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Abstract 
The research conducted the designing and execution of experiments and analysis of the 
heuristic experimental data for performance comparison. The research also evaluated the 
significance of the normality assumption in heuristic data analysis for performance 
comparison. The research chose a static way of defining the information in order to 
collect accurate and reliable data during the experiments. The heuristic algorithms 
terminated naturally after satisfying certain conditions. A simulated twenty-four 
Zimbabwe major cities problem (s24z instance) was used to determine the performance 
of the Simulated Annealing (SA) and its modified variant (MSA), Genetic Algorithm 
(GA), Ant Colony (AC), Tabu Search (TS) and its modified variant (MTS), Lin 
Kernighan Heuristic (LKH) and Neural Network Algorithm (NNA). The research 
established that the normality assumption is irrelevant in statistical heuristic data analysis 
for performance comparison. A number of statistical tools and procedures were identified 
and applied to analyse the heuristic data and these include Ryan-Joiner Test, Sample 
Kolmogorov–Sminorv Test, Box Plot, mean, median, mode, standard deviation, kurtosis, 
skewness, percentiles (worst and best fits), standard error of the mean and percentage 
deviations. All the statistical tools and procedures successfully detected the performance 
of the heuristics for comparison. The modified Tabu Search (MTS) algorithm was found 
to be the best heuristic among all the compared heuristic algorithms. The research 
proposed a framework for analysing heuristic data for performance comparison.  
 
Keywords: Statistical Tools and Procedures, Heuristics Performance Comparison, 

Normality Assumption, Travelling Salesperson Problem, Metaheuristics 
JEL Classification: C6, C61 
 
1.0 Introduction 
This article deals with the design and execution of heuristic experiments and application 
of statistical tools and procedures to analyse different heuristic experimental results for 
performance comparison. Murairwa (2020) stated that the use of the real-life heuristic 
TSP problems should be preferred instead of the simulated TSP instances so as to tell the 
full story about the real-world performance of the heuristics. The use of more real life 
TSP problems creates opportunities for addressing the real life business challenges that 
most leaders are currently facing in the existing Disruptive Volatile, Uncertain, Complex 
and Ambiguous (DVUCA) world. The testing of normality assumption in heuristic 
statistical data analysis particularly for performance comparison is unpopular with all 
generation researchers. According to Murairwa and Nazri (2010), the standard normal 
distribution is hard to find in real life and the matrix instances are not population as 
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evidenced by the number of implementation in literature. On the other hand, there is 
limited use of statistical tools and procedures to analyse heuristic data for performance 
comparison as supported by Barr et al’s (2001) assertion that the area was neglected. The 
objectives of the research were to evaluate the relevance of the normality assumption and 
explore the significance of the statistical tools and procedures in analysing heuristics data 
for comparison to solve a simulated twenty-four Zimbabwe’s major cities problem (s24z 
instance). 
 
1.1 Simulated Twenty-Four Zimbabwe Cities Problem (s24z Instance) 
Let the twenty-four Zimbabwe cities be located at A(738; 667), B(860; 222), C(942; 
466), D(617; 482), E(880; 566), F(810; 475), G(732; 314), H(725; 418), I(980; 306), 
J(640; 145), K(714; 174), L(875; 298), M(989; 452), N(879; 171), O(937; 231), P(552; 
512), Q(723; 370), R(926; 334), S(833; 268), T(743; 496), U(758; 224), V(971; 379), 
W(372; 280) and X(644; 104) coordinates (x; y). Given a set (c1, c2, ………., c24) of the 
Zimbabwe cities and for each pair (ci, cj) of the distinct cities, there is a distance d(ci, cj). 
The matrix distances satisfy the condition that d(ci, cj) = d(cj, ci) for 1 ≤ i, j ≤ 24 as 
proved by Alba (2005) and Aarts and Lenstra (1997). The goal is to compare the 
performance of heuristics on determining an ordinary π of the cities that minimises the 
distance quantity: 
 

�d�cπ(i), cπ(i+1)�
23

i=1

+  d�cπ(24), cπ(1)�, … … … … … … … … … … … … … … … … … … … … . (1) 

 
2.0 Literature Review  
The research assumes that 𝑑𝑑�𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 � is the length of the shortest path between city i and 
city j, not the length of the shortest physical route that avoids all other cities, triangle 
inequality and normality assumption holds. Alba (2005) stated that most studies assume 
normality for data sets of more than 30 or 50 values (an assumption that is formally 
grounded). Chiarandini, Paquete, Preuss and Ridge (2007) argued that if the distribution 
of the data is unknown, that does not rule out the use of parametric statistics. Chiarandini, 
Paquete, Preuss and Ridge (2007) went on further to recommend the use of data 
transformation techniques (such as logarithm, inverse and square root) to make the data 
to meet the normality assumption.   
 
The Binary Cat Swarm Optimization Algorithm (Villa & Castillo, 2020) had the lowest 
error in all the comparison experiments conducted. Chiarandini, Paquete, Preuss and 
Ridge (2007) stated that more advanced topics of statistics have been used to analyse and 
compare metaheuristics such as regression trees, Design of Experiments (DOE) and 
sequential testing through fine-tuning algorithms. According to Sze and Tiong (2007), the 
researchers can study the performance of the heuristics by increasing the number of the 
cities while all other conditions are unchanged. This approach measures the capability of 
each of the heuristic to handle large combinatorial optimisation problem. According to 
Murairwa (2020), the statistical comparison of the performance of the heuristics can be 
done at four levels, namely, performance differences, quality of feasible solutions, time 
utilisation statistics and performance reliability. Murairwa (2020) successfully 
implemented statistical experimental design to understand and assess heuristic 
performances and found the metaheuristics to be dominant among all the heuristics 
compared. Under the multivariate model, Chiarandini, Paquete, Preuss and Ridge (2007) 
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and Johnson (2002) preferred to compare the solution distance and CPU-time of the 
heuristics.  
 
3.0 Methodology 
The research conducted experiments for selected heuristics to solve the simulated twenty-
four Zimbabwe cities problem (s24z instance) that was obtained from Zimbabwe 
National Statistical Agency (ZimStat). There are several possible ways of defining 
heuristic information or parameters and this was a key component since the research was 
comparing the performance of different heuristics using a single TSP instance. Therefore, 
in order not to compromise the performance of the heuristics, the research selected a 
static way of defining the information. To collect adequate data for the comparative 
analysis, the research sets up experiments and performed 100 independent runs of each of 
the selected heuristics. The experimental data recording table (EDRT) (Murairwa, 2020; 
2010) was used to collect the heuristics’ longitudinal repeated performance data. 
According to Alba (2005), 30 independent runs are usually regarded as a minimum 
number of runs in heuristic experiments. The best fit and its CPU time at termination of 
each run was recorded. Therefore, the multivariate methodology was selected as the 
appropriate technique to analyse the heuristic data. The performance of the heuristics was 
evaluated at three levels; the worst case, probabilistic (average case) and empirical 
analysis. The research applied Chiarandini, Paquete, Preuss and Ridge’s (2007) two 
specific scenarios under the multivariate model, namely, the study of solution distance 
and CPU-time when a certain termination criterion is reached, that is, the heuristics 
terminated naturally when certain termination conditions were met.  
  
3.1 Heuristics parameter tuning 
The study selected the best combination of parameters of each heuristic for the 
experiment. Dorigo, et al. (2004) acknowledged after carrying out an experiment that the 
combination of the parameters of the heuristic influences the performance of the 
heuristic.  However, the availability of better heuristics parameter combinations than 
those used in this research could not be ruled out since the field is broad with many 
scholars and/or researchers continuing to discover new heuristic parameter combinations. 
The three major combinatorial optimisation categories used are constructive and 
improving heuristics, meta-heuristics/composite and hybrid meta-heuristics. The 
heuristics parameter combinations used during the experiments are presented henceforth. 
 
• The Simulated Annealing (SA) used the 2-Opt method (Croes, 1958), 0.999 

temperature reduction factor; starting temperature of 20 and 10 good swaps (inter 
loop break) at each temperature. The modified Simulated Annealing (MSA) was also 
applied to solve the s24z instance. Each run terminated after 1000 iterations without 
change to the current best fit.  

• The Genetic Algorithm (GA) population size was fixed at 24 with 0.30 and 0.70 as the 
probability of mutation and recombination respectively and the methods used were 
inversion for the mutation and partially matched for recombination. The GA 
terminated after 1000 generations without change to the current best fit. 

• The Ant Colony (AC) was configured to run for a maximum of 5000 iterations with 1 
and 0.5 pheromone trail (additive constant) and persistence respectively. Pheromone 
visibility sensitivity (number of ants) was configured at 5. These parameters were 
discovered to be the best (Dorigo, Maniezzo, & Colorni, 1996). Each run of AC 
terminated after 1000 iterations without change to the current best fit.  
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• The Tabu Search (TS) uses dynamic neighbourhood search strategy to move from a 
solution i to a solution j in the neighbourhood of i {N*(i)} until the stopping criterion 
is realised (Glover, 1990a; 1989). A Modified Tabu Search (MTS) was also applied to 
solve the s24z instance. Each run of the TS terminated after 1000 iterations without 
change to the current best fit.  

• The Nearest Neighbour Algorithm (NNA) constructs an ordering cπ(1), cπ(2), . ., 
cπ(N) of the cities, with the initial city cπ(1) selected arbitrarily and in general 
cπ(i+1) selected to be the city ck that minimises {d(cπ(i), ck): k ≠ π( j), 1 ≤ j ≤ i}. The 
corresponding tour traverses the cities in the constructed order, returning to cπ(1) 
after visiting city cπ(N) searching when all nodes are on the tour (Hahsler & Hornik, 
2009; 2007) or after returning to city (cπ(1)) after visiting city (cπ(N)) for TSP 
(Dorigo & Stutzle, 2004; Johnson & McGeoch, 2002; Johnson, et al., 2002). 

• The Local Search (LS) applies the edge exchange technique and that is generally 
known as the λ-Opt procedures, where λ is the number of edges to be exchanged in 
each of the iterations by another λ edges (Hwang, Alidaee, & Johnson, 1999). The 
research applied the 2-Opt that was configured to terminate after considering all the 
𝑛𝑛(𝑛𝑛−1)

2
 pairs of edges. 

• The Lin Kernighan Heuristic (LKH) starts from an arbitrary bisection and swaps pairs 
of nodes in order to improve the cost of the partition (Vahid & Le, 1997; Lin & 
Kernighan, 1973). The LKH was configured to terminate when all the nodes have 
been considered without change to the current solution. 

 
3.2 Configuration 
The heuristic algorithms were implemented in java programming language and 
MATLAB R2004a and the experiments were performed on the HP ProBook 450 G7 –
Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz   2.11 GHz processor running on a 64 bit 
Windows 10 Pro with 8 GB of RAM.  
 
3.3 Statistical Data Analysis Tools 
The research tested the normality assumption through plotting the network diagram of the 
distance matrix, performing Ryan-Joiner normality test, Kolmogorv-Sminorv test and box 
plots and fitting skewness to the data. The percentage deviation (PD) of the best fit (BF) 
of each heuristic against the global optimum solution (GOS) was calculated with 
 

𝑃𝑃𝑃𝑃 =  �
𝐵𝐵𝐵𝐵 − 𝐺𝐺𝐺𝐺𝐺𝐺

𝐺𝐺𝐺𝐺𝐺𝐺
�  × 100, … … … … … … … … … … … … … … … … … … … … … … … … … (2) 

 
3.4 The Benchmarks 
The shortest round route starting from any city obtained in this study is 4478 km. This is 
used as the current known result of the case study to determine the hit rate of each 
heuristic. According to Arts and Lenstra (1997), the best construction heuristic, 3-Opt 
heuristic and “variable-opt” algorithm of Lin and Kernighan (1973) typically get within 
roughly 10-15%, 3-4% and 1-2% respectively of the global optimum solution in 
relatively little time. The concept was used to analyse the heuristic data collected for this 
research. This research used the classes 0-1%, 5-9% and >15% to compare the 
performance of the heuristics. 
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3.5 Hypothesis  
The research applied Hotelling T-test (Hotelling, 1931) as advocated for by Chiarandini, 
Paquete, Preuss and Ridge (2007) for bivariate data analysis. The hypothesis used is 
𝐻𝐻0: 𝜇𝜇1 − 𝜇𝜇2 = 0 𝑣𝑣𝑣𝑣 𝐻𝐻1: 𝜇𝜇1 − 𝜇𝜇2 ≠ 0. The test statistic was computed with 
 

𝐵𝐵 =
𝑛𝑛1 + 𝑛𝑛2 − 𝑝𝑝 − 1
𝑝𝑝(𝑛𝑛1 + 𝑛𝑛2 − 2) 𝑇𝑇

2~𝐵𝐵𝑝𝑝 ,𝑛𝑛1+𝑛𝑛2−𝑝𝑝−1, … … … … … . … … … … … … … … … … … … … … . (3) 

 
where p is the number of parameters, 𝑛𝑛1 and 𝑛𝑛2 are sample sizes and 𝑛𝑛1 + 𝑛𝑛2 − 2  is the 
degrees of freedom. The Hotelling T-test was applied to determine a better performing 
heuristic. The null hypothesis is rejected if the test statistic is greater than the tabulated 
critical value. If the p-value is greater than the level of significance (𝛼𝛼), the difference 
between the two means is not statistically significant. The difference of two independent 
means test was used to determine whether two heuristics performed statistically the same 
or not. The hypothesis used is 𝐻𝐻0: 𝜇𝜇1 − 𝜇𝜇2 = 0 𝑣𝑣𝑣𝑣 𝐻𝐻1: 𝜇𝜇1 − 𝜇𝜇2 ≠ 0 at 5% level of 
significance. The test statistic was computed with 
 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
(�̅�𝑥1 − �̅�𝑥2) − (𝜇𝜇1 − 𝜇𝜇2)

�𝑣𝑣1
2

𝑛𝑛1
+ 𝑣𝑣2

2

𝑛𝑛2

, … … … … … … . … … … … … … … … … … … … … … … … … (4) 

 
The null hypothesis (𝐻𝐻0) is rejected if the absolute test statistic (𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) is greater than the 

absolute tabulated value (𝑍𝑍𝑡𝑡𝑐𝑐𝑡𝑡 ): |𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | > �𝑍𝑍𝑡𝑡𝑐𝑐𝑡𝑡 �𝛼𝛼2,∞�� = 𝑍𝑍𝑡𝑡𝑐𝑐𝑡𝑡 (0.025,∞) = 1.96.  

 
4.0 Application of statistical tools to analyse heuristic data for comparison  
The network diagram of the s24z instance is presented in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Network diagram of all routes among the cities 
 
The alphabetic letters in Figure 1 represent the cities selected for this research. The graph 
shows that the distance matrix is symmetric and there are connecting routes from each 
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city to the other twenty-three cities. The research tested for normality of the performance 
by the heuristics to solve the s24z instance and presented the results in Table 1.      
 

Table 1: Test for normality (Ryan-Joiner Test similar to Shapiro – Wilk Test) 
Heuristic R p-value Significant level and Decision 

0.01 0.05 0.10 
LKH 0.9455 <0.0100 * ** ** 
LS 0.8379 <0.0100 * ** ** 
NNA 0.9875 0.0506 * * * 
AC 0.9193 <0.0100 * ** ** 
GA 0.9907 >0.1000 * * * 
SA 0.9726 <0.0100 * ** ** 
TS 0.9297 <0.0100 * ** ** 
MSA 0.9465 <0.0100 * ** ** 
MTS 0.9678 <0.0100 * ** ** 
* = Accept normality and ** Reject normality. Minitab was used to produce the results 

  
The results in Table 1 shows that the decision on normality depends on the selected level 
of significance. For one tail test, at 1% level of significance, the normality assumption is 
not rejected for all the heuristic data. However, the GA and NNA data are normal at all 
the three levels of significance. The other heuristics performance data are not from a 
normal distribution at both 5% and 10% levels of significance. According to Alba (2005), 
at 1% level of significance, the researchers could use parametric test while at both 5% 
and 10% levels of significance, the researchers could apply non-parametric tests. Alba 
(2005) suggested that Kolmogorov-Sminorv test could be used to substantiate the results 
obtained. This test is able to identify more general differences than location differences 
(mean or median) (Chiarandini, Paquete, Preuss, & Ridge, 2007). The mean is sensitive 
to extreme data values and thus, Eftimov and Korošec (2019) recommended the use of 
the median. The results of the Kolmogorov-Sminorv test are presented in Table 2. 
 

Table 2: One – Sample Kolmogorov–Sminorv Test for normality 
 Heuristics LS NNA LKH SA GA AC TS MSA MTS 
N 100 100 100 100 100 100 100 100 100 

Normal 
Parameters(a,b) 

Mean 5494.07 5524.05 5385.52 5304.60 5409.24 5405.06 5361.99 4666.51 4843.18 
Std. Dev 113.921 208.943 141.397 211.060 240.202 123.688 178.388 134.720 288.278 

Most Extreme 
Differences 

Absolute 0.412 0.107 0.313 0.218 0.084 0.388 0.259 0.176 0.160 
Positive 0.412 0.076 0.218 0.218 0.058 0.263 0.259 0.157 0.160 
Negative -0.250 -0.107 -0.313 -0.180 -0.084 -0.388 -0.223 -0.176 -0.103 

Kolmogorov-Smirnov Z 4.122 1.065 3.127 2.181 0.835 3.881 2.588 1.758 1.596 
Asymp. Sig. (2-tailed) 0.000 0.207 0.000 0.000 0.488 0.000 0.000 0.004 0.012 

a  Test distribution is Normal; b  Calculated from data. 
 
Table 2 shows that the normal distribution is rejected for all the performance data of the 
heuristics. Therefore, the Ryan-Joiner test (similar to Shapiro – Wilk test) and the 
Kolmogorov–Sminorv test fail to agree on the concept of the distribution of the heuristic 
data. The box plots were used to further test the performance distribution of the 
heuristics. The box plot results are presented in Figure 2.  
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Figure 2: Box plots of the performance of the heuristics 
   
Figure 2 should be interpreted in conjunction with Table 3 below which shows the 
skewness of the performance of the heuristics. The NNA, LKH, GA and AC data are 
negatively skewed while the LS, SA, TS, MSA and MTS are positively skewed. 
Therefore, the results confirm that the normality assumption is not necessary when one is 
analysing heuristic data for performance comparison. This is a contradiction to Alba 
(2005) and Chiarandini, Paquete, Preuss and Ridge (2007).  
 

Table 3: Descriptive measures of the performance of the heuristics 
 
Heuristi
c 
 
 

Measure 

Range Mean 
Std. 
Deviation Skewness Kurtosis 

Statisti
c 

Statisti
c 

Std. 
Error Statistic Statistic 

Std. 
Error Statistic 

Std. 
Error 

LS 988 
5494.0
7 11.39214 113.9214 3.007021 0.24138 17.85678 0.478331 

NNA 882 
5524.0
5 20.89435 208.9435 

-
0.357710 0.24138 0.156913 0.478331 

LKH 384 
5385.5
2 14.13967 141.3967 

-
0.330800 0.24138 

-
1.188150 0.478331 

SA 1287 
5304.6
0 21.10597 211.0597 0.502646 0.24138 1.195955 0.478331 

GA 1294 
5409.2
4 24.02022 240.2022 

-
0.381520 0.24138 0.261987 0.478331 

AC 513 
5405.0
6 12.36879 123.6879 

-
1.574030 0.24138 2.201029 0.478331 

TS 816 
5361.9
9 17.83879 178.3879 0.405985 0.24138 1.149054 0.478331 

MSA 638 
4666.5
1 13.47201 134.7201 1.564239 0.24138 2.843980 0.478331 

MTS 1118 
4843.1
8 28.82775 288.2775 0.882725 0.24138 0.220890 0.478331 

 
Table 3 results show that the NNA, LKH, GA and AC data are negatively skewed while 
the LS, SA, TS, MSA and MTS are positively skewed. The NNA is commonly known as 
greedy algorithm and only performs well at the beginning of the construction of the 
travelling path (Sze & Tiong, 2007). Thus, the solution produced by NNA is not 
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necessarily an optimal solution (Sze & Tiong, 2007). This is the reason for NNA having 
the largest mean of the best fits. The LS has the smallest standard deviation, followed by 
the LKH and on the third position is the MSA. However, the best heuristics are the MSA 
and MTS which performed negatively skewed. This is in support of the idea that the data 
from a good and reliable heuristic should not be normally distributed. In fact, the 
normality assumption is not necessary when analysing heuristic data for performance 
comparison. A comparative analysis of the worst and best scenarios of each heuristic’s 
performance is presented in Table 4.  
 

Table 4: Each heuristic’s worst and best of the best optimum fits 

  Runs Worst Best Fit Best Best Fit 
Worst % 
Deviation 

Best % Deviation 

LS 100 6231 5243 39.15 17.08 
NNA 100 5923 5041 32.27 12.57 
LKH 100 5572 5188 24.43 15.86 
SA 100 6012 4725 34.26 5.52 
GA 100 5967 4673 33.25 4.35 
AC 100 5572 5059 24.43 12.97 
TS 100 5766 4950 28.76 10.54 
MSA 100 5179 4541 15.65 1.41 
MTS 100 5596 4478 24.97 0.00 

 
Table 4 shows that the best heuristic is the MTS which managed to find the global 
optimum solution. The MSA missed the global optimum by 1.41%. The SA and GA 
missed the target by 5.52% and 4.52% respectively. The LS missed the target by 39.15% 
and this is the overall worst of the worst scenarios of this research. The least of the worst 
scenarios of 15.65% was by the MSA. However, the table is not showing the number of 
attempts which fall in each of the categories in order to further discuss the quality of 
performance of the heuristics. Table 4 results are graphically presented in Figure 3. 

 
Figure 3: Comparative analysis of the best and worst optimum fits of each heuristic 

 
Figure 3 shows that the MTS managed to find the global optimum solution of the s24z 
instance. The MSA missed the global optimum solution by a very small margin as shown 
in Figure 3. Therefore, the MTS was the best heuristic among all the heuristics compared 
in this research. However, the MSA cannot immediately be ruled out because in Figure 3 
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it is not clear how many times each of the two heuristics managed to return its best 
optimum fit for the hundred runs of the experiments. Presented in Figure 4 are the mean 
standard errors of the performance of the heuristics. 
 

 
Figure 4: Comparative analysis of the mean standard error 

 
The LS and the MTS have the smallest and largest mean standard errors respectively as 
shown in Figure 4. The measure is not reliable since the MTS and the MSA were 
expected to have the smaller mean standard errors. It cannot therefore be concluded that 
the LS was the best heuristic among those compared. Aarts and Lenstra (1997) concluded 
that the analysis of the success rate (hit rate) could help to make a meaningful conclusion 
in such a scenario. The results of the success rate of the heuristics are presented in Table 
5. 
 

Table 5: Best fit- hit rate measured against each heuristic’s best optimum fit 
Heuristic % hit rate per 

100 trials 
Average CPU time 

(in seconds) 
LS 1.00 1.0127 
NNA 4.00 1.2152 
LKH 22.00 1.1796 
SA 1.00 11.3927 
GA 1.00 379.4716 
AC 6.00 2.9157 
TS 5.00 1.6772 
MSA 23.00 277.0386 
MTS 7.00 3.0258 

 
Most of the heuristics (66.67%) successfully obtained their best optimum fit more than 
once as shown in Table 5. The MSA and LKH succeeded in 23.00% and 22.00% 
respectively of the total runs to return their best optimum fits. Statistically, the two 
heuristics performed the same. The LS, SA and GA failed to get their respective best fits 
for the 100 runs of the experiments. It is therefore tempting to conclude that the MSA and 
LKH are the best heuristics in terms of persistence search for the global optimum solution 
since they have the best hit rates. However, Table 4 shows that the best fits by the LKH 
and MSA are 15.86% and 1.41% respectively away from the global optimum solution. 
Therefore, the MSA is better than the LKH and it can be concluded that the MSA is the 
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best heuristic. The percentage deviation of the best fit of each heuristic against the global 
optimum solution computed with Equation 2 is presented in Table 6. 
 

Table 6: Success rate measured against the global optimum solution (4478 km) 
Heuristic % hit % Deviation of 

best fit 
Number of attempts 

per 100 trials 
Probability of attempts 

per 100 trials 
LS 0 17.08 1 0.01 
NNA 0 12.57 4 0.04 
LKH 0 15.86 22 0.22 
SA 0 5.52 1 0.01 
GA 0 4.35 1 0.01 
AC 0 12.97 6 0.06 
TS 0 10.54 5 0.05 
MSA 0 1.41 23 0.23 
MTS 7 0.00 7 0.07 

 
Table 6 shows that the MTS outperforms the other heuristics because it successfully 
obtained the global optimum solution in seven trials. The MSA missed the target by a 
distance of 1.41% which is not bad.  In this case, the MTS can be recommended as the 
best heuristic among all compared heuristics but the seven success attempts do not truly 
represent its actual performance over hundred runs. The overall low number of successful 
attempts indicates that the heuristic does not have the memory of its past run 
performance. The aspect could assist the heuristic to start searching from its previous 
run’s best fit towards the global optimum solution (improve its past run’s best optimum 
fit). The aspect could improve the hit rate of the heuristic. The comparative analysis of 
the heuristics over 100 runs is presented in Figure 5. 
 

 
Figure 5: Comparative analysis of the performance of the heuristics over 100 runs 

 
A number of interesting points relating to the performance of the heuristics are portrayed 
in Figure 5. Firstly, the graph shows a random search of the global optimum solution by 
the heuristics. This really confirms the idea made earlier that the heuristics are lacking the 
memory of their past run performance. Secondly, from Figure 5, the MTS outperforms 
the other compared heuristics. The LS has the worst point (run 12) recorded during the 
experiments. However, from Figure 5, it is not possible to separate the performance of the 
MSA and MTS. In order to try and separate the two heuristics’ performance, the analysis 
of the CPU time is presented in Table 7.   
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Table 7: Comparative analysis of the CPU time of the heuristics 

Heuristic Runs Mean Median TrMean StDev SEMean 
LS 100 1.0127 0.9895 1.0113 0.2363 0.0236 
NNA 100 1.2152    1.2168 1.2137    0.0837    0.0084 
LKH 100 1.1796 1.1300 1.1570 0.2115 0.0211 
SA 100 11.393 11.730 11.3610 1.9370 0.1940 
GA 100 379.50 371.70 373.30 103.70 10.400 
AC 100 2.9157 2.7800 2.8626 0.5020 0.0502 
TS 100 1.6772 1.7160 1.6857 0.1849 0.0185 
MSA 100 277.04 283.24 277.65 37.730 3.7700 
MTS 100 3.0258 3.0420 3.0283 0.4259 0.0426 

 
Table 7 shows the time spent by the CPU searching for the global optimum solution. The 
available information is in favour of the NNA which has the smallest standard deviation 
and the variance. There is a small difference of time utilization between the AC and 
MST, with the later taking a small edge over the former. The GA and MSA took an 
average of 379,50 and 277.04 seconds respectively to terminate with the best optimum 
fits. The research applied the difference of two independent means test in order to 
determine whether the two heuristics performed the same or not. The results obtained are 
Mean difference (102,46), Standard error (11.04), 95% CI (80.70 – 124.22), Z-statistic 
(9.29) (using Equation 4) and Significance level (P < 0.0001). Since |𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | = 9.29 >
�𝑍𝑍𝑡𝑡𝑐𝑐𝑡𝑡 (0.025,∞)� = 1.96, the null hypothesis is rejected. The two heuristics performed 
differently. Therefore, the GA took the longest average time to terminate with the best 
optimum fit. 
 
The GA works by generating a population of chromosomes, each representing a feasible 
solution to the problem. New chromosomes are created by crossover and mutation. 
Chromosomes are then evaluated according to the fitness function with the fittest 
surviving and less fit being eliminated. The result is a gene pool that evolves over time to 
produce better and better solutions to a problem. According to Sze and Tiong (2007), the 
key to finding a good solution using a GA lies in developing a good chromosome 
representation of solutions to the problem. This explains why the GA has the longest 
CPU time statistics in Table 7. Table 8 presents the quality performance of the heuristics 
using the benchmarks of Aarts and Lenstra (1997).  
 
 
 
 
Table 8: Heuristics quality performance: cumulative number of runs in each percentage 

deviation range 
Heuristic 0-1% 0-2% 0-4% 0-9% 0-15% >15% 

0-20% >20% 
LS - - - - - 4 100 
NNA - - - - 9 21 100 
LKH - - - - - 30 100 
SA - - - 2 10 68 100 
GA - - - 2 14 42 100 
AC - - - - 7 20 100 
TS - - - - 7 56 100 
MSA - 30 54 92 99 100 100 
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MTS 11 15 30 64 84 91 100 
 
The best heuristic according to Aarts and lenstra’s (1997) quality measurement classes is 
the MTS. However, the MSA cannot be ruled out just because it failed to find the global 
optimum solution.  The heuristic has 30% of the 100 runs within 2% of the global 
optimum solution which is twice the number of success to that of the MTS. The MTS has 
16% of the runs that terminated outside the range 10-15% to 1% of the MSA. A clear 
picture of the performance of the heuristics according to Aarts and Lenstra (1997) is 
presented in Figure 6. 
 

 
 
Figure 6: A Less than cumulative probabilities of the performance of the heuristics: the 

global optimum is in the range 0-1% 
 
The MTS managed to find the global optimum solution with a probability of 0.11. The 
LS and LKH heuristics failed to find the best optimum fits within the 0-15% range. The 
performance by the LKH in this research is in contrast to the findings of Lin and 
Kernighan (1973) that are quoted by Aarts and Lenstra (1997). Richter, Goldengorin, 
Jäger and Molitor (2007) concluded that the LKH performed better than most of the 
developed heuristic algorithms. The researchers found that the heuristic’s performance 
lies within the 1-2% region of the global optimum solution. It should be noted that the 
parameter tuning, coding and programming levels of the algorithms have a bearing on the 
performance of the heuristics. The comparative analysis of the performance mode of the 
heuristics is presented in Table 9. 
 

Table 9: Comparative Analysis of the Mode of the Heuristics Data 
  LS NNA LKH SA GA AC TS MSA MTS 
N 100 100 100 100 100 100 100 100 100 
Mode 5482 5573 5426 5189 5296(a) 5442 5381 4541 4478(a) 
% Dev 22.42 24.45 21.17 15.88 18.27 21.53 20.17 1.41 0.00 
Frequency 62 7 31 35 3 63 17 23 7 

(a)  Multiple modes exist. The smallest value is shown 
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Table 9 shows that the performance of the LS and AC was almost the same. Their modes’ 
deviations from the global optimum solution are 22.42% and 21.53% respectively. The 
two heuristics performed badly since more than 60% of their total runs terminated outside 
Alba’s (2005) range (1-15%) of the best heuristic. That leaves a toss for the best heuristic 
between the MSA and MTS. The MTS has three modes at points 0.00%, 2.61% and 
5.14% from the global optimum solution. Hotelling T-test (Hotelling, 1931) and 
MANOVA are recommended by Chiarandini, Paquete, Preuss and Ridge (2007) as the 
best for bivariate and multivariate data analysis respectively. In this research, the 
Hotelling T-test was applied to analyse the MSA and MTS and the results are presented 
in Table 10.  
 

Table 10: Hotelling's T-Squared Test: bivariate test of the null hypothesis that both 
heuristics have the same mean 

Hotelling's T-Squared F df1 df2 Sig 
32.190 32.190 1 99 0.000 

The covariance matrix is calculated and used in the analysis. 
 
Table 10 shows that 𝛼𝛼 = 0.5 > 𝑝𝑝 − 𝑣𝑣𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 =0.000, therefore, the difference between the 
means of the two heuristics is statistically significance. Therefore, the means of the MSA 
and MTS are significantly different. Thus, the two heuristics performed differently. The 
reliability analysis results are presented in Table 11 to check which heuristic has a better 
reliability statistic than the other.     
 
Table 11: Reliability of the MSA and MTS to maintain the same performance under the 

same conditions 
Heuristic Cronbach's 

Alpha 
Cronbach's Alpha Based on Standardized 
Items 

N of 
Items 

MSA 0.022026 0.022721 2 
MTS 0.174589 0.195422 2 
 
The Cronbach’s alpha statistics that are presented for these heuristics are estimates of the 
true alpha statistics, which in turn are the lower bound statistics for the true reliability. 
Therefore, the MTS had a better lower bound for the true reliability than the MSA. 
Therefore, the MTS had a better reliability than the MSA. However, without any upper 
bound statistics, it is difficult to make a meaningful conclusion basing only on the 
difference between the lower bound statistics. Thus, under the scenario presented in 
Table 11, one of the two heuristics can have a better reliability than the other.   
 
5.0 Heuristic Data Analysis Framework for performance comparison 
The research proposed and examined a framework that can be implemented to analyse 
heuristic data for performance comparison. The research also identified appropriate 
statistical tools and procedures that can be applied to analyse heuristic data for 
performance comparison. The framework that can be applied to analyse heuristic data for 
performance comparison is presented in Figure 7. 
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 Figure 7: An Appropriate Heuristic Data Analysis Framework 
 
Figure 7 shows that the comparison of the performance of the heuristics should begin at 
the selection of the algorithms and parameters to use. This is the initial stage of 
comparing the performance of heuristics. The stage assesses the level of coding and 
programming, search method and structure of the selected heuristic algorithms. Thus, the 
initial stage determines whether the comparison of the selected heuristic algorithms 
should proceed or not. If the initial stage is skipped, it may be a mammoth task to 
successfully compare the performance of the heuristic algorithms since the stage anchors 
the whole process. The initial stage (I) determines whether the heuristic algorithms are 
comparable. In second stage (II), the researcher makes a decision on whether the 
normality assumption is relevant or not. If not, the researcher implements the fourth 
stage; otherwise the researcher implements the third stage. In third stage (III), the 
measures of distribution and inferential statistics are applied to test the normality 
assumption of the heuristic data. The purpose of this stage is to determine whether 
parametric or non-parametric tests should be used to analyse the heuristic data. The 
results of the normality test can also be used in the fourth stage to compare the 
performance of the heuristics. In fourth stage (IV), the heuristic data for performance 
comparison are analysed using descriptive and inferential statistics as shown in Figure 7. 
 
The heuristics can be compared on the parameter tuning (restrictions, conditions, 
instructions), convergence rate (termination speed), consistency (reliability), hit rate, 
CPU time (search period), structure (use of memory), power (capability, search effort, 
escape effort) and method (procedure, rule, modus operandi, approach, formula, plan) 
applied. Eftimov and Korošec (2019) stated that the search distribution information of the 
heuristic can be used to discover the exploitation and exploration powers of the compared 
heuristic algorithms.  
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6.0 Discussion of the findings 
The assumption of normality is not necessary when analyzing heuristic data for 
performance comparison. However, Alba (2005) stated that most researchers assume 
normality of the data sets of more than 30 or 50 values (an assumption that is formally 
grounded). The research approved beyond reasonable doubt that the normality 
assumption is unnecessary when analysing heuristic data for performance comparison 
because it will be rejected after testing. Of all the nine heuristics analysed, normality 
assumption was rejected in favour of the skewed distribution. Therefore, there is need to 
determine the distribution of the heuristic data instead of assuming normality. If one is to 
make an assumption when minimizing (maximizing) a combinatorial optimisation 
problem, the positively (negatively) skewed distribution assumption sounds more 
practical than the normality assumption.  
 
The results obtained clearly indicate that MSA and MTS performed exceptionally well 
for all the benchmarks considered due to their capability to explore and exploit the 
solution space effectively. The two heuristics were inseparable throughout the analysis. 
However, the MTS managed to find the global optimum solution in 7% of all the 
experimental runs. Another research could assist to determine a better heuristic between 
the two heuristics.  
 
The research discovered that the heuristics considered could perform better if they could 
use information of their past run performance such as the last optimum fit. This 
component could assist the heuristics to improve their hit rates and previous optimum 
fits. The idea needs further investigation to determine whether it is feasible to include 
such a function without compromising the current performance of the heuristic 
algorithms. It is therefore recommended that the MSA be further modified in the next 
phase to improve its 23% hit rate level.  
 
Finally, the results are indicative of what the selected parameters are capable of achieving 
and not what the best parameters combination available, if any, can perform. The 
research does not regard this research as having regarded the best parameter 
combinations of the heuristics investigated despite the effort applied to try and achieve 
the goal but as an initial point to further investigate the best performing parameters of the 
outstanding heuristics.  
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