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ABSTRACT 

The applications of dynamic models AR, MA or ARMA to time series data are very common in 
time series analysis. In applying these models the stationarity condition of the dataset need to be 
considered, if the series is non-stationary then ARIMA model is applied for such series. This 
work therefore focuses on comparing the fitness and predictive ability of 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 models to investigate the 
stationarity, estimate the parameters, select the appropriate model of solar radiation and make 
forecasts for the two models using monthly solar radiation data. The data is well knows as an 
environmental data that are usually seasonal and sometime decays slowly to zero on the time 
plot. Hence, the need to consider 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 
models. From the literature 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝, 𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 
models are not been used to model solar radiation data. The data used in this study are monthly 
solar radiation data in Uyo, Akwa Ibom State of Nigeria for 32years (1989-2020), Port Harcourt, 
Ibadan and Sokoto for 5years (2011-2015), respectively. Akaike Information Criteria (AIC) is 
used to examining the goodness of fit between the two models and root mean square error 
(RMSE), mean square error (MSE), mean absolute percentage error (MAPE) and mean absolute 
error (MAE) are used to measure forecasts performance. 

 Results showed that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 model has a better goodness of fit than 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 model in all the cities considered. The forecasts performance 
measures prove that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝, 𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 model has better predictive ability in Uyo, Port 
Harcourt and Sokoto than 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 model with exception in Ibadan that 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 model outperformed 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 model.  

The forecasts performance of monthly solar radiation were obtained in Uyo, Port Harcourt and 
Sokoto using the performance toolswere made using 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12  model while 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄)12 models was better in Ibadan being a dataset that exhibit long 
memory. 

Key words: Solar Radiation, Seasonality, Long Memory, SARIMA, SARFIMA, Time Series, 
Prediction. 
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1.0 Introduction 

Autoregressive Integrated Moving Average (ARIMA) model and Autoregressive Fractionally 
Integrated Moving Average (ARFIMA) model are statistical tools for modeling economic, 
finance and environmental data. Just as we noticed that Therefore, time is an essential parameter 
when making plans, so it very important for engineers, geographers, agriculturists and water 
resource managers to consider time for factors (i.e. dry or rainy season) in their projects. 

 These data are sometime non stationary at levels, 𝑆𝑆(0); may require first order or 𝑑𝑑𝑡𝑡ℎ  
differencing (higher order 𝑆𝑆(𝑑𝑑) integration) for 𝑑𝑑 ≥ 1 to achieve the desired level of stationarity. 
The autocorrelation function that declines linearly to zero after 𝑆𝑆(1) or 𝑑𝑑𝑡𝑡ℎ  differencing is known 
as first order or  𝑑𝑑𝑡𝑡ℎ  integrated series while the autocorrelation function (ACF) declines 
exponentially to d=0 is the stationary 𝑆𝑆(0) series. In most cases, time series data exhibit neither 
of these characteristics but have dependencies between the intervals of their observation even 
after differencing. 

ARIMA model proposed by [1] has the capacity to models short range dependent data while long 
range dependence also known as fractionally integrated series of data, in this case 𝑑𝑑 is not an 
interger value (𝑑𝑑 < 1) integration can be modeled using ARFIMA model introduced by [2]. A 
series exhibiting fractionally integrated pattern is characterized with a stable average sequence of 
long swings. This is captured from ACF declining very slowly over time [3]. 

The fractional order model technique known as ARFIMA model is the generalization of ARIMA 
and autoregressive moving average (ARMA) models a conventional integer models. The 
extension of ARIMA model called Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model that supports univariate time series data with seasonal component [4]. Long 
memory time series dataset, especially high frequency trading data, hydrology and network 
traffic and so on are widely modeled using ARFIMA model. In fact, most of the time series data 
observations exhibit long memory, these behaviors lead to the development of methodologies 
that can estimate and predict the autocorrelation function decaying very slowly to zero. One of 
the best known classes of long memory models is ARFIMA model and its extension, Seasonal 
Autoregressive Fractionally Integrated Moving Average (SARFIMA) model that can take care of 
seasonal component was introduced by [5]. 

 [6]  test is used to investigate unit root test while [7]  test was developed for fractional integrated 
series because of its sensitivity to long memory. In general, ARFIMA estimators of 𝑑𝑑 are 
parametric and semi-parametric methods. Parametric method can estimate all the parameters 
simultaneously while the semi-parametric method estimate in two steps. 

Worldwide, time series analyses of solar radiation data are useful in predicting long term average 
performance of solar energy system [8]. There are several statistical models but the most 
important thing is to have the appropriate model for solar radiation data. The proposed models 
for the study of solar radiation data in this work are SARIMA and SARFIMA. 

The work is structured as follows:  Section 2, present the literature review of the related 
methodologies and the dataset applied in this paper which comes immediately after this 
introduction, Section 3 discusses the data and the method, Section 4 renders the results obtained 
and interpretation, Section 5 gives summary and conclusion. 
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2.0 Review of Relevant Literature 

ARIMA model to investigate cryptocurrency [9] exchange rate in high volatility environment. 
[10] showed the efficiency of the different methods used to test and estimate fractional parameter 
d in the fractionally integrated autoregressive moving average (ARFIMA) model. [11]  predict 
the incidence of hemorrhagic fever with renal syndrome (HFRS) in Weifang between January 1, 
2015 and December 31, 2018 using SARFIMA model and compared with SARIMA model. 

 A studied on exchange rate of UK pound/US dollar was conducted by [12] for a period January 
1971 to December 2008 using ARMA and ARFIMA models. [13], [14], [15] used both ARIMA 
and ARFIMA models in their research work.  

 [16]  studied RMB exchange rate by building a nonlinear combination model of the 
autoregressive fractionally integrated moving average (ARFIMA) model, the  support vector 
machine  (SVM). model, and back -propagation neural network (BPNN) model to forecast the 
RMB exchange rate. An investigation was also carried out by [17]  on the existence and non-
existence of long memory in the Nigerian and US inflation using some standard tests. 

The literature reviews related to solar energy can be found in [18], [19], [20], [21], [22], [23]. 

3.0 Data and Methodology 

The data used for this study are secondary data collected from meteorological center, Department 
of Geography and Regional Planning, University of Uyo, Uyo Akwa Ibom for Uyo as a monthly 
data series and Nigerian Meteorological Agency (NIMET) Oshodi Lagos for Port Harcourt, 
Ibadan and Sokoto as daily averages solar radiation data [24]. The data for Uyo span 32 year 
(1989-2020) and that of Port Harcourt, Ibadan and Sokoto spans 5 year (2011-2015). The 
measurement units for these data are in milliliters for Uyo and Port Harcourt, Ibadan and Sokoto 
in Watts per square meters (1ml to 13.153 W/m2).  It is used in this work as monthly solar 
radiation for all the cities. 

Methods 

SARIMA models are used to incorporate cyclic components in the modeling time series and it’s 
expressed as 

𝜙𝜙𝑝𝑝(𝐵𝐵)Φ𝑃𝑃(𝐵𝐵𝑠𝑠)(1 − 𝐵𝐵)𝑑𝑑(1− 𝐵𝐵𝑠𝑠)𝐷𝐷𝑋𝑋𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)Θ𝑄𝑄(𝐵𝐵𝑠𝑠)𝜀𝜀𝑡𝑡                    (1)    

Where 𝑑𝑑 and 𝐷𝐷 are, respectively, differencing and seasonal differencing parameters,  𝑠𝑠  is the 
seasonal period, 𝐵𝐵 is the lag operator, 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜙𝜙1𝐵𝐵 − 𝜙𝜙2𝐵𝐵2 −⋯− 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝 ,  

𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜃𝜃1𝐵𝐵 − 𝜃𝜃2𝐵𝐵2 −⋯− 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞 , Φ𝑃𝑃(𝐵𝐵𝑠𝑠) = 1 −Φ1𝐵𝐵𝑠𝑠 − Φ2𝑠𝑠𝐵𝐵2𝑠𝑠 − ⋯−Φ𝑃𝑃𝑠𝑠𝐵𝐵𝑃𝑃𝑠𝑠 and 
Θ𝑄𝑄(𝐵𝐵𝑠𝑠) = 1 − Θ𝑠𝑠𝐵𝐵𝑠𝑠 − Θ2𝑠𝑠𝐵𝐵2𝑠𝑠 − ⋯− Θ𝑄𝑄𝑠𝑠𝐵𝐵𝑄𝑄𝑠𝑠  are the polynomials of orders 𝑝𝑝, 𝑞𝑞,𝑃𝑃,𝑄𝑄, 
respectively and 𝜀𝜀𝑡𝑡  is the error term with zero mean and variance 𝜎𝜎𝜀𝜀2. 

SARFIMA model can be expressed as 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑, 𝑞𝑞) × (𝑃𝑃,𝐷𝐷,𝑄𝑄)𝑠𝑠, the general form is given 
in equation (1) above. These two models have the same expression but there are different in 
application, the differences lies on their differencing parameters. SARIMA model can only 
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works for integer values differencing while SARFIMA model is applicable to fractional 
integrated processes. 

Seasonal fractional integration can also be defined as 

𝑦𝑦𝑡𝑡 =  (1 − 𝐵𝐵𝑠𝑠)𝐷𝐷𝜀𝜀𝑡𝑡                                                                                 (2)    

The seasonal fractional difference operator (1 − 𝐵𝐵𝑠𝑠)𝐷𝐷  is a generalization of the binomial 
expression and can be written as, 

(1 − 𝐵𝐵𝑠𝑠)𝐷𝐷 = 1 − 𝐷𝐷𝐵𝐵𝑠𝑠 −
𝐷𝐷(1 − 𝐷𝐷)𝐵𝐵2𝑠𝑠

2!
−
𝐷𝐷(1 − 𝐷𝐷)(2 − 𝐷𝐷)𝐵𝐵3𝑠𝑠

3!
−⋯ 

Theorem 1: Suppose 𝜙𝜙𝑝𝑝(𝐵𝐵)Φ𝑃𝑃(𝐵𝐵𝑠𝑠) = 0 and  𝜃𝜃𝑞𝑞(𝐵𝐵)Θ𝑄𝑄(𝐵𝐵𝑠𝑠) = 0 in (1) have no common zeroes. 
Then, the following conditions hold: 

(i) The process 𝑋𝑋𝑡𝑡  is stationary if 𝑑𝑑 + 𝐷𝐷 < 0.5,𝐷𝐷 < 0.5 and  𝜙𝜙𝑝𝑝(𝐵𝐵)Φ𝑃𝑃(𝐵𝐵𝑠𝑠) ≠ 0, for 
|𝐵𝐵| ≤ 1. 

(ii) The stationary process 𝑋𝑋𝑡𝑡  has a long memory property if 0 < 𝑑𝑑 + 𝐷𝐷 < 0.5,0 < 𝐷𝐷 <
0.5 and  𝜙𝜙𝑝𝑝(𝐵𝐵)Φ𝑃𝑃(𝐵𝐵𝑆𝑆) ≠ 0, for  |𝐵𝐵| ≤ 1. 

(iii) The stationary process 𝑋𝑋𝑡𝑡  has an intermediate memory property if −0.5 < 𝑑𝑑 + 𝐷𝐷 <
0,−0.5 < 𝐷𝐷 < 0 and 𝜙𝜙𝑝𝑝(𝐵𝐵)Φ𝑃𝑃(𝐵𝐵𝑆𝑆) ≠ 0, for |𝐵𝐵| ≤ 1. 

(iv) The series; 𝑋𝑋𝑡𝑡  is non-stationary if 0.5 ≥ 𝑑𝑑 + 𝐷𝐷 < 1. 

Test Statistics 

In this research, augmented Dickey-Fuller (ADF) and Kwiatkowski, Phillips, Schmidt and Shin 
(KPSS) tests will be used to investigate linearity assumption on solar radiation data for unit root 
test and fractional integration. 

Augmented Dickey-Fuller has three regression equation models that can be used to test for the 
presence of unit root. There are: 

∆𝑋𝑋𝑡𝑡 = 𝛽𝛽𝑋𝑋𝑡𝑡−1 + 𝜀𝜀𝑡𝑡                                                                                           (3) 

∆𝑋𝑋𝑡𝑡 = 𝜇𝜇 + 𝛽𝛽𝑋𝑋𝑡𝑡−1 + 𝜀𝜀𝑡𝑡                                                                                   (4) 

∆𝑋𝑋𝑡𝑡 = 𝜇𝜇 + 𝛽𝛽𝑡𝑡 + 𝜀𝜀𝑡𝑡                                                                                           (5) 

Where 𝜇𝜇,𝛽𝛽 and 𝑏𝑏 are the intercept, the unit root parameter and the linear time trend parameter 
respectively. 

The null and alternative hypothesis are tested base on the 𝑡𝑡-statistic 

𝑡𝑡𝑆𝑆𝐷𝐷𝑆𝑆 =
∑ 𝜙𝜙�𝑖𝑖 − 1𝑝𝑝
𝑖𝑖=1

𝑠𝑠. 𝑒𝑒(∑ 𝜙𝜙�𝑖𝑖
𝑝𝑝
𝑖𝑖=1 )

=
�̂�𝛽

𝑠𝑠. 𝑒𝑒(�̂�𝛽)
 

Where  �̂�𝛽 is the estimate of 𝛽𝛽 in the ADF regressions model and 𝑠𝑠. 𝑒𝑒(�̂�𝛽) is the estimated standard 
error [25]. The above 𝑡𝑡-statistic is known as Augmented Dickey Fuller (ADF) unit root test 
statistic. This work tests for two regression models which are in equations (4) and (5), 
respectively. 
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 [3] popularized KPSS test, by [6]which was originally designed to test the null hypothesis 𝑆𝑆(0) 
against its alternative 𝑆𝑆(1). They conclude that the test can be used to distinguish between short 
and long memory stationary processes.  
The test residuals 𝜀𝜀𝑡𝑡  from a regression of  𝑋𝑋𝑡𝑡; on an intercept and time trend and forming the 
partial sum �̂�𝑆𝑡𝑡 = ∑ �̂�𝑒𝑡𝑡𝑁𝑁

𝑖𝑖=1  of the residuals. The long run variance formula 𝜎𝜎𝑁𝑁2(𝑞𝑞) [26] is computed 
as 𝜎𝜎𝑁𝑁2 = 𝑏𝑏0 + ∑ 𝑤𝑤𝑗𝑗

𝑞𝑞
𝑗𝑗=1 (𝑞𝑞)𝑏𝑏𝑗𝑗  with the conditions that 𝑏𝑏𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ  order sample autocavariance of 

𝑦𝑦𝑡𝑡  and 𝑤𝑤𝑗𝑗 (𝑞𝑞) are the Bartlett window weights given by 𝑤𝑤𝑗𝑗 (𝑞𝑞) = 1 − 𝑗𝑗 (𝑞𝑞 + 1)⁄  for 𝑞𝑞 < 𝑁𝑁. Then, 
the KPSS test is given as,  

𝐾𝐾𝑃𝑃𝑆𝑆𝑆𝑆 = 𝑁𝑁−2 ��̂�𝑆𝑛𝑛2 /𝜎𝜎�𝑁𝑁2(𝑞𝑞) 

Estimation of Fractional Difference Parameter 
Long memory parameter can be estimate in three major ways: namely; non-parametric method, 
semi-parametric method and parametric method. But we will only consider the semi-parametric 
and parametric methods. 

Semi-parametric Method 
Semi-parametric method of estimating 𝑑𝑑 in the frequency domain proposes by [25] and [26]. 
This method considers the power sprectrum of the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑝𝑝,𝑑𝑑, 𝑞𝑞) process, 𝑋𝑋𝑡𝑡  given as, 

𝑓𝑓𝑋𝑋(𝑤𝑤) = �1 − 𝑒𝑒−𝑖𝑖𝑤𝑤 �
−2𝑑𝑑

𝑓𝑓𝑧𝑧(𝑤𝑤)                                                                                          (6) 

Where 𝑓𝑓𝑋𝑋(𝑤𝑤) and 𝑓𝑓𝑧𝑧(𝑤𝑤) are the spectral densities of 𝑋𝑋𝑡𝑡  and 𝑋𝑋𝑧𝑧  respectively, can be 
simplified as; 

log[𝑓𝑓𝑋𝑋(𝑤𝑤)] = −𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[4𝑠𝑠𝑖𝑖𝑛𝑛2(𝑤𝑤 2⁄ )] + log[𝑓𝑓𝑧𝑧(𝑤𝑤)]                                       (7) 

log[𝑓𝑓𝑋𝑋(𝑤𝑤𝑡𝑡)] = log[𝑓𝑓𝑧𝑧(𝑤𝑤𝑡𝑡 = 0)] − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[4𝑠𝑠𝑖𝑖𝑛𝑛2(𝑤𝑤𝑡𝑡 2⁄ )]  
+ {log[𝑓𝑓𝑧𝑧(𝑤𝑤𝑡𝑡)] − log[𝑓𝑓𝑧𝑧(𝑤𝑤𝑡𝑡 = 0)]}                                                                                     (8) 

In forms of regression equation we have 

log[𝑓𝑓𝑋𝑋(𝑤𝑤𝑡𝑡)] = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡                                                                              (9) 

Where 𝛼𝛼 = log[𝑓𝑓𝑧𝑧(𝑤𝑤𝑡𝑡 = 0)],   𝑥𝑥𝑡𝑡 =  𝑑𝑑𝑑𝑑𝑑𝑑[4𝑠𝑠𝑖𝑖𝑛𝑛2(𝑤𝑤𝑡𝑡 2⁄ )],   −𝑑𝑑 = 𝛽𝛽 

𝜀𝜀𝑡𝑡 = {log[𝑓𝑓𝑧𝑧(𝑤𝑤𝑡𝑡)]− log[𝑓𝑓𝑧𝑧(𝑤𝑤𝑡𝑡 = 0)]} is the error in the model for 𝑡𝑡 = 1,2,⋯ ,𝑚𝑚 and 
𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜋𝜋

6
).  Therefore, we obtain the estimate of 𝑑𝑑 from the regression equation. 

 

Parametric Method 
Parametric method can be estimated using exact maximum likelihood (EML), nonlinear least 
squares (NLS) and modified profile likelihood (MPL) estimation methods. [27] recommend 
MPL or EML for small sample size. This work considered EML.  

According to the work of Sowell (1992), let 𝑋𝑋𝑡𝑡  be a sample of 𝑁𝑁 observation such that 𝑋𝑋𝑡𝑡 =
[𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑁𝑁]′ . We assume that 𝑋𝑋𝑡𝑡  is a stationary normally distributed fractionally integrated 
time series. Then, 𝑋𝑋𝑡𝑡~ 𝑁𝑁(𝑋𝑋𝛽𝛽, Σ)  
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 Σ =      � 

𝛾𝛾0 𝛾𝛾1 ⋯ 𝛾𝛾𝑁𝑁−1
𝛾𝛾1 𝛾𝛾0 ⋯ 𝛾𝛾𝑁𝑁−2
⋮ ⋮ ⋱ ⋮

𝛾𝛾𝑁𝑁−1 ⋯ 𝛾𝛾1 𝛾𝛾0

� 

Where, Σ is the covariance matrix and 𝛾𝛾𝑘𝑘  is the auto-covariance function. 

Let 𝑍𝑍𝑁𝑁 = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡′ 𝛽𝛽, then 𝑍𝑍𝑁𝑁 = [𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧]′~𝑁𝑁(0, Σ) with the probability density function. 

𝑓𝑓(𝑍𝑍𝑁𝑁 , Σ) = (2𝜋𝜋)
−𝑁𝑁

2 |Σ|
−1
2 exp �−

1
2
𝑍𝑍𝑁𝑁′ Σ−1𝑍𝑍𝑁𝑁�                                  (10) 

Taking the log likelihood function of equation (10), we have 

lnL(𝑑𝑑,𝜙𝜙,𝜃𝜃,𝛽𝛽,𝜎𝜎2) = 𝑓𝑓(𝑍𝑍𝑁𝑁 , Σ) = −𝑁𝑁
2

ln(2𝜋𝜋) − 1
2

ln|Σ| − 1
2
𝑍𝑍𝑁𝑁′ Σ−1𝑍𝑍𝑁𝑁  

Let Σ = 𝜎𝜎2𝑆𝑆, then, the log likelihood function become 

lnL(𝑑𝑑,𝜙𝜙,𝜃𝜃,𝛽𝛽,𝜎𝜎2) = −
𝑁𝑁
2

ln(2𝜋𝜋) −
1
2

ln|𝑆𝑆| −
𝑁𝑁
2

ln(𝜎𝜎2) −
1

2𝜎𝜎2 𝑍𝑍𝑁𝑁
′ R−1𝑍𝑍𝑁𝑁                  (11) 

Differentiating with respect to 𝜎𝜎2, we have 

∂ln
𝐿𝐿
𝜕𝜕𝜎𝜎2 = −

𝑁𝑁
2𝜎𝜎2 +

1
2𝜎𝜎4 𝑍𝑍𝑁𝑁

′ R−1𝑍𝑍𝑁𝑁 

𝜎𝜎�2 = 𝑁𝑁−1𝑍𝑍𝑁𝑁′ R−1𝑍𝑍𝑁𝑁                                                                          (12) 

Then, the concentrated likelihood function is 

𝑑𝑑𝑐𝑐(𝑑𝑑,𝜙𝜙,𝜃𝜃,𝛽𝛽) = −
𝑁𝑁
2

ln(2𝜋𝜋) −
𝑁𝑁
2
−

1
2

ln|𝑆𝑆| −
𝑁𝑁
2

ln[𝑁𝑁−1 𝑍𝑍𝑁𝑁′ R−1𝑍𝑍𝑁𝑁  ]           (13) 

Differentiating with respect to 𝛽𝛽, gives 

�̂�𝛽 = (𝑋𝑋′𝑆𝑆−1𝑋𝑋)−1𝑋𝑋′𝑆𝑆𝑋𝑋𝑁𝑁                                                                         (14) 

𝑑𝑑𝑐𝑐(𝑑𝑑,𝜙𝜙,𝜃𝜃) = −
𝑁𝑁
2

(1 + ln(2𝜋𝜋)) −
1
2

ln|𝑆𝑆| −
𝑁𝑁
2

ln[𝑁𝑁−1 𝑍𝑍𝑁𝑁′ R−1�̂�𝑍𝑁𝑁  ]           (15) 

Where, �̂�𝑍𝑁𝑁 = 𝑋𝑋𝑡𝑡 − 𝑋𝑋�̂�𝛽, the function used in maximization method is 

−
1
2

ln|𝑆𝑆| −
𝑁𝑁
2

ln�
�̂�𝑍𝑁𝑁′ − 𝑆𝑆−1�̂�𝑍𝑁𝑁

𝑁𝑁
� 

This function maximized with respect to the elements of 𝑆𝑆, which included 𝑑𝑑, 𝜙𝜙𝑃𝑃(𝐵𝐵) and 𝜃𝜃𝑞𝑞(𝐵𝐵). 

Where, 𝑑𝑑 is the fractional differenced parameter, the parameters of the autoregressive 
polynomial 𝜙𝜙𝑃𝑃(𝐵𝐵) and the moving average polynomial  𝜃𝜃𝑞𝑞(𝐵𝐵). 

4. Results and Interpretation 

The summary of statistics of solar radiation data is given in table 1 
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Table 1:  Descriptive Statistics 

Statistics Uyo Port Harcourt Ibadan Sokoto 
Mean 10.6115 153.2911 142.2442 235.0097 
Median 10.7000 156.3593 151.9150 237.9562 
Maximum 17.0000 231.9561 186.7699 308.7152 
Minimum 5.9000 101.6585 73.27386 158.5125 
Standard Deviation 1.8225 29.8410 29.76073 34.08001 
Skewness -0.0031 -0.0475 -0.585432 -0.4401 
Kurtosis 3.1868 2.3739 2.194653 2.8863 
Jarque-Bera 0.5591 1.0026 5.048767 1.9695 
Probability 0.7561 0.6058 0.080108 0.3735 
Observations 384 60 60 60 

 

From table 1, the average monthly solar radiation data in Uyo, Port Harcourt is about 10.6%. The 
series are normally distributed for Uyo and Port Harcourt as indicated by the high  p-value and 
also their  Jarque-Bera test  values are low. 

Time Plot  
 

 

Figure 1: Time Plots of Solar Radiation in four metropolises 

The time plots  of the original data series (Solar Radiation) for Uyo, Port Harcourt, Ibadan and 
Sokoto are in figure 1. These  plots shows the indication of seasonal variation and non stationary 
in the series since there is a systematic change in the mean and variance.  Also, some spikes in 
the plotted series in Uyo  gives indication of outliers. Hence, we carried out confirmatory test by 
ploting the ACF and PACF of the series. 
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Figure 2: ACF and PACF plots of original series 

By visual inspection, ACF plots in figure 2 shows a strong correlation at 𝑠𝑠, 2𝑠𝑠, 3𝑠𝑠,⋯, lags where 
𝑠𝑠 = 12;  indicating monthly seasonal variation in the series. The ACF original series are 
observed to be non-stationary as the spikes decay at a regular pattern  and PACF plot are highly 
significant at lag 1. The ACF plots of solar radiation rata exhibits a slow decay at the seasonal 
lags which is the behaviour of the seasonal fractionally differenced process. The time series data 
must undergo transformation to attain stationarity, in order to identify the model for the data.  

 

 

Figure 3: ACF and PACF plot of seasonal differenced series for solar radiation 

Fractional and Unit Root Test 

The test of stationarity of solar radiation data are done using Augmented Dickey Fuller (ADF) 
test and KPSS (Kwiatkowski, Phillips, Schmidt and Shin) test for integer and non-integer 
difference values, respectively. 

The ADF test statistic tests the null hypothesis that the series has a unit root against the 
alternative of no unit root (stationary). The decision rule is to reject the null hypothesis when the 
p-value is less than or equal to 0.05.  

The KPSS test statistic tests the null hypothesis of stationarity against the alternative that the 
series has a unit root and to accept the null hypothesis when the test statistic value is less than the 
critical value. 
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 Table 2: Fractional and Unit Root test of Solar Radiation Data 

City Test ADF KPSS 
Intercept Intercept and Trend 

 
Uyo 

Test Statistic -2.406388 -2.958546 0.135396 
Critical values: 1% 
                          5% 
                        10%   

-3.447770 
-2.869113 
-2.570871 

(0.1406*) 
 
 

-3.982988 
-3.421983 
-3.133816 

(0.1455*) 0.216000 
0.146000 
0.119000 

 
PH 

Test Statistic -5.495229 -5.364107 0.068295 
Critical values: 1% 
                          5% 
                        10%   

-3.555023 
-2.915522 
-2.595565 

(< 0.01*) 
 
 

-4.133834 
-3.493692 
-3.175693 

(0.0003*) 0.739000 
0.463000 
0.347000 

 
Ibadan 

Test Statistic -0.824709  -1.981252 0.034692 
Critical values: 1% 
                          5% 
                        10%   

-3.57446 
-2.923780 
-2.5999 

(0.8030*) 
 
 

-4.156734 
-3.504330 
-3.181826 

(0.5968*) 0.739000 
0.363000 
0.347000 

 
Sokoto 

Test Statistic -3.576119 -4.612533 0.036787 
Critical values: 1% 
                          5% 
                        10%   

-3.546099 
-2.911730 
-2.59355 

(0.0092*) 
 
 

-4.148465 
-3.500495 
-3.179617 

(0.0027*) 0.216000 
0.146000 
0.119000 

 

From Table 2, using ADF test  for Uyo and Ibadan, we fail to reject the null hypothesis  that the  
monthly solar radiation  series has a unit root base on p-value  decision.  Hence, the series 
required first order difference to obtain stationarity.  According to the KPSS test for monthly 
solar radiation, the results revealed that the time series is neither I(1) nor I(0) since it is 
significant at 10% while in Ibadan the test accept the null hypothesis. 

For PH and Sokoto data sets, we reject null hypothesis  in ADF test while accepting KPSS test 
that monthly solar radiation data is stationary at level. Further tests are required to assume the 
order of differentiation.  

Test and Estimation of order of Integration 

Semi-parametric estimator proposed by [26] was applied with (GPH). algorithm The application 
of this test on the series allows us to test the null hypothesis of a unit root (𝑑𝑑 = 1) against the 
alternative of fraction integration (𝑑𝑑 < 1). The GPH estimator is based on the regression 
equation  using the periodogram function as an estimate of the spectral density. The value of 
fractional differencing parameter can be adjusted using the bandwidth parameter. In this work, 
we used default bandwidth of 0.5 and the estimated fractional parameter results are given in 
Table 3. 

Table 3:  Results of GPH estimate for d parameter 

Estimate Uyo PH Ibadan Sokoto 
�̂�𝑑 
sd.as 
sd.reg 

0.6275326 
0.1874373 
0.1325419 

-0.04795349 
0.3863428 
0.6116229 

-0.1625215 
0.3863428 
0.8034448 

0.4220138 
0.3863428 
0.3840207 
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In Table 3, 𝑑𝑑 is GPH estimate, Sd.as is the asymptotic standard deviation and Sd.reg is the 
standard error deviation. The value of the differenced parameter 𝑑𝑑 is 0.6275 > 0.5,  is indication 
of non stationarity long memory in the series of Uyo data, PH and Ibadan data have intermediate 
memory properties because 𝑑𝑑 is < 0; and Sokoto fractional differenced parameter is 0.4220 
which is stationary long memory property (that is 0 < 𝑑𝑑 < 0.5). 

Based on that result in Table 2, we applied differencing  to Uyo and Ibadan series. The 
differenced test  results  are given in Table 4.   

Table  4:  Fractional and Unit Root test of  Solar Radiation for Differenced Series 

City Test ADF KPSS 
Intercept Intercept and Trend 

 
Uyo 

Test Statistic -15.02449 -15.00591 0.108747 
Critical values: 1% 
                           5% 
                         10%   

-3.447770 
-2.869113 
-2.570871 

(<0.01*) 
 
 

-3.982988 
-3.421983 
-3.133816 

(<0.01*) 0.216000 
0.146000 
0.119000 

 
Ibadan 

Test Statistic -6.561011 -7.340125 0.037755 
Critical values: 1% 
                          5% 
                         10%   

-3.57446 
-2.923780 
-2.5999 

(<0.01*) 
 
 

-4.161144 
-3.506374 
-3.183002 

(<0.01*) 0.739000 
0.363000 
0.347000 

 

From table 4, ADF test accept the alternative hypothesis that the series is stationary and the 
KPSS agree with the null hypothesis. Also, there is a needs to carry out fractional seasonal 
differencing in all the city. 

 

Figure 4: ACF and PACF plots of fractional seasonal differenced 

Construction of the SARIMA model 

In this paper, we estimate the parameters of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 model using maximum likelihood 
estimation procedure. We judge the best model base on AIC value. 

 Table 5:  The results for the estimated  𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 Models in the four Cities 

City Model AIC Log Likelihood 
Uyo 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1,1)(0,1,1)12  1210.96 -601.48 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1,1)(0,1,2)12  1210.29* -600.15 

0 5 15 25

-1
.0

0.
0

1.
0

Lag

AC
F

ACF Plot of 

5 15 25

-0
.8

-0
.2

Lag

Pa
rti

al 
AC

F

ACF Plot o  

0 5 10 15

-1
.0

0.
0

1.
0

Lag

AC
F

ACF Plot of 

5 10 15

-0
.8

-0
.2

Lag

Pa
rti

al 
AC

F

ACF Plot o  

0 5 10 15

-0
.5

0.
5

Lag

AC
F

ACF Plot of 

5 10 15

-0
.8

-0
.2

0.
2

Lag

Pa
rti

al 
AC

F

ACF Plot o  

0 5 10 15

-1
.0

0.
0

1.
0

Lag

AC
F

ACF Plot of 

5 10 15

-0
.8

-0
.2

Lag

Pa
rti

al 
AC

F

ACF Plot o  

GSJ: Volume 10, Issue 8, August 2022 
ISSN 2320-9186 1470

GSJ© 2022 
www.globalscientificjournal.com



11 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(0,1,1)(0,1,1)12  1217.3 -605.65 
PH 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,1)(0,1,1)12  412.88 -202.44 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,2)(0,1,1)12  414.70 -202.35 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,0)(0,1,1)12  411.57* -202.78 

Ibadan 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1,1)(1,1,0)12  375.68* -183.84 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(0,1,1)(1,1,0)12  377.12 -185.56 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1,1)(2,1,0)12  377.15 -183.58 

Sokoto 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,1)(0,1,1)12  440.43* -216.21 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,2)(0,1,1)12  442.25 -216.12 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,0)(0,1,1)12  440.62 -217.31 

Table 5 above shows the results of the estimated models of SARIMA,  the model with the 
minimum AIC value is indicated by asterisk and it is considered to be the best model for monthly 
solar radiation series in the respected Cities. The estimated parameters of those models are given 
in table 6. 

Table 6:  Estimate of Parameters of of SARIMA Models for the series. 
City Models Parameter ar1 ma1 sma1 sma2 
Uyo SARIMA(1,1,1)(0,1,2)12 Estimate 0.1680 -0.9423 -0.8652 -0.0883 

s.e. 0.0566 0.0227 0.0616 0.0549 
PH 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,0)(0,1,1)12 Estimate 0.5226  -0.9996  

s.e. 0.1368  0.3470  
Ibadan 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1,1)(1,1,0)12 Estimate 0.3238 -0.8963 -0.4693  

s.e. 0.1705 0.0865 0.1496  
Sokoto 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,1)(0,1,1)12 Estimate 0.8601 -0.4561 -0.6060  

s.e. 0.1622 0.2638 0.2919  
  

Construction of the SARFIMA model 

In SARFIMA model, the order (𝑝𝑝, 𝑑𝑑, 𝑞𝑞) and the seasonal components (𝑃𝑃,𝐷𝐷,𝑄𝑄) are specified 
same as the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 above. Unfortunately, the method of estimation we used to estimate the 
order of fractional differencing cannot estimate all parameters in the model simultaneously, and 
we cannot identify the parameter 𝑑𝑑 and 𝐷𝐷 when using GPH estimation method. Therefore, we 
used exact maximum likelihood estimator to estimate 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 model.  

This method estimates the memory parameter and the parameters of the appropriate 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
Model orders simultaneously. In this work, we choose the best model based on Akaike 
Information Criterion (AIC). The results are shown in Table 7 and the parameters estimate for 
the adequate models in table 8 

Table  7: Estimate of Parameters of of SARFIMA Models for the series. 

City Model AIC Log Likelihood 

Uyo 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0.1117,0)(0,0.4560,2)12  166.824* -76.4122 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(0,0.0758,1)(1,0.3519,1)12  179.519 -83.7594 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(0,0.1364,1)(0,0.4580,2)12  167.354 -76.6772 

PH 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.3975,1)(0,0.3988,1)12  355.763 -169.881 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.4685,2)(0,0.3910,1)12  354.458 -169.229 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.2316,2)(1,0.4033,1)12  352.429* -17.214 

Ibadan 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0.1137,1)(1,0.4657,0)12  316.598 -151.299 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.0588,1)(1,0.4491,0)12   315.305   -151.653 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.8637,1)(2,0.4720,0)12  314.263* -149.132 
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Sokoto 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.4374,1)(0,0.3868,1)12  382.695 -184.347 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.5304,2)(0,0.3843,1)12  384.507 -184.253 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.3688,2)(1,0.3519,1)12  380.743* -184.372 

 

Table 8: Estimated Parameters of SARFIMA models for the series 

City Model   Parameter Estimate  Std. Error  z-value   Pr(>|z|)     

Uyo   𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝟏𝟏,𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏,𝟎𝟎)(𝟎𝟎,𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒𝟎𝟎,𝟐𝟐)𝟏𝟏𝟐𝟐 

phi(1)        0.1346702   0.0891628     1.51039   0.130945     
theta.12(1)   0.2984788  0.0686513      4.34775  1.3754e-05 *** 
theta.12(2)  0.1247637   0.0571489      2.18313    0.029026 *   
d.f          0.1116659   0.0674833       1.65472    0.097982 .   
d.f.12       0.4559956   0.0222194      20.52245  < 2.22e-16 *** 
zbar         10.6114583           
AIC  166.824    
Log  
Likelihood 

 -76.4122    

𝜎𝜎2 1.41906    

PH   𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝟏𝟏,−𝟎𝟎.𝟐𝟐𝟐𝟐𝟏𝟏𝟒𝟒,𝟎𝟎)(𝟎𝟎,𝟎𝟎.𝟒𝟒𝟎𝟎𝟐𝟐𝟐𝟐,𝟏𝟏)𝟏𝟏𝟐𝟐 

phi(1)     0.757209   0.136492  5.54765 2.8953e-08 *** 
theta.12(1)    0.000000         NA       NA         NA     
d.f        -0.231608   0.192406      -1.20375    0.22869     
d.f.12       0.403324   0.039950     10.09572 < 2.22e-16 *** 
zbar         153.291083        
AIC 352.429    
Log  
Likelihood 

-170.214    

𝜎𝜎2 254.446    

Ibadan 

 phi(1)       0.9277675   0.0890505      10.41844 < 2.22e-16 *** 
 theta(1)   -0.6459958   0.1750143  -3.69110  0.00022328 *** 
 phi.12(1)   -0.2861464   0.1897894      -1.50771  0.13163002     
 phi.12(2)   -0.0284297    0.2186778     -0.13001 0.89656080     

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝟏𝟏,−𝟎𝟎.𝟖𝟖𝟒𝟒𝟐𝟐𝟏𝟏,𝟏𝟏)(𝟐𝟐,𝟎𝟎.𝟒𝟒𝟏𝟏𝟐𝟐𝟎𝟎,𝟎𝟎)𝟏𝟏𝟐𝟐 d.f        -0.8636865     0.2164948     -3.98941  6.6238e-05 *** 
 d.f.12      0.4719875     0.0214476     22.00653  < 2.22e-16 *** 
 zbar      142.2441710        
 AIC 314.263    
 Log  

Likelihood 
-149.132    

  𝜎𝜎2 108.351    

Sokoto   𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝟏𝟏,−𝟎𝟎.𝟐𝟐𝟒𝟒𝟖𝟖𝟖𝟖,𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟐𝟐𝟖𝟖𝟖𝟖𝟎𝟎,𝟏𝟏)𝟏𝟏𝟐𝟐 
 

phi(1)      0.8795555   0.1219016     7.21529 5.3819e-13 *** 
theta.12(1)   0.0000000          NA        
d.f          -0.3687582   0.2147790  -1.71692   0.085994  .   
d.f.12        0.3879681    0.0458476      8.46213  < 2.22e-16 *** 
zbar       235.0096517        
AIC 380.743    
Log  
Likelihood 

-184.372    

𝜎𝜎2 418.582    

 

 

Comparison between 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 and 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 models performance 

According to table 9 below, SARFIMA model failed to produce better forecast estimates 
compared to SARIMA indicated by the high values of MSE, RMSE, MAE and MAPE for the 
cities of Uyo, PH and Sokoto. In Ibadan SARFIMA model has a better forecast estimate than 
SARIMA model. The smaller the estimated error value, the better the forecasting performance of 
the model.  

Table 9: Forecast performance measures for 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 model and 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 model.  

City Model MSE RMSE MAE MAPE 
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Uyo 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1,1)(0,1,2)12  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0.1117,0)(0,0.4560,2)12  

1.3287 
1.4006 

1.1527 
1.1853  

0.8510 
0.8940 

8.15634 
8.6939 

PH 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,1)(0,1,1)12  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.2316,0)(0,0.4033,1)12  

145.4653 
237.0938 

12.0609 
15.3979 

8.9849 
12.6610 

5.9344 
8.3903 

Ibadan 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1,1)(1,1,0)12    
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.8637,1)(2,0.4720,0)12  

104.5883 
97.51615 

10.2266  
9.8750 

7.7164 
7.6418     

5.7821 
5.6207 

Sokoto 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,1)(0,1,1)12   
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,−0.3688,0)(0,0.3880,1)12  

339.4733 
390.6763 

18.4248 
19.7655 

13.5063 
16.1129 

5.6704 
10.8752 

 
 

Conclusion  
This work studies and analyze the nature of monthly solar radiation in four metropolises in 
Nigeria using SARIMA and SARFIMA processes. 

Examining the two models from their AIC values, which are 1210.29, 411.57, 375.68 and 440.43 
in SARIMA models while SARFIMA models have 165.492, 352.429, 314.263 and 380.743 for 
Uyo, PH, Ibadan and Sokoto, respectively. We observed that SARFIMA models have the least 
values of AIC for solar radiation compare to SARIMA models in all the cities. In terms of 
forecast, performance measures: MSE, RMSE, MAE and MAPE results show that SARIMA 
models have the minimum error values in Uyo, PH and Sokoto while SARFIMA model is better 
for the analysis solar radiation in Ibadan. 

Judging from the AIC values of the two appropriate models, we can conclude that SARFIMA 
was best model for analyzing solar radiation in the four metropolises except in Ibadan. Even 
though the forecasts SARFIMA models was adjudge to be better that SARIMA in three of the 
four series, the forecast performance is poor  except in Ibadan where long memory was 
exhibited. 

It should also be noticed that good and best fit models may not yield good forecast values for the 
future. 
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