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Abstract 

In this paper we intend to present a new method for regression model selection. The new 

model selection method that we developed uses clear criteria for variables selection as well 

as best model selection and its strength lies in its ability to select a best model even before 

accomplishing all required steps. We have used the built-in R data sets and the provided R 

packages to develop the procedures through which our new model selection method 

selects the best model from all possible models. Our new method can be performed via two 

approaches which always lead to the same result, this will avoid a confusion for 

statisticians and data scientists about the choice of the approach to be used.  

Our new regression model selection method also confirms the weaknesses of some existing 

model selection methods presented in many papers by various researchers. For the same 

data, the new method we wish to present in this paper results either in the best model 

better than that results if the stepwise regression have been used or in the same model as 

the stepwise regression. This paper presents the detail of the method, the variable selection 

criteria and processes as well as the best model selection criterion will be presented. The 

new method’s distinctive features relative to the most popular and most used methods like 

the stepwise regression and the best subset regression will be stated. 
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1. Introduction 

Regression model selection has been proved to be an important part of the regression 

analysis since not all available predictor variables are appropriate for explaining the 

variation in the response variable as well as predicting the new response outcome. 

Regression model selection aims at selecting the important predictor variables which 

accurately explain and predict the response variable. Researchers have spent much effort 

to cope with such task, as the result, the methods like the stepwise regression, the best 

subsets regression, the LASSO regression, the ridge regression, etc, are available to be 

applied for selecting the best model from all possible models (Joseph B. Kadane & Nicole A. 

Lazar 2004) . The quantities such as adjusted R-squared, p-value for F-test/t-test, mean 

square error (MSE), Akaike information criterion (AIC), Bayesian information criterion 

(BIC) and Mallows Cp are the most used for variable selection as well as model selection 

criteria (Joseph B. Kadane & Nicole A. Lazar 2004, Frank Emmert-Streib & Matthias 

Dehmer 2019, Obubu Maxwell et al. 2019, Heinze G., Wallisch C., & Dunkler D. 2018). 

The best subsets regression is a regression model selection method which works by 

building all possible models according to available predictor variables and compare them 

with aid of mean square error (MSE) or the coefficient of determination (R-squared) which 

leads to “p” models, “p” is the number of the predictor variables. A best model is selected 

from such “p” models after comparing them with aid of either AIC, BIC or Mallows Cp 

(Frank Emmert-Streib & Matthias Dehmer 2019, Maya Lozinski 2018, Zhang Z. 2016). 

The stepwise regression is another popular regression model selection method, it operates 

through two approaches: forward selection and backward elimination. Forward selection 

approach starts by a model with only intercept and proceeds to adding one by one all 

significant variables according to a predetermined significance level until none of the 

predictor variables fulfills such criterion. Backward elimination approach starts from the 

full model and proceeds to removing one by one all insignificant variables according to a 

predetermined significance level until no variable is still insignificant (Loann David Denis 
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Desboulets 2018, Joseph B. Kadane & Nicole A. Lazar 2004, Obubu Maxwell et al. 2019, 

Zhang Z. 2016). 

While the best subsets regression and the stepwise regression are the most popular and 

the most available in many statistical software, their applicability is feasible to some cases 

and not to other cases or the result is not reliable.  Thus we still need a method which is 

applicable to a wide range of problems and whose the result is reliable (Joseph B. Kadane & 

Nicole A. Lazar 2004). 

The new method for regression model selection that will be presented in this paper uses 

the p-value for t-test and F-test for the variables selection criteria and the adjusted R-

squared or AIC for the best model selection criterion, and it can reveal a best model which 

performs even better than the model built upon all available predictor variables. We shall 

start by explaining the reason for the need for the model selection and a short review of 

some existing model selection methods. Next we shall explain the processes of selecting the 

best model using our new method, thereafter, we shall introduce the strength of our 

method over the most popular model selection methods like the stepwise regression and 

the best subsets regression and finally draw a conclusion. 

2. Need for Regression Model Selection and a Brief Review of Some 

Existing Methods 

Suppose that a researcher collects data about p variables, 𝑥𝑥1, 𝑥𝑥2,  𝑥𝑥3, …, 𝑥𝑥1−𝑝𝑝 ,  𝑥𝑥𝑝𝑝 , that 

he/she thinks to be the major factors which affect the variable, y, he/she will need to write 

a mathematical equation which describes the relationship between such variables and y. 

This equation is in this field called the regression model and has the following form:  

 𝑦𝑦𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 ,1 + 𝛽𝛽2𝑥𝑥𝑖𝑖 ,2 + 𝛽𝛽3𝑥𝑥𝑖𝑖,3 + ⋯+ 𝛽𝛽1−𝑝𝑝𝑥𝑥𝑖𝑖 ,(1−𝑝𝑝) + 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖 ,𝑝𝑝 + 𝜀𝜀𝑖𝑖  

However, researchers showed that, it is not always important to include all available 

predictor variables, 𝑥𝑥1, 𝑥𝑥2,  𝑥𝑥3, …, 𝑥𝑥1−𝑝𝑝 ,  𝑥𝑥𝑝𝑝  , in the model since the issues of overfitting 

may occurs, on the other hand, ignoring many variables may result in underfitting issue, all 

such issues have to be avoided (Frank Emmert-Streib & Matthias Dehmer 2019). 

Underfitting occurs in the model when important variables affecting the response variable 

are not included in the model. On the other hand, a model which include important 
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predictor variables together with the variables which have less or no relationship with the 

response variable is subjected to overffiting problem. The model with underfitting problem 

is poor in explaining the variation in the response variable and the researcher needs to 

collect more data so as to solve for such problem (Frank Emmert-Streib & Matthias Dehmer 

2019). Overfitting leads to a complex model which is sometimes hard to interpret, it causes 

the confusion in identifying the major factors which affect the response variable. In the 

context of prediction, a model with overfitting problem can perform better on the training 

data but performs worse on the test data (Frank Emmert-Streib & Matthias Dehmer 2019, 

Obubu Maxwell et al. 2019). Therefore, a best model have to keep a trade-off between 

overfitting and underfitting; that is, it must be simple, easy to interpret, strongly explain 

the variation in the response variable and perform better when used to predict new unseen 

data (Frank Emmert-Streib & Matthias Dehmer 2019). 

A move to finding the technique of selecting a best model from all possible models resulted 

in the development of the methods such as the best subsets regression, the stepwise 

regression, the ridge regression and the LASSO regression. However, not only such 

methods are available for the model selection purpose, we choose to mention only those 

since they have been proved to be the most performer among others and they are also the 

most discussed in many literature, among them also the stepwise regression is the most 

popular and the most applied in many statistical analyses particularly in big data analysis 

(Frank Emmert-Streib & Matthias Dehmer 2019, Heinze G., Wallisch C., & Dunkler D. 2018). 

The ridge regression is first a technique for building the regression model as does the 

ordinary least squares technique. The ordinary least squares (OLS) minimises the residual 

sum of squares and it includes all the predictor variables in the model which can lead to 

overfitting issue. In addition, the OLS does not care about the relationship between the 

predictor variables which can lead to multicollinearity issue (RANJIT KUMAR PAUL 2008, 

Ali BAGER et al. 2017). The ridge regression works by adding a ridge parameter to ordinary 

least squares information matrix, in other words, it puts constraint to the regression 

coefficients which make them to be shrunk towards the population parameters (RANJIT 

KUMAR PAUL 2008, Ali BAGER et al. 2017, Olga Morozova et al. 2015). Such property 

allows the ridge regression technique to differentiate the most important predictor 

variables from the least important variables, which leads to solving the overfitting issue. In 

addition, the technique reduces the inter-relations between the predictor variables which 
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leads to solving the multicollinearity issue. These qualities make the ridge regression to be 

used beyond the regression model building, but also for regression model selection 

(RANJIT KUMAR PAUL 2008, Ali BAGER et al. 2017). The weakness of the ridge regression 

is that, the regression model built using the ridge regression is hard to interpret since the 

technique does not eliminate any predictor variable, instead it includes all of them, and 

thus the additional model selection method is needed (Joseph B. Kadane and Nicole A. 

Lazar 2004, Olga Morozova et al. 2015). 

The LASSO regression also applies shrinkage to the regression coefficients as does the 

ridge regression. Shrinkage in regression analysis implies that the model coefficients are 

made closer to the population parameters. The difference between the LASSO regression 

and the ridge regression is that, if multicollinearity is present between for example four 

variables, the LASSO chooses only one variable and set the remaining three coefficients to 

zero (Trevor Hastie, Robert Tibshirani & Ryan J. Tibshirani 2018; Maya Lozinski 2018; Olga 

Morozova et al. 2015; Heinze G, Wallisch C. & Dunkler D. 2018), which results in a reduced 

model relative to the obtained model if the ridge regression has been used. However, if 

more coefficient are set to zero, we may lose much information which leads to the model 

with low accuracy (Trevor Hastie, Robert Tibshirani & Ryan J. Tibshirani 2018; Maya 

Lozinski 2018). 

The best subsets regression selects a best model from all possible models that can be built 

from “p” predictor variables. The method builds all possible models considering “k” 

predictor variables (k= 1, 2, 3, …, p), for each “k” many models are built and only one model 

with the largest MSE or highest R-squared is chosen, resulting in “k” models. Since such “k” 

models differ in their complexity, the best model is selected from them with aid of either 

AIC or BIC or Mallows Cp, it is the model with the lowest AIC or lowest BIC or lowest 

Mallows Cp. (Frank Emmert-Streib & Matthias Dehmer 2019, Zhang Z. 2016). However, for 

“p” predictor variables, the model will build “2𝑝𝑝” models, for example for 20 variables, 

1048576 models will be built, this causes a computational problem, such models are so 

hard to compute when the predictor variables are too many, thus the method remains 

feasible when the predictor variables are moderate (Loann David Denis Desboulets 2018). 

The stepwise regression is the most popular and the most available model selection 

method in many statistical software (Loann David Denis Desboulets 2018; Joseph B. 

Kadane & Nicole A. Lazar 2004; Gary Smith 2018). Instead of building all possible models 
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as does the best subsets regression, the stepwise regression builds a subset of all possible 

models (Loann David Denis Desboulets 2018) which makes it suitable and the only feasible 

method for big data analysis (Joseph B. Kadane & Nicole A. Lazar 2004, Zhang Z. 2016). It 

comprises two approaches, backward elimination and forward selection. Forward selection 

approach starts from a model with only intercept and proceeds to including one by one 

those predictor variables whose the p-value is less than the chosen alpha-to-enter value 

given that the whole model is significant, the algorithm stops when no other predictor 

variable fulfills such criteria (Joseph B. Kadane & Nicole A. Lazar 2004, Obubu Maxwell et 

al. 2019, Gary Smith 2018). Backward elimination approach starts from a full model and 

removes one by one those predictor variables which have a p-value greater than the chosen 

alpha-to-remove threshold until no variable fulfills the condition for removal. An improved 

version of the stepwise regression is the combination of both backward elimination and the 

forward selection approaches (Joseph B. Kadane & Nicole A. Lazar 2004, Gary Smith 2018). 

However, for the same data, backward elimination and forward selection approaches may 

result in the different best models. Furthermore, the stepwise regression do not search all 

possible models and thus it is not guaranteed to find the best model (Frank Emmert-Streib 

& Matthias Dehmer 2019, Joseph B. Kadane & Nicole A. Lazar). Gary Smith (2018) 

mentioned various criticisms about the stepwise regression, the major one is that, it may 

include the predictor variables which explain less the response variable while it leaves the 

most important predictors. Therefore, a new regression model selection method is still 

awaited by statisticians and data scientists based on the fact that the existing methods are 

bordered by various limitations. The new regression model selection method that we wish 

to present in this paper tries to provide solutions to such limitations as it will be discussed 

in detail in the sections ahead. 

3. Processes and Criteria for our New Regression Model Selection 

Method 

As it is the purpose of this paper, we would like to illustrate a new method of selecting the 

best regression model. The task of selecting such model involves the work of selecting 

important predictor variables that are pretty best to explain and predict the response 

variable. Our new regression model selection method operates through two approaches: 

the any-predictors start-up approach and the single-predictor start-up approach. The 
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processes through which the important predictor variables are selected in such approaches 

are based on the criteria constituted by the p-value for t-test and the p-value for F-test, the 

best model selection is performed with aid of the adjusted R-squared or AIC. 

Here below are the summary of the steps of the procedures for variables selection as well 

as best model selection in our new model selection method, the detail that will help the 

deep understanding of such procedures will be presented with aid of examples in the next 

section. 

• The method (any-predictors start-up approach and the single-predictor start-up 

approach) starts by setting the initial best model (called again first best model). The 

first best model is composed by some of the available predictor variables and they are 

all significant according to a chosen significance level. The significance level is either 

0.05 or 0.1 

Next thing to do after setting the first best model, is to enter all available predictor 

variables into the first best model in the following order: 

• Enter each variable, one by one into the first best model until all of them are tested for 

inclusion. 

• Enter two predictor variables simultaneously into the best model until all possible 

combinations of two variables are tested for inclusion. 

• Enter three predictor variables simultaneously, four predictor variables 

simultaneously, five predictor variables simultaneously, etc, until all possible 

combinations are tested for inclusion. 

• Suppose there are “p” predictor variables, the last step is to enter “p” variables 

simultaneously into the best model. 

The any-predictors start-up approach and the single-predictor start-up approach differ 

only by the structure of the first best model and the way of setting it, other processes of 

selecting the predictor variables as well as the best model are the same. At each step of 

entering the predictor variables into the best model, important variable(s) is (are) selected, 

it/they is/are the predictor variable(s) which has/have a p-value below the chosen 

significance level, this leads to the new best model. This best model is compared to the best 
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model selected at the preceding step with aid of either adjusted R-squared or AIC so as to 

select the better one and continue the process. 

4. Demonstration of the New Regression Model Selection Method  

In this section we present some examples to facilitate the full understanding of the new 

model selection processes above. In all examples the significance level is 0.05, the data are 

the built-in R data sets. 

4.1. First approach: The any-predictors start-up 

Example1: 

In this example, we use the “biopsy” data of the “MASS” package to examine the 

relationship between the variable “V5” and the remaining variables except the variable 

“ID”. After removing “ID”, we have stored the data into the object “biopsy1”. 

The first few observations of the data are shown below. 

V1 V2 V3 V4 V5 V6 V7 V8 V9 
5 1 1 1 2 1 3 1 1 
5 4 4 5 7 10 3 2 1 
3 1 1 1 2 2 3 1 1 
6 8 8 1 3 4 3 7 1 

The any-predictors start-up approach starts by setting the initial best model (the first best 

model) which is determined with aid of full model. Let’s build a full model, only the 

predictor variables are shown, the response variable is “V5.” 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.16245 0.11218 10.36245 0.00000 
V1 0.00507 0.02621 0.19343 0.84668 
V2 0.29868 0.04543 6.57398 0.00000 
V3 0.08282 0.04575 1.81011 0.07072 
V4 0.02731 0.02934 0.93067 0.35236 
V6 0.03418 0.02365 1.44533 0.14883 
V7 0.03499 0.03707 0.94375 0.34563 
V8 0.07738 0.02719 2.84533 0.00457 
V9 0.18768 0.03581 5.24169 0.00000 
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After building the full model, we classify the predictor variables into two classes: the first 

class predictors and the second class predictors. The second class predictors include 

initially all insignificant predictor variables found in the full model. The first class 

predictors are determined by building another model containing only the predictor 

variables which are found to be significant in the full model, if they all remain significant in 

such model, we proceed to performing what we mane in this paper “filtering”, if some of 

them become insignificant we move them into the second class predictors, thereafter we 

perform filtering to the remaining variables. Looking at the table above, the variables “V2”, 

“V8” and “V9” are significant (their p-values are less than 0.05). Let’s build a model with 

such variables, the response variable remains the same, here below the predictor variables 

are shown. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.29546 0.08277 15.65220 0e+00 
V2 0.41906 0.02607 16.07717 0e+00 
V8 0.10792 0.02578 4.18641 3e-05 
V9 0.19256 0.03555 5.41685 0e+00 

 

We see from above table that, the predictor variables remain significant in this model (the 

model with only the significant predictor variables found in the full model), then we 

proceed to performing “filtering”. This model may include some variables which add 

nothing to it, and which reduce nothing when removed from the model. Filtering consists of 

checking and removing such predictor variables from the model, if found we move them 

into the second class predictors and the remaining variables constitute the first class 

predictors, if the significant predictor variables from the full model remain significant in 

the model containing only them, we classify all of them into the first class predictors. 

Filtering is done by removing one by one some predictor variables starting from the least 

significant variable without affecting the model’s adjusted R-squared. 

The model with only the significant variables found in the full model has the following 

formula. 

fit = lm(V5~V2+ V8+ V9, data = biopsy1) 
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The model’s adjusted R-squared is 0.5990. During filtering for this example, we first 

remove “V8” since it has the least p-value among others, then we will have a model with 

only “V2” and “V9”. The formula is shown below: 

fit_t= lm(V5~V2+ V9, data = biopsy1) 

This model is associated with the adjusted R-squared equals 0.5892. We compare then this 

value to the adjusted R-squared (0.5990) of the model containing also “V8” (named “fit” 

above), we see that the adjusted R-squared reduces after removing “V8”, we conclude that 

the variable “V8” as well as “V2” and “V9” are all important in the model “fit” and thus we 

classify them into the first class predictors, the remaining variables are all classified into 

the second class predictors, they are: “V1”, V3“,”V4“,”V6" and “V7”. Now, we form our first 

best model, it is the model whose the predictor variables are into the first class predictors, 

the formula is shown below: 

best1 = lm(V5~V2+ V8+ V9, data = biopsy1) 

We keep this model and we proceed to entering into it the second class predictors, this 

action will results in many best models that we will compare to select the final best model. 

But in order to enter the variables of the second class predictors into the first best model, 

we have to mix them with the variables of the first class predictors and enter all of them 

into the first best model following a specific order. In other words, we will enter all 

available predictor variables into our first best model so as to select the final best one. We 

start by entering one by one all available predictor variables in any order. 

 

Step 1: Enter “V1” into the first best model, “best1”, only the predictor variables are shown 

below. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.22678 0.10304 11.90627 0.00000 
V2 0.40558 0.02871 14.12616 0.00000 
V8 0.10433 0.02597 4.01650 0.00007 
V9 0.19018 0.03561 5.34137 0.00000 
V1 0.02821 0.02521 1.11877 0.26363 

It is seen that “V1” is insignificant (the significance level is 0.05), we remove it from this 

model and check the significance of the remaining predictor variables as shown below: 
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 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.29546 0.08277 15.65220 0e+00 
V2 0.41906 0.02607 16.07717 0e+00 
V8 0.10792 0.02578 4.18641 3e-05 
V9 0.19256 0.03555 5.41685 0e+00 

 

We see that after removing “V1”, the remaining variables remain significant, thus we get 

our second best model, its formula is shown below: 

best2 = lm(V5~V2+ V8+ V9, data = biopsy1) 

We compare the second best model to the first best model with aid of either adjusted R-

squared or Akaike information criterion (AIC). Both models, “best1” and “best2” are the 

same and should have the same adjusted R-squared or the same AIC, we discard any one of 

them. Let’s choose to discard “best1” and keep the second best model, “best2”. From 

“best2” we build the third best model by entering into it the next predictor variable, “V2”. 

 

Step 2: Enter “V2” into the second best model, “best2”. 

At this step, “V2” is already in the “best2”, thus the third best model will the same as the 

second best model, its formula is: 

best3 = lm(V5~V2+ V8+ V9, data = biopsy1) 

We compare this new best model to the previous one. Since both models, “best3” and 

“best2” are the same, they have the same adjusted R-squared, we then discard “best2” and 

keep “best3” as our new best model. We enter then into it another variable and find 

another new best model. 

Step 3: Enter “V3” into the previous best model, “best3”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.25776 0.08369 15.02812 0.00000 
V2 0.32978 0.04313 7.64629 0.00000 
V8 0.09315 0.02630 3.54229 0.00042 
V9 0.19016 0.03541 5.36991 0.00000 
V3 0.11360 0.04383 2.59190 0.00975 
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We see from the above table that “V3” is significant as well as other predictor variables, we 

then get our new best model, we name it “best4”. 

best4 = lm(V5~V2+ V8+ V9+ V3, data = biopsy1) 

We compare this model, “best4” to the previous best model, “best3” with aid of either 

adjusted R-squared or AIC. We have found that “best4” has a larger value of adjusted R-

squared than “best3”, 0.602 over 0.599, thus we discard “best3” and consider “best4” as 

our new best model. We keep it and from it, we build another best model by entering into it 

the variable “V4”. 

 

Step 4: Enter “V4” into the previous best model, “best4”, only the predictor variables are 

shown below. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.23534 0.08453 14.61490 0.00000 
V2 0.31229 0.04419 7.06698 0.00000 
V8 0.08631 0.02654 3.25203 0.00120 
V9 0.18274 0.03561 5.13218 0.00000 
V3 0.10512 0.04402 2.38778 0.01722 
V4 0.04816 0.02732 1.76252 0.07843 

We see that “V4” is insignificant, we remove it and then check the significance of the 

remaining predictor variables as shown below: 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.25776 0.08369 15.02812 0.00000 
V2 0.32978 0.04313 7.64629 0.00000 
V8 0.09315 0.02630 3.54229 0.00042 
V9 0.19016 0.03541 5.36991 0.00000 
V3 0.11360 0.04383 2.59190 0.00975 

 

The remaining variables are all significant, we then get a new best model, “best5”. We 

compare this best model to the previous one, “best4”. Both models are the same, thus they 
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have the same adjusted R-squared, we discard “best4” and keep the new best model, 

“best5”. 

best5 = lm(V5~V2+ V8+ V9 + V3, data = biopsy1) 

Into “best5” we enter the next variable to form a new best model. 

 

Step 5: Enter “V6” into the previous best model, “best5”, only the predictor variables are 

shown. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.22713 0.08455 14.51319 0.00000 
V2 0.31816 0.04331 7.34589 0.00000 
V8 0.08628 0.02640 3.26834 0.00114 
V9 0.19043 0.03531 5.39350 0.00000 
V3 0.08764 0.04520 1.93884 0.05294 
V6 0.04796 0.02136 2.24504 0.02509 

 

We see that “V3” is insignificant, we remove it and then check the significance of the 

remaining predictor variables as shown below: 

 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.24755 0.08406 14.84040 0.00000 
V2 0.37997 0.02938 12.93179 0.00000 
V8 0.09541 0.02603 3.66580 0.00027 
V9 0.19222 0.03537 5.43506 0.00000 
V6 0.05855 0.02069 2.82958 0.00480 

 

We see from above table that, after removing “V3” the remaining variables remain all 

significant, we then get our new best model, its formula is: 

best6 = lm(V5~V2+ V8+ V9+ V6, data = biopsy1) 

We compare this model to the previous one, we have seen that “best6” has the adjusted R-

squared of 0.603 while “best5” has the adjusted R-squared of 0.602, thus we discard 
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“best5” and consider “best6” as our new best model, we keep it and enter into it “V7” to 

find the new best model. 

 

Step 6: Enter “V7” into the previous best model, “best6”, only the predictor variables are 

shown below. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.18855 0.09659 12.30523 0.00000 
V2 0.36432 0.03197 11.39469 0.00000 
V8 0.08771 0.02675 3.27885 0.00110 
V9 0.19460 0.03541 5.49644 0.00000 
V6 0.05038 0.02171 2.32085 0.02059 
V7 0.04515 0.03645 1.23885 0.21583 

 

“V7” is insignificant, we remove it and check the significance of the remaining variables. In 

the previous step, we have found “V2”, “V8”, “V9” and “V6” to be significant into a single 

model, then we get the new best model, its formula is: 

best7 = lm(V5~V2+ V8+ V9+ V6, data = biopsy1) 

We compare this best model to the previous best model, “best6”. “best7” and “best6” are 

the same and have the same adjusted R-squared, we discard “best6” and keep “best7”, 

thereafter we enter “V8” into it to form the new best model. However, “V8” is already into 

“best7”, therefore, the new best model named “best8” will be the same as “best7”, we then 

keep “best8” and discard “best7”. 

best8 = lm(V5~V2+ V8+ V9+ V6, data = biopsy1) 

We enter “V9” into “best8” to find the new best model, “V9” is already into “best8”, thus our 

new best model, named “best9”, will be the same as “best8”, we will keep it and discard the 

previous one. At this step, our best model has the following formula: 

best9 = lm(V5~V2+ V8+ V9+ V6, data = biopsy1) 

We finish to enter one by one the second class predictor variables into the best model, the 

next thing to do is to enter two predictor variables simultaneously into the best model. 

That is, we will enter in any order (V1, V2), (V1, V3), (V1, V4), (V1, V6), (V1, V7), (V1, V8), 

(V1, V9), (V2, V3), (V2, V4), (V2, V6) …, (V7, V8), (V7, V9) and finally (V8, V9). 
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Step 9: Enter “V1” and “V2” simultaneously into the previous best model, “best9”. 

Note that “V2” is already in “best9”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.22254 0.10260 11.91526 0.00000 
V2 0.37622 0.03069 12.25896 0.00000 
V8 0.09449 0.02613 3.61594 0.00032 
V9 0.19130 0.03545 5.39583 0.00000 
V6 0.05626 0.02139 2.62975 0.00874 
V1 0.01104 0.02594 0.42579 0.67040 

 

“V1” is insignificant, we remove it and check the significance of the remaining variables. 

The remaining predictor variables have been found to be significant in the previous model, 

then, we get a new best model, named “best10” 

best10 = lm(V5~V2+ V8+ V9+ V6, data = biopsy1) 

“best10” and “best9” are the same, we discard “best9” and keep “best10”. 

 

Step 10: Enter “V1” and “V3” simultaneously into “best10”. The predictor variables are 

shown below. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.21795 0.10244 11.89000 0.00000 
V2 0.31746 0.04357 7.28709 0.00000 
V8 0.08603 0.02646 3.25156 0.00120 
V9 0.19011 0.03539 5.37145 0.00000 
V6 0.04722 0.02188 2.15813 0.03127 
V1 0.00416 0.02614 0.15899 0.87372 
V3 0.08663 0.04568 1.89657 0.05831 

 

We see that some predictor variables are insignificant, we will remove them starting from 

the most insignificant, here it is “V1”, we remove it and check the significance of the 

remaining variables as shown below. 
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 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.22713 0.08455 14.51319 0.00000 
V2 0.31816 0.04331 7.34589 0.00000 
V8 0.08628 0.02640 3.26834 0.00114 
V9 0.19043 0.03531 5.39350 0.00000 
V6 0.04796 0.02136 2.24504 0.02509 
V3 0.08764 0.04520 1.93884 0.05294 

 

After removing “V1”, “V3” remains insignificant, we also remove it and check the 

significance of the remaining variables as shown below. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.24755 0.08406 14.84040 0.00000 
V2 0.37997 0.02938 12.93179 0.00000 
V8 0.09541 0.02603 3.66580 0.00027 
V9 0.19222 0.03537 5.43506 0.00000 
V6 0.05855 0.02069 2.82958 0.00480 

 

The remaining predictor variables are all significant, we get then a new best model, its 

formula is shown below. 

best11 = lm(V5~V2+ V8+ V9+ V6, data = biopsy1) 

We compare this model, “best11” to the previous model “best10”. Both model are the same, 

we then discard “best10” and keep “best11”. 

 

Step 11: Enter “V1” and “V4” simultaneously into “best11”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.20768 0.10335 11.68588 0.00000 
V2 0.36432 0.03230 11.28030 0.00000 
V8 0.09058 0.02633 3.43971 0.00062 
V9 0.18583 0.03575 5.19835 0.00000 
V6 0.04717 0.02273 2.07510 0.03836 
V1 0.01287 0.02597 0.49536 0.62051 
V4 0.03408 0.02891 1.17884 0.23888 
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“V1” is the most insignificant, we remove it and check the significance of the remaining 

variables. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.23709 0.08453 14.63433 0.00000 
V2 0.36897 0.03089 11.94600 0.00000 
V8 0.09174 0.02621 3.49982 0.00050 
V9 0.18703 0.03564 5.24704 0.00000 
V6 0.05006 0.02196 2.27964 0.02294 
V4 0.03322 0.02884 1.15202 0.24972 

“V4” is still insignificant, we remove it and check the significance of the remaining predictor 

variables. It is seen that after removing “V4”, the remaining variables will be the same as 

the variables in the previous best model, therefore the new best model is the same as the 

previous one, we discard the previous best model and keep the new one, it is named 

“best12” and has the following formula: 

best12 = lm(V5~V2+ V8+ V9+ V6, data = biopsy1) 

 

Step 12: Enter “V1” and “V6” simultaneously into “best12”. 

Note that “V6” is already in “best12”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.22254 0.10260 11.91526 0.00000 
V2 0.37622 0.03069 12.25896 0.00000 
V8 0.09449 0.02613 3.61594 0.00032 
V9 0.19130 0.03545 5.39583 0.00000 
V6 0.05626 0.02139 2.62975 0.00874 
V1 0.01104 0.02594 0.42579 0.67040 

 

“V1” is insignificant and should be removed from this model, thus we get the new best 

model which is the same as the previous best model, we discard the previous model and 

keep the new best model, it is named “best13” and its formula is shown below. 

best13 = lm(V5~V2+ V8+ V9+ V6, data = biopsy1) 
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This example contains eight predictor variables, performing all the remaining steps by 

hand is so long, let’s summarise how they must be done.  

After entering all couples of predictor variables into the best model, we must enter three 

predictor variables simultaneously, four predictor variables simultaneously, five predictor 

variables simultaneously, six predictor variables simultaneously, seven predictor variables 

simultaneously and finally enter eight predictor variables simultaneously.  

The best model obtained after entering simultaneously eight predictor variables will be 

compared to the best model obtained at the preceding step so as to find the final best 

model. 

 

Example2 

Consider the “auction” data of the “yarrr” package, and consider all its variables except 

“color” for only the purpose of our new method illustration, we have stored the data into 

the object “auction1”. The first few rows of our data are shown below. 

cannons rooms age condition style jbb price 
18 20 140 5 classic 3976 3502 
21 21 93 5 modern 3463 2955 
20 18 48 2 classic 3175 3281 
24 20 81 5 classic 4463 4400 

 

The any-predictors start-up approach starts by setting the initial best model (first best 

model) which is determined with aid of the full model. Let’s build a full model, only the 

predictor variables are shown, the dependent variable is “price.” 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.85223 82.19512 -0.01037 0.99173 
cannons 8.66970 5.65498 1.53311 0.12557 
rooms 0.13007 3.64963 0.03564 0.97158 
age 0.21668 0.33013 0.65634 0.51176 
condition 17.53950 8.23951 2.12871 0.03352 
stylemodern -72.65554 28.62611 -2.53809 0.01130 
jbb 0.91383 0.05052 18.08999 0.00000 
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We will classify these predictor variables into two classes: the first class predictors and the 

second class predictors. The second class predictors include initially all the predictor 

variables which are insignificant in the full model. We build another model whose the 

predictor variables are the variables which are significant in the full model. From above 

table, such variables are “jbb”, “style” and “condition” considering the significance level of 

0.05. The result of the model associated to them is shown below. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 13.08670 70.82437 0.18478 0.85344 
jbb 0.97310 0.02023 48.09314 0.00000 
stylemodern -49.15486 21.80775 -2.25401 0.02441 
condition 11.41337 6.59490 1.73064 0.08383 

 

We see from above table that the variable “condition” becomes insignificant in this model, 

we remove it from the model and then move it into the second class predictors, and then 

we check the significance of the remaining variables as shown below. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 28.01830 70.36719 0.39817 0.69059 
jbb 0.98483 0.01908 51.60393 0.00000 
stylemodern -44.97805 21.69547 -2.07315 0.03841 

 

It is seen that the remaining predictor variables remain significant, we proceed to 

performing “filtering”. The above model whose the predictor variables are only “jbb” and 

“style” has the adjusted R-squared of 0.7554, the variable “style” is the least significant than 

“jbb”, then we will remove “style” and check the change in the adjusted R-squared. We have 

seen that after removing “style”, the adjusted R-squared drops to 0.7546. Since there is a 

change in the adjusted R-squared, we conclude that both “jbb” and “style” are all important 

in the above model and we classify them into the first class predictors which are the 

variables for our first best model, “best1”, it has the following formula: 

best1 = lm(price~jbb+ style, data = auction1) 

We will mix the variables of the second class predictors together with the variables of the 

first class predictors and enter them into the first best model; first, one by one; second, in 
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couples; third, three predictor variables simultaneously;…; and finally all the predictor 

variables simultaneously so as to find the final best model. The predictor variables we have 

are “cannons”, “rooms”, “age”, “condition”, “style” and “jbb”, we may enter them in any 

order. 

 

Step 1: Enter the variable “cannons” into the first best model. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 35.33198 70.76135 0.49931 0.61767 
jbb 0.96113 0.03077 31.23935 0.00000 
stylemodern -54.54354 23.78160 -2.29352 0.02203 
cannons 3.91109 3.98217 0.98215 0.32626 

 

“cannons” is insignificant, we remove it and check the significance of the remaining 

predictor variables as shown below: 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 28.01830 70.36719 0.39817 0.69059 
jbb 0.98483 0.01908 51.60393 0.00000 
stylemodern -44.97805 21.69547 -2.07315 0.03841 

The remaining predictor variables are all significant, we get then our second best model, its 

formula is as follows. 

best2 = lm(price~jbb+ style, data = auction1) 

We compare this best model to the previous best model with aid of either adjusted R-

squared or AIC to select the better one. “best2” and “best1” are the same and thus have the 

same AIC or the same adjusted R-squared, we discard “best1” and keep “best2”. Into 

“best2” we enter another variable to find a new best model. 

Step 2: Enter the variable “rooms” into the previous best model, “best2”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 53.93320 72.43702 0.74455 0.45672 
jbb 0.99611 0.02052 48.55199 0.00000 
stylemodern -40.19962 21.91738 -1.83414 0.06693 
rooms -4.16999 2.79477 -1.49207 0.13600 
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“rooms” is the most insignificant and should be removed first. After removing it, the new 

best model will be the same as the previous best model, we discard the previous and keep 

the new best model, let’s name it “best3”. 

best3 = lm(price~jbb+ style, data = auction1) 

 

Step 3: Enter the variable “age” into the previous best model, “best3”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 11.53035 77.29328 0.14918 0.88144 
jbb 0.98476 0.01909 51.58044 0.00000 
stylemodern -44.90532 21.70391 -2.06900 0.03880 
age 0.16750 0.32431 0.51649 0.60562 

 

“age” is insignificant, after removing it the new best model will be similar to the previous 

model, we discard the previous and keep the new best model, let’s name it “best4”, its 

formula is as follows. 

best4 = lm(price~jbb+ style, data = auction1) 

 

Step 4: Enter the variable “condition” into the previous best model, “best4”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 13.08670 70.82437 0.18478 0.85344 
jbb 0.97310 0.02023 48.09314 0.00000 
stylemodern -49.15486 21.80775 -2.25401 0.02441 
condition 11.41337 6.59490 1.73064 0.08383 

 

“condition” is insignificant, after removing it the new best model will be the same as the 

previous best model, then we discard the previous one and keep the new best model, we 

call it “best5”. 

best5 = lm(price~jbb+ style, data = auction1) 

The remaining two steps for entering a single predictor variables will cover entering “style” 

and “jbb” one by one. However, these variables are already in the previous best model, thus 

after entering them the new best model will be the same as the previous model. So, let’s 
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name “best8”, the new best model that we shall keep after such steps, its formula is the 

following: 

best8 = lm(price~jbb+ style, data = auction1) 

We proceed our model selection method by entering into the previous best model two 

predictor variables simultaneously, we shall have the couples of variables such as 

(cannons, rooms), (cannons, age), …, (cannons, jbb), (rooms, age), (rooms, condition), …., 

(condition, jbb) and finally (style, jbb). 

Step 7 Enter simultaneously the variable “cannons” and “rooms” into the previous best 

model, “best8”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 53.60814 72.47832 0.73964 0.45969 
jbb 0.98663 0.03779 26.10484 0.00000 
stylemodern -44.05107 25.43630 -1.73182 0.08362 
cannons 1.35870 4.54787 0.29876 0.76519 
rooms -3.70885 3.19381 -1.16126 0.24581 

 

Three predictor variables are insignificant, we remove them one by one starting from the 

most insignificant and check the significance of the remaining variables every time we 

remove one variable. Let’s remove “cannons”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 53.93320 72.43702 0.74455 0.45672 
jbb 0.99611 0.02052 48.55199 0.00000 
stylemodern -40.19962 21.91738 -1.83414 0.06693 
rooms -4.16999 2.79477 -1.49207 0.13600 

 

It is seen that “rooms” is the most insignificant, we remove it also. After removing it, the 

new best model will be the same as the previous best model, thus we discard the previous 

and keep the new one, we call it “best9” and its formula is the following. 

best9 = lm(price~jbb+ style, data = auction1) 

The remaining steps are so long to be performed by hand in this paper,  let’s  summarise 

how they must be done.  
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Since in this example the predictor variables are seven, after entering the couples of 

variables, we have to proceed to entering three predictor variables simultaneously, four 

predictor variables simultaneously, five predictor variables simultaneously, six predictor 

variables simultaneously and finally seven predictor variables simultaneously. 

We did a hard work to perform all such steps and find that the final best model is (the 

formula): 

best_final = lm(price~jbb+ style, data = auction1) 

 

Example 3 

In this example, we use the data, “UScrime”, of the package ,“MASS”. Note that, the data we 

shall use are modified by removing outliers, thus if you use that you have in your computer 

as whole, you may get different answers to ours. The variables “Time”, “So” and “M” are 

also not used in this example. The first few observations of the data are shown below. 

 Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob y 
5 121 109 101 591 985 18 30 91 20 578 174 0.041399 1234 
6 110 118 115 547 964 25 44 84 29 689 126 0.034201 682 
10 118 71 68 632 1029 7 15 100 24 526 174 0.044498 705 
12 108 75 71 595 972 47 59 83 31 580 172 0.031201 849 

We start by building the full model so as to classify the predictor variables and set the first 

best model. The predictor variables in the full model are shown below, the dependent 

variable is “Ineq”. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 235.30257 354.27636 0.66418 0.53597 
Ed -1.07173 2.07169 -0.51732 0.62699 
Po1 1.01823 3.09671 0.32881 0.75562 
Po2 -1.04719 3.06403 -0.34177 0.74642 
LF 0.14311 0.34194 0.41852 0.69294 
M.F 0.17429 0.49044 0.35537 0.73681 
Pop 0.12706 0.80912 0.15704 0.88136 
NW -0.05283 0.61622 -0.08574 0.93500 
U1 -0.69683 1.17903 -0.59102 0.58021 
U2 1.43941 1.91447 0.75186 0.48600 
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GDP -0.37458 0.15325 -2.44432 0.05834 
Prob -81.65746 527.61625 -0.15477 0.88306 
y 0.04731 0.07061 0.66998 0.53256 

In this example, none of predictor variable is significant in the full model. In order to 

classify the variables into first and second class predictors, we consider the least 

insignificant variable and build a model with only such variable, if it is found to be 

significant, we classify it into the first class predictors, otherwise we consider the next 

variables one by one starting from the least to the most insignificant until we get one 

variable which is significant. For the case like this example, the first class predictors always 

includes one predictor variable. 

In this example “GDP” is the least insignificant, let’s build a model with only it. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 355.10386 31.58047 11.24441 0e+00 
GDP -0.32942 0.05652 -5.82787 3e-05 

 

“GDP” is significant, we then classify it into the first class predictors, and the remaining 

variables are classified into the second class predictors. Note that, in this case we do not 

perform filtering since filtering is done only if the variables are more than one. Our first 

best model is the model with the variable “GDP”, we keep it and we proceed to entering the 

second class predictors into it. Note also that, the second class predictors must be mixed 

with the first class predictors so as to enter them into the initial best model. The first best 

model has the following formula: 

best1 = lm(Ineq~GDP, data = UScrime1) 

We now start entering one by one all the predictor variables into “best1”. During these 

steps, we enter them in any order. The variables are the following: Prob, NW, LF, Pop, Ed, y, 

M.F, U1, U2, GDP, Po1 and Po2.  

According to how we list them, the first variable to enter into the first best model is “Prob”. 
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Step 1: Enter the variable “Prob” Into “best1” 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 383.30158 49.48491 7.74583 0.00000 
GDP -0.36228 0.07224 -5.01471 0.00015 
Prob -234.96477 314.34957 -0.74746 0.46634 

“Prob” is insignificant and we have to remove it. After removing it, the new best model 

named, “best2”, will be the same as “best1”, we discard “best1” and keep “best2”. Its 

formula is the following: 

best2 = lm(Ineq~ GDP, data = UScrime1) 

 

Step 2: Enter the variable “NW” Into “best2” 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 356.15346 29.54160 12.05600 0.00000 
GDP -0.35150 0.05425 -6.47949 0.00001 
NW 0.44041 0.24274 1.81432 0.08968 

 

“NW” is insignificant, the new best model at this step is the same as “best2”, we discard 

“best2” and keep the new model, “best3”. 

best3 = lm(Ineq~ GDP, data = UScrime1) 

 

Step 3: Enter the variable “LF” Into “best3” 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 217.17935 68.49282 3.17083 0.00633 
GDP -0.30307 0.05208 -5.81986 0.00003 
LF 0.21111 0.09546 2.21167 0.04293 

All the predictor variables in this model are significant, thus the new best model has the 

following formula: 

best4 = lm(Ineq~ GDP+ LF, data = UScrime1) 

We compare “best4” to “best3”; “best4” has a greater adjusted R-squared, thus we discard 

“best3” and keep “best4”. 
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Step 4: Enter the variable “Pop” Into “best4” 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 241.10910 61.50340 3.92026 0.00154 
GDP -0.35910 0.05225 -6.87235 0.00001 
LF 0.20498 0.08449 2.42603 0.02937 
Pop 0.51744 0.22768 2.27261 0.03934 

 

All the predictor variables in this model are significant, thus the new best model has the 

following formula: 

best5 = lm(Ineq~ GDP+ LF+ Pop, data = UScrime1) 

“best5” has a greater adjusted R-squared than “best4”, we discard “best4” and keep “best5”. 

 

Step 5: Enter the variable “Ed” Into “best5” 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 246.08614 63.31890 3.88646 0.00187 
GDP -0.33104 0.06906 -4.79336 0.00035 
LF 0.23874 0.10114 2.36052 0.03454 
Pop 0.45669 0.25121 1.81792 0.09219 
Ed -0.34607 0.54014 -0.64072 0.53284 

 

“Ed” and “Pop” are insignificant, but “Ed” is the more insignificant than “Pop”, thus “Ed” will 

be removed first. It is seen that after removing it the new best model named, “best6”, will 

be the same as the previous best model. We discard the previous model and keep the new 

model. 

best6 = lm(Ineq~ GDP+ LF + Pop, data = UScrime1) 

If someone continues running these steps, he/she will find that, all steps involving entering 

a single predictor will end with the above best model, “best6”. So let’s skip showing these 

steps and go to the steps which involve entering two predictor variables simultaneously. 

We will have many combinations of two variables including (Prob, NW), (LF, Pop), (Ed, y), 
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etc. Let’s show one step by entering the couple (Ed, y) as shown below (only the predictor 

variables are shown) 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 311.61199 61.08508 5.10128 0.00026 
GDP -0.35026 0.05993 -5.84490 0.00008 
LF 0.25060 0.08709 2.87740 0.01390 
Pop 0.36092 0.21973 1.64253 0.12641 
Ed -1.12332 0.56895 -1.97436 0.07181 
y 0.03952 0.01672 2.36417 0.03578 

 

From the table above “Pop” and “Ed” are insignificant, but “Pop” is more insignificant, we 

remove it and check the significance of the remaining variables. The result is shown below. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 310.24594 64.94579 4.77700 0.00036 
GDP -0.29740 0.05375 -5.53293 0.00010 
LF 0.28327 0.09016 3.14184 0.00779 
Ed -1.50580 0.55198 -2.72800 0.01725 
y 0.04459 0.01747 2.55193 0.02410 

 

we see that the remaining predictors are all significant, thus we get a new best model 

named “best_x”. 

best_x= lm(Ineq~ GDP+ LF + Ed+ y, data = UScrime1) 

Comparison between “best_x” and the previous best model “best6” proves “best_x” to be 

better than “best6”, we discard “best6” and keep “best_x”. 

There are still many steps to perform so as to select the final best model, we choose to stop 

by here since it is so hard to perform all of them by hand. 

 

Example 4 

In this example we use the “movies” data of the “yarrr” package. The first few observations 

of the data are shown below: 
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sequel budget revenue.all revenue.dom revenue.int revenue.inf 
0 425 2783.919 760.5076 2023.411 826.1981 
0 200 2207.616 658.6723 1548.943 1139.1828 
1 215 1665.444 651.4436 1014.000 651.4436 
0 225 1519.480 623.2795 896.200 655.3831 

The dependent variable is “revenue.all”. The predictor variables for the full model look as 

follows: 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0 0 2.845955e+01 0.00000 
sequel 0 0 1.905745e+01 0.00000 
budget 0 0 -4.584897e+01 0.00000 
revenue.dom 1 0 5.864871e+14 0.00000 
revenue.int 1 0 1.048770e+15 0.00000 
revenue.inf 0 0 2.206130e+00 0.02742 

 

We build another model whose the predictor variables are the significant variables found 

in the full model, such model looks as follows (the dependent variable is still the same): 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0 0 2.885717e+01 0 
sequel 0 0 1.891686e+01 0 
budget 0 0 -4.681627e+01 0 
revenue.dom 1 0 6.666313e+14 0 
revenue.int 1 0 1.054866e+15 0 

 

The model formula is: 

fit = lm(revenue.all~sequel+ budget+ revenue.dom+ revenue.int,data = movies1) 

This model has the adjusted R-squared equals 1. We proceed to performing filtering by 

removing some predictor variables starting from the least significant. From the table above, 

it seems like all the variables have the same p-values, however, the variable “budget” has 

the least p-value since it has the least test statistic (t-value), thus we remove it first and 

check the change in the adjusted R-squared. The new model after removing “budget” will 

have the following formula: 
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fit1 = lm(revenue.all~sequel+ revenue.dom+ revenue.int, data = movies1) 

This model has the adjusted R-squared equals 1. This means that the variable “budget” is 

useless when it is added to the variables “sequel”, “revenue.dom” and “revenue.int” to 

explain the variation in the variable “revenue.all” and thus we move it into the second class 

predictors. We stop filtering when the adjusted R-squared reduces after removing a 

variable, then we have to continue since it is still 1. In the model “fit1” above, the variable 

“sequel” is the least significant since it has the least test statistic as shown below: 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0 0 -6.350512e+01 0 
sequel 0 0 -8.190030e+00 0 
revenue.dom 1 0 1.677345e+15 0 
revenue.int 1 0 2.852259e+15 0 

 

After removing it, we shall have a model which has the following formula: 

fit2 = lm(revenue.all~revenue.dom+ revenue.int, data = movies1) 

This model has also the adjusted R-squared equals 1, we continue filtering by removing the 

variable “revenue.dom”. The new model after removing “revenue.dom” has the adjusted R-

squared equals 0.722. Since the adjusted R-squared reduces, we stop filtering and take 

back the removed variable into the model, then the first best model is the model, “fit2”, 

above. This first best model has the R-squared equals one, then it is meaningless to add 

other predictor variables (the second class predictors) to it since the R-squared cannot 

exceed one, thus the final best model for our data is the model whose the equation is “fit2” 

above. 

4.2. Second Approach: The Single-predictor start-up 

The single-predictor start-up approach differs from the any-predictors start-up approach 

by the number of the predictor variables that the first best model includes. In the single-

predictor start-up approach, the first best model includes only one predictor variable while 

in the any-predictors start-up approach the first best model includes any number of the 

predictor variables. The way we set the first best model for these two approaches also 

differ, other procedures such as entering the second class predictors into the best model 

and choosing the best model at each step are the same. In the single-predictor start-up 
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approach, the first best model takes only one predictor variable, this predictor variable is 

the variable which results in the largest R-squared when the response variable is regressed 

on each predictor variable in the separated models. 

Consider the example 4 above, to apply this approach to that data, we have to regress the 

response variable, “revenue.all”, to each of the predictor variables. The predictor variables 

are five, then we shall build five models as shown below: 

fit1 = lm(revenue.all~ sequel, data = movies1) 
 
fit2 = lm(revenue.all~ budget, data = movies1) 
 
fit3 = lm(revenue.all~ revenue.dom, data = movies1) 
 
fit4 = lm(revenue.all~ revenue.int, data = movies1) 
 
fit5 = lm(revenue.all~ revenue.inf, data = movies1) 

After building them, we compare their R-squared, we have seen that, the model “fit4” has 

the largest R-squared, therefore the variable “revenue.int” will be the variable for the first 

best model which we can name for example “best1”, its formula is: 

best1 = lm(revenue.all~ revenue.int, data = movies1) 

Thereafter, we start entering all predictor variables (including also “revenue.int”) into the 

first best model in the same way as we do for the any-predictors start-up approach. 

Filtering is not done for the single-predictor start-up, since the first best model has only 

one predictor variable. 

 

5. Foundation of our New Regression Model Selection Method 

The technique for developing this regression model selection method arose after observing 

a complex relationship between the predictor variables in the multiple regression model. 

Multicollinearity is the most known cause of the effects between the predictor variables, 

however, the predictor variables can affect each other even when no multicollinearity is 

present in the model. 

Consider for example this regression model formula and the corresponding variance 

inflation factor values for the predictor variables (“swiss” data of the “datasets” package): 

fit = lm(Fertility~., data = swiss) 
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Variance inflation factor results 

 x 
Agriculture 2.2841 
Examination 3.6754 
Education 2.7749 
Catholic 1.9372 
Infant.Mortality 1.1075 

 

The values for the variance inflation factor indicate no multicollinearity between the 

variables. Let’ s also explore the significance of the predictor variables. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 66.91518 10.70604 6.25023 0.00000 
Agriculture -0.17211 0.07030 -2.44814 0.01873 
Examination -0.25801 0.25388 -1.01627 0.31546 
Education -0.87094 0.18303 -4.75849 0.00002 
Catholic 0.10412 0.03526 2.95297 0.00519 
Infant.Mortality 1.07705 0.38172 2.82157 0.00734 

In this model, only the variable “Examination” is insignificant (significance level equals 

0.05), and we have noticed that, if it is removed, the remaining variables remain significant. 

But, let’s see what happens when the variable “Education” is removed, the remaining 

variables behave as follows: 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 59.60267 13.04246 4.56989 0.00004 
Agriculture -0.04759 0.08032 -0.59251 0.55669 
Examination -0.96805 0.25284 -3.82865 0.00042 
Catholic 0.02611 0.03843 0.67950 0.50055 
Infant.Mortality 1.39597 0.46259 3.01771 0.00431 

 

We see from this table that, after removing the variable “Education”, the variable 

“Examination” becomes significant and the variables “Agriculture” and “Catholic” become 

insignificant, thus we can conclude that “Education” affects “Examination”, “Agriculture” 
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and “Catholic”; in other words, there is a relationship between the variable “Education” and 

the three variables mentioned above. 

Another feature we observed between the predictor variables is that, multicollinearity 

between two variables can be influenced by another third variable. 

Consider the following model formula: 

fit = lm(PerimCh1~ FiberLengthCh1+  FiberWidthCh1, data = 
segmentationOriginal130) 

Variance inflation factor results 

 x 
FiberLengthCh1 1.81015 
FiberWidthCh1 1.81015 

 

The variance inflation factor values for these two variables indicate no multicollinearity, 

but let’s see what happens when another variable is added to them. 

fit2 = lm(PerimCh1~ FiberLengthCh1+  FiberWidthCh1+ EqSphereAreaCh1,  
          data = segmentationOriginal130) 

Variance inflation factor results 

 x 
FiberLengthCh1 14.97006 
FiberWidthCh1 11.88061 
EqSphereAreaCh1 8.82733 

 

We observe now multicollinearity between all variables, however, the multicollinearity 

between “FiberLengthCh1” and “FiberWidthCh1” is due to “EqSphereAreaCh1”, in other 

words, the first two variables (FiberLengthCh1 and FiberWidthCh1) affect each other 

through the third variable (EqSphereAreaCh1). 

After observing these behaviors of predictor variables, we tried to link them to the real life 

situations. In real life, there exists companies, associations, or other particular groups 

whose the members work for common interest. However, the members may contribute 

equally to the development of the group, or some members can contribute more than 

others. If a disagreement occurs for example between the most contributors and the less 

contributors, they may separate and thus two groups arise, after separation there will be 
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always a strong group and a weak group. However, some members of the weak group may 

choose by their will to come back to join the strong group, if they come and obey the order 

of the group, they stay in it, if they come and do not obey the order or cause a disorder, they 

will be sent out again. Not only by the will of the members of the weak group they may join 

again the strong group, the members of the strong group may also try to convince them to 

come back to join them again. Our new regression model selection method has been 

developed referring to these real life relationships. 

The multiple regression model behaves as the company, association or other particular 

group. The predictor variables are analogous to the members of the group. In the 

significant full model, predictor variables can all be significant, or some variables are 

significant and others are insignificant. This is similar to the inequality between the 

contributions of the group members towards the group development. The classification of 

the predictor variables into the first and the second class predictors is analogous to the 

separation between the members of the group when a disagreement occurs. In some 

groups, there are intermediate members, these are the members who do not make the 

group to move back or to move forward (to advance), if the separation between the group 

members occurs, the intermediate members stay bound to the strong group, but losing 

them also cannot weakens the group, this is the reason behind filtering in our new model 

selection method. After the predictor variables classification, we try many times to enter 

the second class predictors into the best model, this is compared to the events during 

which the members of the weak group are coming again to join the strong group either by 

their will or convinced by the strong group members.  

6. Discussion 

In this section we present the various features of our new regression model selection 

method as well as its similarity and discrepancy to some existing model selection methods 

especially the stepwise regression and the best subsets regression. 

• This new regression model selection method operates through two approaches which 

lead to the same final best model. However, the any-predictors start-up approach is 

better than the single-predictor start-up approach since the best model can be 

obtained even in earlier steps. 

GSJ: Volume 8, Issue 12, December 2020 
ISSN 2320-9186 1890

GSJ© 2020 
www.globalscientificjournal.com



• This model selection method consists of selecting the important predictor variables, 

the selection can be done using the usual significance levels of 0.05 or 0.1 

• The final best model resulted from our model selection method will never includes 

insignificant variables relative to the usual significance levels. 

• For the same data and the same significance level, the best model resulted from our 

new model selection method is either the same or better than the best model resulted 

if the stepwise regression was used. 

• This model selection method allows the predictor variables to be tested for inclusion 

in the best model many times and in different conditions. After setting the first best 

model, our new model selection method proceeds to entering the predictors into best 

model in different formats, one variable alone, couple of variables, three variables 

simultaneously, four variables simultaneously, etc; thus, a variable that has been 

removed at the preceding steps will always come back to be tested again for inclusion 

in the next steps. 

• This method works by selecting the important variables as does the stepwise, forward 

selection approach. However, it possesses a strong feature that the stepwise 

regression fails to have, the new model selection method keeps the best model until a 

new better one is found to replace it. In the stepwise regression, forward selection 

approach, every time a predictor variable is selected, a new best model results, but this 

new model is considered without comparing it to the best model obtained at the 

preceding step. Furthermore, the process of finding a variable to consider for inclusion 

can result in more than one best model according to the selection criteria, but one of 

them is considered without effective comparison to others. 

• This new regression model selection method builds in sequence all possible models as 

does the best subsets regression. However; many steps are similar that some many 

steps can be skipped. In addition, in the any-predictors start-up approach, the best 

model can be obtained even in the earlier steps; models comparison is also easy: at 

each step we compare only two models. Furthermore, according to the chosen 

significance level; this new method cares always about the significance of the predictor 
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variables individually, while the best subsets regression cares only about the 

significance of the whole model. 

• The fact that the new method builds all possible models limits it to be used when the 

number of the predictor variables is large as it is the case for the best subsets 

regression. But, we have observed that; the best model can be obtained in the earlier 

steps especially for the any-predictors start-up approach. This has arisen a new idea of 

determining a specific order the predictor variables can be entered into the first best 

model so as to pull the final best model without accomplishing all method’s steps (all 

possible models); thus, the future research will cover such matter. 

• In section 4 above, we have used four examples to demonstrate the procedures for our 

new regression model selection method. Let’s compare the results we obtain to the 

results we should obtain if the stepwise regression was applied. 

In example 1, we have obtained the best model whose the formula is: 

best13 = lm(V5~V2+ V8+ V9+ V6, data = biopsy1) 

 

Significance of the predictor variables (new method) 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.24755 0.08406 14.84040 0.00000 
V2 0.37997 0.02938 12.93179 0.00000 
V8 0.09541 0.02603 3.66580 0.00027 
V9 0.19222 0.03537 5.43506 0.00000 
V6 0.05855 0.02069 2.82958 0.00480 

 

If we apply the stepwise regression to the same data (with aid of “caret” package), the best 

model has the formula: 

# Using backward elimination approach 
 
best_backward = lm(V5~V2+ V3+ V4+ V6+  V7+ V8+ V9, data = biopsy1)   
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Significance of the predictor variables (backward approach) 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.17342 0.09674 12.12951 0.00000 
V2 0.29957 0.04517 6.63239 0.00000 
V3 0.08404 0.04528 1.85617 0.06386 
V4 0.02691 0.02925 0.92010 0.35785 
V6 0.03514 0.02311 1.52026 0.12891 
V7 0.03526 0.03702 0.95257 0.34115 
V8 0.07767 0.02713 2.86240 0.00433 
V9 0.18816 0.03570 5.27093 0.00000 
     
# Using forward selection approach 
 
best_forward = lm(V5~V2+ V3+ V4+ V6+ V7+ V8+ V9, data = biopsy1) # same as      

                                                              "best_backward" 

# Using both backwawd and forward approaches 
 
best_both = lm(V5~ V2+ V3+  V6+  V7+  V8+  V9, data = biopsy1)  

 

Significance of the predictors (both approaches) 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.17392 0.09673 12.13625 0.00000 
V2 0.30593 0.04463 6.85494 0.00000 
V3 0.08471 0.04527 1.87125 0.06174 
V6 0.04085 0.02226 1.83516 0.06692 
V7 0.04125 0.03644 1.13195 0.25806 
V8 0.07954 0.02705 2.94029 0.00339 
V9 0.19267 0.03536 5.44943 0.00000 

 

The comparison between these three models is given in the table below. 

Prediction Performance Comparison 

X adj.r.squared sigma AIC 
best13 (new method) 0.60305 1.40063 2405.484 
best_backward 0.60474 1.39765 2405.553 
best_both 0.60483 1.39750 2404.409 
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With aid of the table above; consider the models “best_both” and “best13 (new method)”, 

the best model resulted from the stepwise regression has a lower AIC. However, the 

adjusted R-squared difference is 0.00178, the model sigma (Residual Standard Error, RSE) 

difference is 0.00313 and the AIC difference is 1.075, such difference values are all small 

that the three models are almost the same. In addition, the best model we have obtained 

using our new method has addition good feature: it does not contain insignificant variables 

while they are present in the best models resulted from the stepwise regression 

considering the significance level of 0.05. We also observed that, if insignificant predictor 

variables are removed from the model “best_both”, the remaining significant predictors 

(significance level equals 0.05) form a model which is the same as the model obtained using 

the new method. 

Recall that, the best model according to our new method has been obtained after 13 steps, 

thus we hope to get a better model than that one above after performing all steps, 

otherwise, the best model will be what we obtain. 

 

In example 2, we have obtained the best model which has the following formula: 

best_final = lm(price~jbb+ style, data = auction1) 

 

Significance of the predictor variables (new method) 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 28.01830 70.36719 0.39817 0.69059 
jbb 0.98483 0.01908 51.60393 0.00000 
stylemodern -44.97805 21.69547 -2.07315 0.03841 

 

Applying the stepwise regression to the same data (with aid of “caret” package), the best 

model has the following formula: 

#Using both backward and forward approaches 
 
best_both = lm(price~ jbb, data = auction1) 
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#Using forward approach 
 
best_forward = lm(price~ jbb, data = auction1) # same as "best_both" 

# Using backward elimination approach 
 
best_backward = lm(price~ cannons+ condition+ style+ jbb, data = auction1) 

 

Significance of the predictor variables (backward approach) 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 21.00176 70.85512 0.29640 0.76698 
cannons 8.31988 4.38580 1.89700 0.05812 
condition 17.25548 7.27075 2.37327 0.01782 
stylemodern -71.64105 24.79610 -2.88921 0.00395 
jbb 0.91668 0.03596 25.49342 0.00000 

Let’ summarise the comparison between these models through the following table. 

 

Prediction Performance Comparison 

X adj.r.squared sigma AIC 
best_final (new method) 0.75536 323.1456 14399.08 
best_backward 0.75649 322.4024 14396.47 
best_both 0.75456 323.6791 14401.38 

 

Consider the models “best_backward” and “best_final (new method)”, the best model 

resulted from the stepwise regresion has a lower AIC. However, the adjusted R-squared 

difference is 0.00113, the model sigma (Residual Standard Error, RSE) difference is 0.7432 

and the AIC difference is 2.61, such difference values are all small that the three models are 

almost the same. Note that, in the model “best_backward”, the variable “cannons” is 

insignificant, the significance level = 0.05; if removed, the variable “condition” also becomes 

insignificant, if “condition” is removed, we get the best model which is similar to the best 

model obtained using our new method. 

 

In example 3, to the step we were, the best model have had the following formula: 

best_x= lm(Ineq~ GDP+ LF + Ed+ y, data = UScrime1) 
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Significance of the predictor variables (new method) 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 310.24594 64.94579 4.77700 0.00036 
GDP -0.29740 0.05375 -5.53293 0.00010 
LF 0.28327 0.09016 3.14184 0.00779 
Ed -1.50580 0.55198 -2.72800 0.01725 
y 0.04459 0.01747 2.55193 0.02410 

 

while backward elimination approach, forward selection approach and both approaches 

(with aid of “caret” package) resulted in the same best model which has the following 

formula: 

best_stepwise = lm(Ineq~ GDP, data = UScrime1) 

The comparison between such models is summarised in the table below: 

Prediction Performance 

X adj.r.squared sigma AIC 
best_x (new method) 0.8131 11.4175 144.8895 
best_stepwise 0.6598 15.4066 153.4143 

The best model resulted from our new method has a lower AIC and the AIC difference 

between such two models is 8.5248. Recall that the model “best_x (new method)” has been 

obtained without accomplishing all method’s steps, if all steps were accomplished we 

should have another model better than it, otherwise it is still the same. 

Note: 

using the stepAIC()  function for the stepwise regression, backward elimination approach 

and both approaches result in the same best model whose the formula is: 

best_both = lm(formula = Ineq ~ GDP+ LF + Ed+ y+ U1 + U2, data = UScrime1) 

 

Significance of the Predictor Variables 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 358.42309 88.70662 4.04054 0.00195 
GDP -0.35523 0.06143 -5.78224 0.00012 
LF 0.27597 0.09257 2.98128 0.01249 
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Ed -1.57822 0.54214 -2.91110 0.01416 
y 0.05540 0.01886 2.93661 0.01353 
U1 -0.48029 0.27687 -1.73472 0.11068 
U2 1.14869 0.64252 1.78777 0.10136 

From above table it is seen that “U1” and “U2” are insignificant. If we remove “U1”, “U2” 

remains insignificant; if “U2” is removed, the remaining predictors remain all significant 

which form the same model as the best model obtained using our new regression model 

selection method. In addition, the best model according to the new method has been 

obtained during the steps of entering one variable into the first best model, if all steps were 

accomplished we should have another model better than it, otherwise it is still the same. 

 

In example 4, the best model obtained using our new method has the following formula: 

fit2 = lm(revenue.all~revenue.dom+ revenue.int, data = movies1) 

while backward elimination approach, forward selection approach and both approaches 

applied to the same data result in the same best model whose the formula is: 

best_stepwise = lm(revenue.all~ revenue.dom+ revenue.int, data = movies1)   

The models are the same. 

 

7. Conclusion 

The new regression model selection presented in this paper selects the best model from all 

possible models and the best model can be obtained even in earlier steps of the variable 

selection processes, therefore it is not always necessary to accomplish all the required 

steps especially when the number of the predictor variables is too large. Two alternative 

approaches can be used for this new model selection method, they are the any-predictors 

start-up approach and the single-predictor start-up approach, and both approaches lead to 

the same result when applied to the same data. The variables selection processes in both 

approaches is based on the statistical significance of the predictor variables, the 

significance level can be the usual values of 0.05 or 0.1 and the best model can never 

include the insignificant variables according to the usual significance levels. The any-

predictors start-up approach is better than the single-predictor start-up approach since the 

best model can be obtained in earlier steps, thus the next paper will focus on the effective 

GSJ: Volume 8, Issue 12, December 2020 
ISSN 2320-9186 1897

GSJ© 2020 
www.globalscientificjournal.com



order through which the predictor variables can be entered into the first best model so as 

to get the final best model without accomplishing all the method’s steps and with no error. 
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