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ABSTRACT 

In this work, we introduce the general integral transform decomposition method to provide analytical solution for linear 
and non linear fractional differential equations. The technique is a combination of a new integral transform proposed by 
Hossein Jafari called the general integral transform and Adomian decomposition method. The new general integral 
transform is a generalization of all Laplace-type integral transforms. The proposed method does not require discretiztion 
or restrictive assumptions; it is straight forward, easy to implement and gives a series solution that converges rapidly. 
Several illustrative examples are considered and the results obtained are compared with the results obtained from other 
methods to show the feasibility, efficiency of the method. 
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1.0 INTRODUCTION    
Fractional differential equations are differential 
equations involving fractional order derivatives of the 
unknown function. It is a branch of fractional calculus 
which generalizes the operation of differentiation and 
integration to non integer order. In recent times, 
fractional derivatives have become an important tool in 
modeling various problems that arise in physics, 
engineering, biology, economics and other sciences. 
This is as a result of the fact that many physical 
phenomena depends not only on their instantaneous state 
but also on previous time history and fractional 
differential equations provides an excellent instrument 
for the description of such memory and hereditary 
properties which is neglected by integer models, hence 
making it more suitable for modeling of systems whose 
evolution depends on their previous and current states. 
Podlunby (1999) presented a survey of the application of 
fractional differential equations in various fields of 
sciences and engineering, some of which include 
viscosity, electrical circuits, control theory, diffusion. 
The fractional order models were seen to be more 
adequate than their integer order counterpart. Rihan 

(2012) used fractional differential equations to model 
cancer-immune system interaction. The fractional 
differential equations were found to be naturally related 
to biological systems with memory or after effects; such 
effects are usually neglected in integer order differential 
equations. Despite the noticeable progress in fractional 
calculus, there is no universally agreed method for 
solving fractional differential equations. Several 
methods have been proposed for solving fractional 
differential equations. Some of the methods include 
Homotopy perturbation method, Adomian 
decomposition method, variational iteration method. 
Hossein (2006) applied Adomian decomposition method 
to solving linear and nonlinear fractional diffusion wave 
equation that describes diffusion in special types of 
porous media and are also used to model anomalous 
diffusion in plasma transport. Zaid (2008) proposed a 
generalization of the differential transform method and 
successfully applied it to fractional differential 
equations. The proposed method was based on a 
generalization of the Taylor’s formula which is less 
computational than classical Taylor’s formula. Zaid 
(2006) applied homotopy perturbation method in a 
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modified form, to solve linear and non linear quadratic 
Riccatti differential equations of fractional order. The 
results obtained from the proposed method which 
eliminates the small parameter assumption encountered 
in the basic homotopy perturbation method showed that 
the method is effective and reliable.  Integral transforms 
is also one of the methods that have also been widely 
used to solve fractional differential equations due to the 
simplicity they bring when dealing with differential 
equations. Some of the well known integral transforms 
such as Laplace transform, Sumudu transform, Natural 
transform, have been applied severally in finding 
solutions of fractional differential equations.  It must be 
stated that integral transform alone cannot handle non 
linear equations due to the nonlinearity present. In recent 
times, researchers have considered the possibility of 
coupling integral transforms and decomposition methods 
for solving non linear fractional differential equations. 
Sambath and Balachandran (2016) used Laplace 
Adomian decomposition method (LADM) to obtain 
series solution of non linear system of fractional 
differential equation arising from a fish farm model. The 
method which is a combination of the Laplace transform 
and Adomian decomposition method was shown to be 
effective when applied to several examples. Elzaki 
transform was also successfully combined with Adomian 
decomposition method by Nehad et al (2020). The 
method was seen to be straight forward and an effective 
method for solving linear and non linear fractional 
differential equations and was used to evaluate fractional 
order telegraph equations. Shehu and Ibrahim (2016) in 
their paper combined the natural transform and 
Homotopy perturbation method to propose the natural 
homotopy perturbation method (NHPM). They used 
their method to solve linear and non linear partial 
fractional differential equations. Hossien (2020) 
introduced a new integral transform which he called 
“new general integral transform”. By comparing his 
integral transform and some existing transforms in the 
Laplace family such as Sumudu transform, Elzaki 
transform, Natural transform, Aboodh transform, the 
new general integral transform was shown to be a 
generalization of most type of transform in the class of 
Laplace transform. The transform was also applied to 
solve   higher order ordinary differential equation with 
constant and variable coefficient, integral equations and 
fractional integral equations. In this research, we propose 
a combination of the new general integral transform and 
Adomian decomposition method which we shall call the 

general integral transform decomposition method 
(GITDM) to solve linear and non linear fractional 
differential equations. The algorithm derived from the 
proposed method is easy to implement and produces 
rapidly convergent approximate series solution.  
 
2.0 DEFINITION OF TERMS 
Definition 1  
Gamma function ( )zΓ  is defined by the integral 

( ) ∫
∞

−=Γ
0

1 dtetz tz  ( ) 0Re >z   ( )1  

The gamma function plays an important role in 
fractional calculus and has the following important 
properties 
( ) !1 zz =+Γ  

( ) ( )zzz Γ=+Γ 1     ( )2  
( ) 11 =Γ   

Definition 2 
The Caputo fractional derivative of ( )tf   is defined as  

( ) ( ) ( )( ) ( ) ( ) ( )∫ +−−− −
−Γ
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t

nnn dft
n

tfDDtfD
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11 τττ
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( )3  

  For 0,,1 >∈≤<− tNnnn α  
Some useful properties of Caputo fractional derivative 
are 

• 
( )

( )
αα

α
−

+−Γ
+Γ

= nn t
n

ntD
1

1
 

• 0=CDα
    ( )4  

 
3.0 MATERIALS AND METHOD 

3.1 The general integral transform 
The general integral transform ( )sF  of ( )tf is defined 
by the formula 

( ){ } ( ) ( ) ( ) ( )∫
∞

−==
0

; dtetfspsFstfT tsq

  
( )5

Where ( )tf  is an integrable function defined for 0≥t , 
( ) 0≠sp and ( )sq  are positive real functions and the 

integral exists. 
It is worth mentioning that when 
( ) 1=sp and ( ) ssq = gives the Laplace transform 

( ) ssp = and ( ) ssq =  gives sumudu transform 

( ) ssp 1= and ( ) ssq = gives Elzaki transform 
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( ) usp = and ( ) u
ssq = gives the natural transform 

Other integral transforms in the Laplace family are also 
special cases of the general integral transforms for 
appropriate values of ( )sp and ( )sq . 
3.1.1Properties of general integral transform 
The general integral transform has the following 
properties 

• ( ){ } ( ) ( ) ( ) ( ) ( )∑
−

=

−−−=
1

0

1 0;
n

k

kknnn fsqspsFsqstfT

      
( )6  

• ( ){ } ( )
( ) ( )

( ){ }



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


−= tfT

spds
d

sq
spttfT nn 1 ( )7  

• If ( )sF1  and ( )sF2 are the integral transform of 
( )tf1 and  ( )tf 2 respectively, then the general 

integral transform of the convolution of 1f  and 

2f  is  

( ) ( ) ( ) ( ) ( ) ( ) ( )sFsF
sp

dtftftftf 21
0

2121
1* ∫

∞

=−= ττ
 

      
( )8

3.1.2 General Integral Transform of Some Functions 
The table below gives the general integral transform of 
some functions  

Function General Integral 
Transform 

a  
( =a constant) 

( )
( )sq

sap  

t  ( )
( )2sq

sp
 

nt  ( ) ( )
( ) 0,1

1 >
+Γ
+ αα

α sq
sp  

( )atsin  ( )
( )sqa

sap
22 +

 

( )atcos  ( ) ( )
( )sqa
spsq

22 +
 

te  ( )
( ) 12 −sq

sp  

 
3.1.3 Inverse General Integral Transform 
Given a continuous function ( )tf  , if  ( ) ( ){ }tfTsF =

then ( )tf is the inverse general integral transform of 
( )sF and denoted as 

 ( ) ( ){ }sFTtf 1−=    ( )9  
3.1.4 General Integral Transform of Caputo 
Fractional Derivative  
Let αD be the Caputo fractional derivative of orderα , 
the general integral transform of   Caputo fractional 
derivative of ( )tfDα  is  
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Proof 
( ) ( ) ( )( )tfDDtfD nn αα −−=  

Taking transform of both sides 
( ){ } ( ) ( ){ }tfDDTtfDT nn αα −−=  

( ) ( ) ( ){ }tfDTsq nn α−−=  
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3.2 Adomian Decomposition Method 
The basic principle of the Adomian decomposition 
method is as follows   
Consider a non linear differential equation of the form 

( ) ( ) ( ) ( )tftNutRutLu =++    ( )11  

Where L is an invertible linear operator (of the highest 
order), R  is the remaining linear operators, N
represents  nonlinear operators and f is the source term. 

 If L is a linear operator of order 1+n , we denote 1−L as 
the inverse operator of L  and  

( ) ( ) ( )∑
=

− −=
n

i

ii
i uttutLuL

0
!

11 0
   

( )12

Solving for ( )tu  by applying 1−L to ( )11  
( ) ( ) ( ) ( )tfLtNuLtRuLtLuL 1111 −−−− =++  ( )13

( ) ( ) ( ) ( ) ( )tNuLtRuLuttfLtu
n

i

ii
i

11

0
!

11 0 −−

=

− −−+= ∑
 

The Adomian decomposition method suggest that the 
solution ( )tu be decomposed into an infinite series
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And the non linear terms by infinite series of the 
Adomian polynomial given by  
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the first few terms are given as follows 
( )00 ufA =  

( ) 101 uufA ′=  

( ) ( ) 2
10!2

1
202 uufuufA ′′+′=    ( )17  
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1
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From ( )14 , the solution of the equation ( )11  can be 
written as 
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The solution component of ( )tu  are then determined 
recursively as 

( ) ( ) ( )∑
=

− +=
n

i
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3.3 THE GENERAL INTEGRAL TRANSFORM 
DECOMOSITION METHOD (GITDM) 
In this section, we discuss the general integral transform 
decomposition method (GITDM) for solving linear and 
non linear fractional differential equations 
Consider the fractional differential equation of the form 

( ) ( ) ( ) ( )tftNytRytyD =−+α  ,  Nnnn ∈≤<− ,1 α  

      ( )20  
With initial conditions   

( ) k
k cy =0  , 1,2,1 −= nk     ( )21  

Where αD is the Caputo fractional derivative of orderα
, R and N are linear and non linear operators respectively 

and ( )tf is the source term. 
The general integral transform decomposition method 
requires applying the general integral transform to both 
sides  of equation ( )20  

( ){ } ( ){ } ( ){ } ( ){ }tfTtNyTtRyTtyDT =++α
     ( )22  

Using the differentiability property ( )6  and initial 

conditions ( )21  
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 Operating the inverse of general integral transform on 
both sides of ( )23  

( ) ( ) ( ){ } ( ) ( ) ( )
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 The GITDM describes the solution ( )ty by the infinite 
series  

 ( ) ( )∑
∞

=
0

tyty i
    

( )25  

And the non linear terms ( )tNy  is decomposed into the 
Adomian polynomials 
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=
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Applying ( )25  and ( )26  into ( )24  
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From ( )27  we deduce the following recursive formula 
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From ( )28  we can obtain approximate solution of ( )20
as 

( ) ( )∑≈
k

i tyty
0

 , where ( ) ( )tyty
k

ik
=∑∞→ 0

lim
 

( )29  

 
4.0 NUMERICAL RESULTS 
EXAMPLE 1: Consider the linear fractional differential 
equation 

( ) ( ) ( ) 8=++′′ tytyDty α  ,  ,0>t 21 ≤<α  
( )30  

Subject to the initial condition  
( ) ( ) 000 =′= yy     ( )31  

The exact solution of ( )30 when 1=α  is given as  

( ) ( )( )ttety 2
3

3
1

2
3 sincos18 2

3
+−= −    ( )32  

Applying the GITDM to ( )30 and utilizing the initial 

condition ( )31 , we obtain the following iterations. 
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8 2
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+
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+
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=
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24

9
24

9
8 382888

3 −Γ
−

−Γ
−

−Γ
−

Γ
=

−−− tttty
 

      
( )33  

Table 1 shows the exact solution and approximate 
solution of (30) using GIADM. The results are compared 
with the result obtained using Adomian decomposition 
method (ADM) and variational iteration method (VIM). 
 
Table 1: numerical solution for example1 

 
From the numerical result, it is clear that with few 
iterations, the approximate solution obtained using 
GIADM are in high agreement with the exact solution. 
The efficiency can be further enhanced by computing 
more terms.  
 

 EXAMPLE 2: Consider the non linear fractional 
differential equation 

( ) ( ) 12 =+ tytyDα , 10 ≤<α    ( )34  
Subject to the initial condition 
 ( ) 00 =y      ( )35  

The exact solution of ( )34  when 1=α is 

( ) t

t

e
ety 2

2

1
1
+
−

=
     

( )36  

Applying the GITDM to ( )34  and utilizing the initial 

conditions given in ( )35 , we obtain the following 
iterations 
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αα αt

 
( )37  

 
Table 2 shows the exact solution and approximate 
solution of (30) using GIADM. The results are compared 
with the result obtained using homotppy perturbation 
method (HPM) and variational iteration method (VIM). 
 t  ADM VIM GITDM EXACT 

0.0  0.000000 0.000000 0.000000 0.000000 
0.1  0.039874 0.039874 0.039750 0.039750 
0.2  0.158512 0.158512 0.157036 0.157036 
0.3  0.353625 0.353625 0.347370 0.347370 
0.4  0.622083 0.622083 0.604695 0.604695 
0.5  0.960047 0.960047 0.921766 0.921768 
0.6  1.363093 1.363093 1.290448 1.290457 
0.7  1.826257 1.826257 1.701978 1.702008 
0.8  2.344224 2.344224 2.147195 2.147287 
0.9  2.911278 2.911278 2.616753 2.617001 
1.0  3.521462 3.521462 3.101303 3.101906 
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Figure1: plot showing approximate solution of (30) in 
compararism with the exact solution and results obtained 
from other methods. 
 
 

 
 
  Figure 2: plot showing the approximate solution of 
(34) in comparism with the exact solution and results 
obtaining  
 
5.0 CONCLUSION 
The general integral transform decomposition 
method (GITDM) has been successfully 

implemented to obtain approximate solution of 
linear and nonlinear fractional differential equation. 
The method is seen to be efficient, easy to 
implement, and has shown remarkable performance 
by producing result that is in high agreement with 
exact solution and solutions obtained from other 
methods. 
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