particular economy, resulting in a fall in the value of money. 

When the price rises, each unit of currency buys fewer goods and services. Consequently, inflation reflects a reduction in the 

purchasing power per unit of money. Adams, Awujola &Alumgudu (2014) considered inflation to be a major economic problem 

in transition economies and thus fighting inflation and maintaining stable prices is the main objective of monetary authorities 

like CBN. The negative consequences of inflation are well known, it can result in a decrease in the purchasing power of the 

national currency leading to the aggravation of social conditions and living standards. High prices can also lead to uncertainty 

making domestic and foreign investors reluctant to invest in the economy. Moreover, inflated prices worsen the country’s terms 

of trade by making domestic goods expensive on regional and world markets. Okuneye (2001) stated that agricultural 

production, food insecurity, lack of sensitization programs etc. affect the prices of food. Furthermore, he defined food inflation 

as a condition whereby there exists increase in wholesale price index of essential food item relative to the general inflation of the 

consumer price index. Various research shows that level inflation is negatively correlated with economics growth in developing 

countries. The issue of food inflation has been a critical one for economy planners. Between mid-2007 and mid-2008 the food 

price index of the World Bank increased by almost 86% (Wright, 2009). The causes for the sudden rise in international food 

prices ranged from higher energy. In Sub-Saharan Africa the greatest impact of rising food prices was evident in poverty levels. 

Wodon and Zaman (2010) found that an increase in food prices by just 50 per cent resulted in a 4.4 per cent increase in the 

poverty headcount in Sub-Saharan Africa.  

Mordi et al. (2007), in their study of the best models to use in forecasting inflation rates in Nigeria identified areas of future 

research on inflation dynamics to include re-identifying ARIMA models, specifying and estimating VAR models and estimating 

a P-Star model, amongst others that can be used to forecast inflation with minimum mean square error. Imimole and Enoma 

(2011) conducted a research on the impact of exchange rate depreciation on inflation in Nigeria using auto regression distributed 

lag (ARDL) and co integration procedures. Evidence from the estimate results suggested that exchange rate depreciation, money 

supply and real gross domestic product were the main determinants of inflation in Nigeria. Odunsaya and Atanda (2010) 
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critically examined the dynamic and simultaneous inter-relationship between inflation and its determinants in Nigeria within the 

period 1970-2007. The Augumented Engle-Granger (AEG), cointegration test and error correction model were employed. The 

estimated result indicated that substantial benefits occurred when moving from high or moderate rate to low level of inflation. 

Omekara et al (2013) applied Periodogram and Fourier Series Analysis to model all-items monthly inflation rates in Nigeria 

from 2003 to 2011. Their main objectives was to identify inflation cycles, fit a suitable model to the data and make forecasts of 

future values. To achieve these objectives, monthly all-items inflation rates for the period was obtained from the Central Bank of 

Nigeria (CBN) website. Periodogram and Fourier series methods of analysis are used to analyze the data. Based on their 

analysis, it was found that inflation cycle within the period was fifty one (51) months, which coincides with the two 

administrations within the period. Further, appropriate significant fourier series model comprising the trend, seasonal and error 

components is fitted to the data and this model is further used to make forecast of the inflation rates for thirteen months. These 

forecasts compare favorably with the actual values for the thirteen months. Olajide et al (2012) forecast the inflation rate in 

Nigeria using Jenkins approach. The data used for this paper was yearly data collected for a period of 1961-2010. Differencing 

method were used to obtain stationary process. The empirical study reveals that the most adequate model for the inflation rate is 

ARIMA (1,1,1). The root mean square error (RMSE) which determine the efficiency of the model was estimated at 12.55, this 

indicate that the model built is efficient. Using an ARIMA (1,1,1) model of annual value series of inflation rate for 2011 is 

estimated to be 16.27%.The model developed was used to forecast the year 2011 inflation rate. Based on this result, they 

recommend effective fiscal policies aimed at monitoring Nigeria’s inflationary trend to avoid the consequences in the economy.  

Adams et al (2014) fit a time series model to the consumer price index (CPI) in Nigeria’s Inflation rate between 1980 and 2010 

and provided five years forecast for the expected CPI in Nigeria. The Box-Jenkins Autoregressive Integrated Moving Average 

(ARIMA) models was estimated, and the best fitting ARIMA model was used to obtain the post-sample forecasts. They 

discovered that the best fitted model is ARIMA (1, 2, 1), Normalized Bayesian Information Criteria (BIC) was 3.788, stationary 

R2 = 0.767 and Maximum likelihood estimate of 45.911. The model was further validated by Ljung-Box test (Q = 19.105 and 

p>.01) with no significant autocorrelation between residuals at different lag times. Finally, five years forecast was made, which 

showed an average increment of about 2.4% between 2011 and 2015 with the highest CPI being estimated as 279.90 in the 4th 

quarter of the year 2015. Ekpeyong and Udoudo (2016) paper consider the analyses and forecasting of the monthly All-items 

(Year-on-Year change) Inflation Rates in Nigeria. The data used for this study are monthly All-items Inflation rates from 2000 

to 2015 collected from the Central Bank of Nigeria. Analyses reveal that the Inflation rates of Nigeria are seasonal and follow a 

seasonal ARIMA Model, (0, 1, 0) x (0, 1, 1)12. The model is shown to be adequate and the forecast obtained from it are shown 

to agree closely with the original observations. 

This study aim to fit an appropriate time series model for the food inflation rates of Nigeria using Box-Jenkins methodology. 

Hence, the specific objectives include: to specify the order of the ARIMA model for food inflation rates in Nigeria, estimating 

the coefficient in the specified model, diagnostic check of the specified model and forecasting food inflation rates in Nigeria. 

The R statistical programming software will be used in displaying the plots and computing the results of method of analysis. 

2   Methodology 

Box–Jenkins method is a methodology which uses a variable past behavior to select the best forecasting model from a general 

class of models. There are four stages involved in this methodology, this includes; order selection, estimating the coefficient, 

diagnostic checking and forecasting 

2.1 Data collection 

This work used the monthly food inflation rate (Year on Year change). All the data were collected from Central Bank of Nigeria 

statistical bulletin. They were collected for the period of January, 2014 to June, 2019. The values from the year 2019 wil be use 

to test the model.  

2.2 Time series 

A time series { }tY  is a set of observations ty indexed in time order t.  If the observations in a time series are recorded at 

successive equally spaced points in time it is called a discrete-time time series. (Brookwell and Davis, 2002). These kind of time 

series will be dealt with in this thesis as the data points are recorded once every month. 
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2.3   The stationarity condition 

When performing different time series techniques one often assumes that some of the data’s properties do not change over time. 

The most fundamental assumption is that the data is stationary. Stationarity is an important condition for ARIMA models. In 

practice, the mean and variance should be constant as a function of time before performing the analysis. Otherwise, past effects 

would accumulate and the values of successive 'ty s would approach infinity making the process non-stationary. For a first 

order nonstationarity, the observations with ARIMA models should be sieved first by differencing the observations d times, 

using d ty instead of ty   as the time series to obtain stationary data. This is usually done with the transformation 

1t t tY Y Y                                                                             (1)      

 

2.4 The ARIMA model 

If a time series does not exhibit the features connected to stationarity one looks for transformation of the data to generate a new 

series with the desired properties. If the data requires differencing to become stationary one talks about the class of 

autoregressive integrated moving average (ARIMA) models. These models are a generalization of the class of ARMA models 

discussed previously and with 
1t t tY Y Y    an ARIMA(p,1,q) takes the following form: 

 
1 1 2 2 1 1 2 2t t t p t p t t t q t qY Y Y Y                                                                                                            (2) 

2.5 Autocorrelation and partial autocorrelatyion function 

The autocorrelation function (ACF) is considered when the linear dependence between { }tY  and its past values 1{ }tY   is of 

interest. The autocorrelation coefficient between { }tY and 1{ }tY  is denoted ( )l  which under the weak assumption of 

stationarity is a function of l  only  

   ( , )
( )

( )

t t l

t

Cov Y Y
l

Var Y
 

                                                              (3) 

The partial autocorrelation function (PACF) is a function of ACF and is the extent of correlation between a variable and a 

lag of itself that is not explained by correlations at all lower-order-lags. Considering the AR model. 

 

 

 

 

 

 

 

Fig.5: autocorrelation function of the food inflation rate          Fig.5: the partial autocorrelation function of the food inflation rate 
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2.6 Applying the ARIMA technique: Box-Jekins methodology 

Modelling the data as
0t v t vv

Y   
 , where ( )t is a white noise. We would also have to determine infinitely many 

parameters v , 0v  . By the principle of parsimony it seems, however, reasonable to fit only the finite number of parameters of 

an ARMA (p,q)-process. So far, the above centered on the Box and Jenkins methodology with its benchmark model. 

The Box-Jekins program consist of four steps: Order selection: choice of the parameters p and q , estimation of 

coefficients―the coefficients 
1 2, ,..., ( 0)p p     and 

1 2, ,..., p   are estimated, diagnostic check―the fit the ARMA (p, q)-

model with the estimated coefficients is checked, and forecasting―the prediction of future values of the original process. 

 

2.6.1 Order selection 

The objective of this method is to select a subclass of the family of ARIMA models appropriated to represent a time series. We 

identify a set of stationary ARMA processes to represent the stationary process, i.e, we choose the order (p, q). These plots are 

from the autocorrelation and autocorrelation function. The summary of the patterns of the theoretical ACFs and PACFs of some 

common models is given by Box-Jenkins (1994) are given in table 1: 

Table 1: Behavior of the ACF and PACF for causal and invertible pure ARMA models 

Process ACF PACF 

AR(p) 
Decrease 

exponentially 
Cuts off after lag P 

MA(q) Cuts off after lag q 
Decrease exponentially or sine 

wave pattern. 

ARIMA(p,q) No cut off No cut off 

Source: Box-Jenkins (1994) 

The order q  of a moving average MA (q)-process can be estimated by means of the empirical autocorrelation function ( )r k

i.e., by correlogram. The order p of an AR (p)-process can be estimated in an analogous way using the empirical partial 

autocorrelation function ˆ( ), 1k k  . The choice of the orders p and q of an ARMA (p, q)-process is a bit more challenging. 

In this case we take the pair ( , )p q , minimizing some function, which is based on the estimate 
2

,
ˆ

p q of the variance of 0 . 

Popular functions are: 

Akaike’s Information Criterion: 

         2

,

1
ˆ( , ) : log( ) 2

1
p q

p q
AIC p q

n


 
 


                                                (4) 

Bayesian Information Criterion: 

                           2

,

( ) log( 1)
ˆ( , ) : log( )

1
p q

p q n
BIC p q

n


 
 


                                                              (5) 

Brokwell and Davis (1991) discussed the AIC and BIC for a Guassian processes{ }tY .  The variance estimate 
2

,
ˆ

p q  will in 

general become arbitrarily small as p q increases. The additive terms in the above criteria serve, therefore, as penalties for 

large values, thus helping to prevent overfitting of the data by choosing p and q too large.  
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2.6.2 Estimation of Coefficients 

Suppose we fixed the order p and q of an ARMA (p,q)-process { }t tY 
,with 

1 nY ,…Y now modelling the data 1 ny ,…y In this 

step, we will use the maximum likelihood estimate of the parameter
1, , p  ,

1, , p  in the model. The method in deriving 

the maximum likelihood estimator of the parameters is discussed by Falk, et al. (2006).  

2.6.3 Diagnostic Check 

Brockwell and Davis (1991) summarized the Portmanteau-test of Box and Pierce (1970) which checks, whether estimated 

residuals ˆ , 1,...,t t n  , behave approximately like realizations from a white noise process. To this end he considers the 

pertaining empirical autocorrelation function. 

   1

2

ˆ ˆ( )( )

ˆ ( ) , 1,..., 1

ˆ( )

n k

j j k

j

j

r k k n

   

 







 

  







                                                            (6) 

Where 1

ˆ
n

j

j

n









, and checks, whether the values ˆ ( )r k

are sufficiently close to zero. This decision is based on  

    

1

ˆ( ) ( ),
K

k

Q K n r k


                                                  (7) 

Which follows asymptotically for na 
2 -distribution with K p q  degrees of freedom if ( )tY is actually an 

ARMA(p,q)-process. The parameter K must be chosen such that the sample size n k in ˆ ( )r k
 is large enough to give a stable 

estimate of the autocorrelation function. The ARMA(p,q) model is rejected if the p value 21 ( ( ))K p q Q K   is too small, 

since in the case the value ( )Q K is unexpectedly large. To accelerate the convergence to the 2

K p q  
distribution under the null 

hypothesis of an ARMA(p,q)-process, so we replace the Box-Pierce statistic ( )Q K by the Box-Ljung statistic (Ljung and Box 

(1978)) 

2
1/ 2

*

1 1

2 1
ˆ ˆ( ) ( ) ( 2) ( )

K K

k k

n
Q K n r k n n r k

n k n k
 

 

  
        
                                                              (8) 

 

2.6.4 Forecasting 

Cryer and Chan (2008) stated the minimum mean square error forecast based on the available history of the series up to time t , 

namely 
1 2 1, ,..., ,t tY Y Y Y

, which we would use to forecast the value of 
t lY 

that will occur l time the lead time for the forecast, 

and denote the forecast itself as ˆ ( )tY l is given by 

   
1 2

ˆ ( ) ( | , ,..., )t t l tY l E Y Y Y Y                                                 (9) 

The prediction limits is given as 
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2

1
ˆ ( ) ( ( ))t tY l z Var e l

                                                        (10) 

2.6.4.1 Root mean square error 

Since we aim at forecasting, we need a measure of the models’ adequacy. The root mean square error (RMSE) measures the 

actual deviation from the predicted value to the observed value. 

      21ˆ ˆ ˆ( ) ( ) ( ( ) ( ))
n

t t t t

l i

RMSE Y l MSE Y l Y l Y l
n 

                                                                   (11) 

3.0 Results and Discussion 

 

 

 

 

 

 

 

Fig.1: Time series plot of Monthly Food Inflation Rate. 

The time series plot of the monthly food inflation rate is shown in Figure 4.1 above. A critical study of the plot reveals that there 

is an upward increase over time from 2014-2018. The plot suggest presence of trend 

 

 

 

  

 

Fig. 2: The linear trend analysis plot for food inflation rate.  Fig. 3: The quadratic trend analysis plot for food inflation rate. 

 

  

 

 

 

                     Fig. 4: The growth curve trend analysis plot for food inflation rate 
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Table 2: Accuracy measures for the best trend curve                     

 

Source: Researcher’s computation 

Table 2 summarize the trend analysis in Fig 2,.3&4, the quadratic trend has the maximum R-squared and Adjusted R-squared; 

Since the quadratic curve explains about 61% of the variation, it is suitable trend curve for the given food inflation rates in 

Nigeria. The trend analysis plots above shows that the trend is significant which indicates there is presence of trend in the series. 

Therefore, suggesting that the series is not stationary. 

 

 

3.1 Selecting the appropraite model 
 

 

                                                                             

 

  

 

 

 

 

 

Fig.6: the differenced ACF of the food inflation rate                       Fig.7: the differenced PACF of the food inflation rate 

Inspecting the ACF and the PACF at the lags, k = 1,2,3…, it appears that the ACF cut off after lag 2 and the PACF shows a 

significant cut-off after lag 3. Based on Table 3.1, this result indicates that we should consider fitting a model with both p > 0 

and q>0 for the non-seasonal components. Hence, we will consider p = 2 and q=3. Thus, a tentative model obtainable from the 

ongoing preliminary analysis as shown from the ACF and PACF is a subset of ARIMA (3,1,3).We will consider fitting the eigth 

models suggested by these observations and computing the AIC& BIC for each. 

 

 

 

 

Trend R-squared Adjusted R-squared 

Linear 0.4951 0.4864 

Quadractic  0.6188 0.6054 

Exponential 0.5574 0.5497 
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Table 3: AIC BIC of the selected models 

  Source: Researcher’s computation 

Based on the least AIC and BIC, the ARIMA (1,1,2) model is the appropriate model that fit the food inflation rate in Nigeria.  

3.2 Estimated parameters of ARIMA(1,1,2) model 

Call: 

arima(x = TA, order = c(1, 1, 2), method = "ML") 

Coefficients: 

         ar1       ma1     ma2 

        0.6656  -0.2391  0.5310 

s.e.    0.1668   0.2141   0.1402   

sigma^2 estimated as 0.1233:  log likelihood = -22.68,  aic = 53.36 

Source: R output 

The fitted model for the food inflation rate is 
1 2 1 20.3344 0.6656 +0.2391 0.5310t t t t t ty y y           

 

 3.3 Diagnostic plot 
 

 

 

 

 

 

 

 

  

 

 

Model AIC BIC 

ARIMA(1,1,2) 53.36285 61.673 

ARIMA(1,1,3) 54.63788 65.02556 

ARIMA(2,1,1) 60.72058 69.03073 

ARIMA(2,1,2) 54.93042 65.3181 

ARIMA(2,1,3) 54.01048 66.4757 

ARIMA(3,1,1) 58.25763 68.64532 

ARIMA(3,1,2) 53.85925 66.32447 

ARIMA(3,1,3) 55.73835 70.28111 
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Fig.8: Diagnostics plots of the fitted model 

From the plot in fig.8 above, the ACF of the residuals shows no significant peaks at any given lag, indicating that the residuals 

of the model is stationary. The normal quantile plot above shows that almost all of the sample quantiles of the residuals falls in 

the same line with the theoretical quantiles which indicates that the residuals is normally distributed. Since the residuals is 

stationary and normally distributed, we conclude that the model selected is adequate. We also note, however, presence of a few 

outliers. 

3.4 Forecast 

 

 

 

 

                                   Fig.9: Forecasts and limits for the monthly food inflation rate 

Forecasts for the next 12 months and its limits are shown in fig. 9 and the values are given in table 4 below. From the plot in 

fig.9 above, we can deduce that the monthly food inflation rate is gradually increasing from the period of 2018-2019. 

Table 4: Forecasts for the year 2019 

Month Forecast Lower limit Upper limit 

Jan 13.6938 13.3432 14.0444 

Feb 14.0262 13.4160 14.6363 

Mar 14.2702 13.2763 15.2642 

Apr 14.4563 13.0663 15.8463 

May 14.6045 12.8354 16.3735 

Jun 14.7277 12.6042 16.8512 

Jul 14.8346 12.3819 17.2873 

Aug 14.9309 12.1726 17.6891 

Sep 15.0201 11.9774 18.0628 

Oct 15.1047 11.7961 18.4132 

Nov 15.1863 11.6282 18.7444 

Dec 15.2659 11.4724 19.0594 

 Source: Researcher’s computation 
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3.4.1 Root mean square error 

 Table 5: RMSE and SE of the forecast and actual of the year 2019 

 

 

 

 

 
Source: Researcher’s computation 

 

 

4 Conclusion 
The time series plot of the monthly food inflation rate in Fig. 1 reveals that there is a steady process between 2014 and 2017, 

then there is downward decrease over time from 2017-2018. The trend analysis plots above shows that the trend is significant 

which indicates there is presence of trend in the series. Therefore, suggesting that the series is not stationary. After Inspecting the 

ACF and the PACF, we consider that a tentative model obtainable is a subset of ARIMA (3,1,3). On the basis of the AIC& BIC, 

ARIMA(1,1,2)  is the model preferred for fitting the series. Finally, we compared the forecasts for the months of January, 

February, March, April and June  to the original values in 2019, and we got a RMSE of 2.999.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Month Forecast Actual value Square Error 

Jan 13.6938 11.37 5.4000 

Feb 14.02618 11.31 7.3776 

Mar 14.27021 11.25 9.1217 

Apr 14.45632 11.37 9.5254 

May 14.60446 11.4 10.2686 

Jun 14.7277 11.22 12.3040 

  RMSE   2.9999 
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