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Abstract 

 

Deepfake technology has become increasingly sophisticated, posing a significant challenge to 

the integrity of digital media and exacerbating the spread of misinformation. In response to this 

growing threat, researchers have explored various approaches to detect and classify deepfake 

images from videos. However, existing methods often suffer from limitations such as low 

detection accuracy, high false positive rates, and inadequate scalability. To address these 

challenges, this paper presents a novel CNN-based architecture for automated detection and 

classification of deepfake images extracted from videos. Our approach builds upon the 

advancements in convolutional neural networks (CNNs) and incorporates multimodal fusion 

techniques to enhance the model's ability to analyse visual, auditory, and metadata information 

simultaneously. The proposed architecture utilizes a combination of early and late fusion 

methods to integrate features from different modalities, thereby improving detection accuracy 

and robustness against adversarial attacks. Through rigorous scenario-based evaluation 

methods, we meticulously assess the performance of the proposed architectural framework 

across various operational scenarios. Our findings demonstrate the efficacy of the proposed 

approach in accurately identifying and classifying deepfake images from videos, even under 

challenging conditions. Furthermore, we identify the risk and trade-offs as well as the impact 

of changes on the architecture’s performance. 
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1. Introduction 

Deepfake technology has rapidly advanced, presenting significant challenges in maintaining 

the integrity of digital content and combating the spread of misinformation. The creation of 

fake images, audios and videos have recently become popular and easier because of the 

emergence of deepfake technology. Deepfake refers to manipulated digital media such as 

images of videos where the image or video of a person is replaced with another person’s 

likeness (Almars, 2021).  Deepfake is a term that comes from the combination of the concepts 

“deep learning” and “fake”, referring to the fake content generated with deep learning which is 

Artificial Intelligence (AI) technology based. The content of the video is manipulated in such 

a way that people are made to say and do what they actually do not. The era of popular saying 

“seeing is believing” with respect to video content is actually being disproved by emergence 

of deepfakes. These give rise to propagation of fake news, fraud, identity theft, etc which are 

negative application of deepfakes.  The need to control these negative trends of deepfakes 

application necessitate this research of automated deepfake detection and classification of 

images from video. 

 

Motivated by this problem, automated detection and classification systems have emerged as 

crucial tools in identifying and mitigating the impact of deepfake content. Convolutional 

Neural Networks (CNNs) have shown promise in effectively detecting and classifying 

deepfake images and videos due to their ability to learn hierarchical representations of visual 

data. The aim of this research is to present a novel integrated CNN-based architecture 

automated detection and classification of deepfake images from Video. The specific 

contributions of this paper are: 

1. Present a review of current literature on existing CNN-based architectures for detection and 

classification of deepfake images form videos. 

2. Present a novel integrated CNN-based architecture automated detection and classification of 

deepfake images from Video but integrating multimodal fusion at the early stage and late stage 

of the CNN process.  

3. Evaluation of the integrated CNN-based architecture automated detection and classification 

of deepfake images from Video 

4. Presents the risks and trade-off in implementations of the architecture and the mpact of 

changes on different performance criteria for the architecture. 

 

The current CNN-based architecture has been modified to include a novel multimodal fusion 

that happens in two stages. The first stage is the early stage of multimodal fusion, which 

happens after the input layer. The second stage is the late stage of multimodal fusion with 

metadata, which happens after the CNN process's convolutional layer. The evaluation of the 

CCN-based architecture based on the ATAM, a scenario-based method for software 

architectural evaluation reveals that this novel architecture can be used to detect and classify 

deepfake images from videos on social media platforms. 

 

The rest of the paper is organised as follows: Section 2 is presents an overview of related 

concepts and related literature. Section 3 is discusses existing CNN-based architectures or 

detection and classicisation of deepfake from videos. Section 4 presents an evaluation of CNN-

based architectures or detection and classicisation of deepfake from videos. Section 5 presents 

the results and including the discussion of the results related to the identification of risks and 
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trade-offs as well as the impact of changes on performance criteria. Section 6 concludes the 

paper with future work. 

 

2. Overview of Related Concepts and Review of Related Literature 

 

Several research have been carried out in the area of both deepfakes creation and detection. 

The availability of deep learning tools has made the creation of deepfake easier and affordable 

since it does not require sophisticated computing devices anymore. Generative deep learning 

algorithms have progressed to a point where it is difficult to tell the difference between what 

is real and what is fake (Mirsky & Lee, 2021). 

 

2.1 Deepfake Creation 

Deepfakes have become popular due to the quality of tampered videos and also the easy-to-use 

ability of their applications to a wide range of users with various computer skills from 

professional to novice.  Deepfake techniques involve several deep learning algorithms to 

generate fake contents in the form of videos, images, texts or voices. Deepfakes are created 

using variations or combinations of generative networks (GAN) and encoder decoder networks 

(Mirsky and Wenke, 2020); (Mahmud and Sharmin, 2023).   

 

To make a deepfake video, the developer first feeds countless hours of actual video footage to 

a deep neural network, which is then “trained” to recognize detailed rhythms and traits of a 

person. This is performed to provide the algorithm with a realistic representation of how that 

individual appears from various perspectives.  The next thing is to combine the trained learning 

algorithm with computer graphics technologies to overlay real-time video of a person with AI-

generated facial and vocal patterns obtained from neural network input. 

 

The reduction of dimensions and compression of images in deepfake creation is achieved by 

the use of deep encoding model generated from deep autoencoders of deep neural network 

architecture with 4 or 5 layers representing encoding while the rest represent decoding (Cheng 

et al, 2019,  Chorowski et al, 2019). 

Face2face, a real time facial reenactment method proposed by (Fernandes et al, 2020) that 

works for any commodity webcam. Since this method uses only RGB data for source and target 

actor, it can manipulate real time Youtube video.   

Notable deepfake creation in public domain especially on social media are the Barack Obama’s 

deepfake by Jordan Peele and Tom Cruise’s deepfake by Chris Umé. Both uses GAN and lip-

syncing techniques to produce the deepfake videos.  

 

2.2 Deepfake Detection and Classification  

It is becoming increasingly difficult since synthetically generated faces are not only photo-

realistic, they are almost indistinguishable from the real thing and are considered more 

reliable. Due to the negative application of the deepfake technology it more necessary to 

develop tools that can automatically detect and classify fake and real videos. These tools are 

to look out for the following traits of deepfake which are yet to be perfected by deepfake 

generative tools. The traits are Face and body reenactment, facial expressions and body 

movements or postures, video length usually short, video sound and lips movement especially 
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where lip-syncing is poorly done, and Misalignment of facial landmarks like mouth, nose and 

eyes.  

Different methods have been proposed to detect the GAN generated images using deep 

networks. Tariq et al (2018) suggested neural network-based methods for detecting fake GAN 

videos. This method employs pre-processing techniques to analyses the statistical features of 

image and enhances the detection of fake face image created by humans (Li et al, 2018). 

Raza et al (2022), proposed a novel deepfake predictor (DFP) approach based on a hybrid of 

VGG16 and convolutional neural network architecture. The deepfake dataset based on real and 

fake faces is utilized for building neural network techniques.   

Hamza et al (2022), proposed the use of machine and deep learning-based approaches to 

identify deepfake audio. Rafique et al (2023), proposed an automated method to classify deep 

fake images by employing Deep Learning and Machine Learning based methodologies. 

Deepfake detection approach by Kaur et al (2022), uses the forged video to extract the frames 

at the first level followed by a deep depth-based convolutional long short-term memory model 

to identify the fake frames at the second level.  

Durall et al (2020), proposed a novel approach to unmasking deepfakes using a method based 

on a classical frequency domain analysis (FDA) followed by a basic classifier. Hande et al 

(2022) propose a Novel Method of Deepfake Detection by using three different models CNN 

model, CNN-LSTM model, and CNN-GRU model to train and test on the DFD dataset, DFDC 

dataset, and Custom dataset, respectively.   

Kosarkara et al (2023), developed a customized CNN algorithm to identify deepfake pictures 

from a video dataset and conducted a comparative analysis with two other methods to 

determine which one is superior. The Kaggle dataset was used to train & test the model. 

 

2.3 Review of CNN-based Architectures for Automated Detection and 

Classification of Deepfake Images from Video 

 

The rise of deepfake technology has necessitated the development of robust and efficient 

automated detection and classification systems to combat the spread of altered visual content. 

Convolutional Neural Networks (CNNs) have emerged as a popular solution to this problem 

due to their ability to learn hierarchical representations of visual data. This section provides a 

comprehensive review of existing CNN-based architectures used for automated detection and 

classification of deepfake images in video. 

 

Early Approaches. 

Early CNN-based deepfake detection architectures relied primarily on image-level features to 

identify inconsistencies and artefacts that indicated manipulation. FaceForensics (Rossler et 

al., 2019) and DeepFakeDetection (Li et al., 2020) used traditional CNN architectures such as 

AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan & Zisserman, 2014), which were pre-

trained on large-scale image datasets such as ImageNet (Deng et al., 2009). While these models 

performed reasonably well in detecting basic forms of manipulation, they struggled with more 

sophisticated deepfake techniques like facial reenactment and expression transfer. 
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Researchers have proposed specialised CNN architectures for deepfake detection and 

classification, addressing limitations in previous approaches. These architectures use novel 

components like attention mechanisms, temporal modelling, and multimodal fusion to improve 

detection accuracy and robustness. 

 

FaceForensics++, for example, introduced a spatiotemporal CNN architecture that can detect 

both spatial and temporal dependencies in video sequences. By analysing motion patterns and 

temporal inconsistencies, the model achieved cutting-edge performance in detecting deepfake 

videos. 

 

Deepfake detection relies heavily on transfer learning and domain adaptation techniques in 

CNN architectures. Researchers frequently fine-tune pretrained CNN models using domain-

specific datasets that include labelled examples of deepfake and authentic videos. This 

approach enables the model to apply knowledge gained from generic image recognition tasks 

to the task of deepfake detection. 

 

For example, transfer learning with models such as ResNet (He et al., 2016) and EfficientNet 

(Tan & Le, 2019) has been used to achieve competitive performance in deepfake detection 

tasks. By fine-tuning pretrained models on deepfake datasets, these architectures improved 

generalisation and robustness to adversarial attacks. 

 

 

 

3. CNN-based Architecture for Detection and Classification of Deepfake Images from 

Video 

 

This section discusses the existing architecture for the detection and classification of deepfakes 

and thereafter the proposed architecture. 

 

3.1. Analysis of Existing CNN-based Architectures for Deepfake Detection from Video 

We analyse two existing CNN architectures for this study – the first is the general CNN 

architecture and the second is the customised CNN. Figure 1 shows the general CNN 

architecture with following key components - input layer, convolutional layer, max pooling 

layer, dense layer, and output layer.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Typical CNN architecture. 
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Figure 2 shows a customized CNN architecture proposed by Kosarkara et al (2023). The system 

provides a framework for detecting deepfakes based on facial features. 

 

 
Figure 2. Architecture of the Existing System (Source: Kosarkar, et al, 2023) 

 

The following operations are carried out based on the architecture proposed by Kosarkar, et al. 

1. Image and facial feature extraction - The Video is first given as an input, from which 

individual image frames is retrieved. The facial landmarks detector is used to locate the position 

of the eyes, nose, and lips. Eye blinks and other facial features are extracted from the 

information in the video.   

2. Preprocessing - This phase converts the images into their numerical form. The region of 

interest (ROI) is cropped with focus on the face region, and all images are resized to 224 x 224 

pixels in resolution. Now ensures that all images are in the RGB channel. The dataset is divided 

into Training, validation, and testing sets are separated after completing the preprocessing 

phase.  

3. Customized CNN model - The customized CNN consist of a total of 20 layers detail as four 

convolution layers (conv2d) with 3 x 3 kernel, six batch normalization layers, three max-

pooling layers, four drop-out layers, one flatten layer, and two dense layers. Classification stage 

can predict whether given video is deepfake or not using this customized deep learning 

technique based on CNN model as displayed in figure 1b. 

4. Dataset - The dataset collected from the Deepfake Detection Challenge by Kaggle is used, 

242 videos, 199 of which are fictitious, while the remaining 53 are authentic. A single video 

lasts for ten seconds. To get a more even distribution of actual and fraudulent videos, 66 videos 

from the YouTube dataset acquired from Dessa. A total of 318 videos were used which consist 

of 199 fakes and 119 real. 

There are some shortcomings identified in existing system architecture and operations after 

detailed analyses of the system. They include: 
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1. Facial expression - People communicate their feelings and intentions via their facial 

expressions, making them one of the most impactful and immediate temperaments. It is 

important to note that facial emotions, such as anger or enjoyment, which may directly change 

the look of a person's face. This is not considered in the existing system. 

2. Colour and complexion is not also considered. 

3. Picture attribute at the border may be excluded in low resolution since there is no padding 

in the customized CNN model. 

3. Multimodal data from the video cannot be processed. In other words, it is difficult to combine 

information from different modalities to create a more comprehensive representation of the 

underlying data.  This study aims address this limitation by integrating multimodal fusion into 

the conventional CNN-based architecture.  

 

3.2 Multimodal Fusion and its Applications in Deepfake Detection and 

Classification 

Multimodal fusion involves combining information from different modalities to create a more 

comprehensive representation of the underlying data. This fusion process aims to exploit the 

complementary nature of different modalities to improve the performance of machine learning 

models. In the context of deepfake detection, multimodal fusion enables CNN architectures to 

analyse not only visual features from video frames but also additional modalities such as audio, 

metadata, and textual information associated with the content (Baltrušaitis et al., 2019). 

 

There are several types of multimodal fusion techniques used in CNN architectures: 

 

Early Fusion: In early fusion, features from different modalities are concatenated or combined 

at the input level before being passed through the network. This approach allows the model to 

process multimodal data simultaneously from the outset, enabling joint learning of features 

across modalities. 

 

Late Fusion: Late fusion involves extracting modality-specific features independently and 

fusing them at a later stage of the network. Separate CNN branches are trained to extract 

features from each modality, and the extracted features are then combined or aggregated before 

making final predictions. This approach enables the model to learn modality-specific 

representations before integrating them for decision-making. 

 

Attention Mechanisms: Attention mechanisms dynamically weigh the contributions of 

different modalities based on their relevance to the task at hand. By focusing attention on 

informative modalities while suppressing irrelevant ones, attention-based fusion mechanisms 

enhance the model's ability to adaptively integrate multimodal information. 

 

Multimodal fusion operates by integrating feature representations from different modalities 

into a unified feature space. This integration can occur at various stages of the CNN 

architecture, including the input layer, intermediate layers, or output layer, depending on the 

chosen fusion technique. During training, the model learns to jointly optimize the fusion 

process, leveraging the complementary strengths of each modality to improve overall 

performance.  
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There are three main reasons for the decision to integrate multimodal fussion CNN-based 

architectures for Deepfake Detection and Classification. 

 

1. Enhanced Discriminative Power: By combining visual features with additional modalities 

such as audio and metadata, multimodal fusion enables CNN architectures to capture richer 

and more discriminative representations of deepfake content (Aytar et al., 2016). 

 

2. Improved Robustness: Fusion of multiple modalities enhances the robustness of CNN 

models against adversarial attacks and manipulation techniques. By considering diverse 

sources of information, multimodal fusion helps mitigate the impact of noise and artifacts 

present in individual modalities (Baltrušaitis et al., 2019). 

 

3. Contextual Understanding: Incorporating metadata and textual information through 

multimodal fusion facilitates better contextual understanding of the content. By leveraging 

metadata such as timestamps, camera information, and user tags, CNN architectures can gain 

insights into the context surrounding the video, aiding in accurate detection and classification 

of deepfake content (Baltrušaitis et al., 2019). 

 

 

3.2. Integrated CNN-based Architecture for Detection and Classification of Deepfake 

Images from Videos  

 

Based on the identified limitation of the system we proposed an improved CNN model with 

multimodal fusion with is capable of handling multimodal data analysis from video frame 

images. CNN architectures can incorporate multimodal fusion techniques to integrate 

information from multiple modalities, such as audio and text, along with visual information 

from video frames. This can enrich the representation learned by the network and improve 

detection accuracy by leveraging complementary information sources. (Aytar et al., 2016; 

Arevalo et al., 2017; Poulinakis, 2022). 

 

The improved CNN model with multimodal fusion is presented in figure 2.  
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Figure 3. Improved CNN model for Deepfake detection and classification 
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The multimodal fusion is introduced in two layers, the input layer, where we introduce early 

fusion layer and after the feature extraction layer, the late fusion layer to cater for information 

from other modalities as against the monomodal model obtained in other models. Multimodal 

fusion can be performed at the input level by concatenating features from different modalities, 

such as visual and audio cues, into a single input representation. This approach allows the CNN 

to jointly process information from multiple modalities from the outset (Aytar et al., 2016; 

Arevalo et al., 2017).  The Late fusion involves extracting features independently from each 

modality using separate CNN branches and then fusing the extracted features at a later stage of 

the network. This approach enables the CNN to learn modality-specific representations before 

combining them for deepfake detection (Ngiam et al., 2011; Wang et al., 2018). 

 

3.3 Description of the integrated CNN-based Architecture for detection and 

classification of Deepfake images from Video 

 

The novel integrated CNN-based architecture for detection and classification of Deepfake 

images from Video has eight (8) main layers - input layers, early multimodal layer, 

convolutional Layers,   Late Multimodal Fusion with metadata, Activation Function, Pooling 

Layers, Fully Connected Layers and Output Layer. These layers are described below: 

1. Input Layers  

This is the first layer used for input and pre-processing operations. The smart key frame 

extraction algorithm by Wang, et al (2022) is used in this research to extract frames from video 

to capture images and examine them for possible deepfakes. The algorithm combines both 

scale-invariant feature transform (SIFT) feature matching algorithm and background-

difference method to solve the problem of target image detection in noisy background (like, 

dust, haze, rain and snow, etc), colour, texture and proportion.  The algorithm reduce the 

redundant frames generated by background-difference method, and SIFT features are used to 

screen the frames to select key frames with target images.  

2. Early Multimodal Fusion Layer 

This layer fusion the different modalities (audio and visual) from the extracted frame into single 

input representation and passed such to the convolutional layer for feature extraction. This will 

enhance the network to learn emotions and facial expressions. 

3. Convolutional Layers 

These layers apply convolutional filters (kernels) to the input image, extracting local features 

and spatial patterns. Convolutional operations are performed to produce feature maps, 

capturing hierarchical representations of the input. The filters will be determined by the 

patterns in the datasets. 

 

4. Late Multimodal Fusion with metadata 

The separate modalities data patterns are learned separately and fused later. With the inclusion 

of metadata, such as timestamps or camera information, along with visual and audio features 

from the feature map for improved deepfake detection. By considering additional context 

provided by metadata, the CNN can enhance its understanding of the video content and 

improve classification accuracy (Korshunov et al., 2018; Yang et al., 2021). 
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5. Activation Function  

The ReLU (Rectified Linear Unit), is used introduce non-linearity to the network, enabling it 

to learn complex relationships between features to detect deepfakes. 

6. Pooling Layers  

The max pooling is used to down sample the feature maps, reducing spatial dimensions while 

retaining important features. Hence reducing computational time and resources.  

7. Fully Connected Layers  

These layers connect every neuron from one layer to every neuron in the next layer, enabling 

high-level feature learning and classification. Fully connected layers are typically followed by 

activation functions. 

8. Output Layer 

The final layer of the CNN produces the network's output, which could be a probability 

distribution over different classes (classification task) or a continuous value (regression task). 

In this case the output is a binary classifier of real or fake. 

The inclusion of multimodal fusion with metadata in the CNN model will enable the model to 

detect and classify deepfake images from videos irrespective of the type of dataset whether 

multimodal or monomodal. The improved CNN model is enhanced with ability to carry out 

multimodal and monomodal data analysis. 

 

4. Evaluation of the CNN-based Architecture for Detection and Classification of Deepfake 

Images from Video 

 

Architecture evaluations can take place at any stage of the software development process. 

During the early stages of design, they can be used to compare and identify the strengths and 

weaknesses of various architectural options. They can also be used to assess existing systems 

prior to future maintenance or enhancements, as well as to detect architectural drift and erosion 

(Maurya, 2010). 

Software architecture evaluation methods are classified into four categories: experience-based, 

simulation-based, and mathematical modelling-based and scenario-based methods. Methods in 

the categories can be used independently or combined to evaluate different aspects of software 

architecture as needed. 

 

 

4.1 Scenario: Detection and Classification of Deepfake Images on a Social Media 

Platform 

 

Description 
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In this scenario, we consider the automated detection and classification of deepfake images 

from video on a social media platform. The scenario revolves around a user uploading a video 

containing potentially deepfake content to the platform, triggering the platform's automated 

detection and classification system. 

 

User Action 

A user uploads a video to the social media platform, which may contain potentially manipulated 

content, such as a deepfake video of a public figure engaging in scandalous activities. 

The video is processed by the platform's automated detection and classification system, which 

utilizes a CNN-based architecture for analysis. 

 

System Response 

The CNN-based architecture analyzes the uploaded video to detect and classify any instances 

of deepfake manipulation. 

If the video is classified as containing deepfake content, the system takes appropriate action, 

such as flagging the video for further review or removing it from the platform. 

If the video is classified as authentic, it is allowed to remain on the platform without 

intervention. 

 

Evaluation Criteria 

Detection Accuracy: The accuracy of the CNN-based architecture in correctly identifying 

deepfake content within uploaded videos. 

False Positive/Negative Rates: The rate of false positives and false negatives generated by the 

system, indicating the system's propensity for both incorrectly flagging authentic videos and 

failing to detect deepfake content, respectively. 

Computational Efficiency: The speed and computational resources required by the architecture 

to process and analyze uploaded videos in real-time. 

Scalability: The ability of the system to handle a large volume of video uploads without 

sacrificing performance or accuracy. 

Robustness: The resilience of the architecture against adversarial attacks and emerging 

deepfake techniques, ensuring continued effectiveness in the face of evolving threats. 

By evaluating the CNN-based architecture against these criteria within the context of the 

described scenario, we can assess its suitability and effectiveness for automated detection and 

classification of deepfake images on social media platforms. 

 

 

 

 

4.2 Scenario-based evaluation of CNN-based architecture for Detection and 

Classification of Deepfake Images on a Social Media Platform 

 

This study choses scenario-based evaluation method which is well suited for evaluating 

architectures that have not yet been implemented. Scenario-based methods use specific 

scenarios or use cases to evaluate how well a software architecture meets the functional and 

non-functional requirements of a system. A scenario is a description of an interaction or event 

that involves the system and its environment. Examples of scenarios are user actions, system 
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responses, failures, faults, attacks, or changes.  Scenario-based methods involve defining 

specific use cases or scenarios, such as system functionalities or failure responses, to assess the 

architecture's performance (Bass et al., 2012). Scenario-based methods are used to identify 

risks and trade-offs, ensuring alignment with business and technical needs. These methods 

effectively reveal vulnerabilities and assess the impact of changes on system performance.  

 

For evaluating the proposed architecture, this study adopts the Architecture Trade-off Analysis 

Method (ATAM). ATAM is a systematic and iterative method used to evaluate software 

architecture by considering multiple quality attributes and identifying trade-offs among them 

(Bass et al., 2012). The ATAM procedure promotes the following steps - preparation, 

evaluation meeting, Identify Architectural Approaches, Analyse Trade-offs, and 

Documentation and Decision-Making. Table 1 provides a description of how the ATAM would 

apply to the scenario of automated detection and classification of deepfake images on a social 

media platform. The table highlights the steps and their specific application to the scenario 

using CNN-based architectures. 

 

Table 1. Application of ATAM to the scenario related to detection and classicisation of 

deepfake images from video used CNN-based architectures.  

 

Step Detailed Description of the Step Specific Application to the Scenario 

Preparation Define stakeholders, identify 

architectural goals and 

constraints, and develop 

scenarios representing user 

actions, system responses, and 

potential failures. 

Define stakeholders: Developers, 

system administrators, content 

moderators, end-users. Identify goals 

and constraints: Emphasize accurate 

detection, real-time processing, 

scalability, and robustness. Develop 

scenarios: User uploads video, system 

processes for deepfake detection. 

Evaluation 

Meeting 

Conduct meetings with 

stakeholders to discuss the 

architectural design, present 

scenarios, and elicit feedback. 

Meeting discussion: Stakeholders 

evaluate design's alignment with 

requirements. Presentation of 

scenarios: Discussion on system's 

ability to meet requirements. 

Stakeholder feedback: Insight into 

design's strengths, weaknesses, and 

potential trade-offs. 

Identify 

Architectural 

Approaches 

Explore alternative architectural 

approaches to address identified 

concerns or trade-offs. Evaluate 

the feasibility and implications of 

adopting these architectural 

approaches in the context of the 

automated detection and 

classification system. 

Architectural approaches: Consider 

microservices, event-driven 

architecture, distributed computing. 

Feasibility and implications: Assess 

impact on detection accuracy, 

computational efficiency, scalability, 

and robustness. 

Analyze 

Trade-offs 

Analyze trade-offs between 

architectural approaches in terms 

Compare trade-offs, e.g., detection 

accuracy vs. computational efficiency. 
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of their impact on system 

performance and effectiveness. 

Assess risks, e.g., complexity, 

maintenance overhead. Prioritize trade-

offs based on significance to system's 

success. 

Documentation 

and Decision-

Making 

Document evaluation findings, 

decisions, and recommendations 

based on stakeholder feedback 

and trade-off analysis. 

Document stakeholder feedback, 

identified trade-offs, recommended 

approaches. Make informed decisions 

on architectural changes. Iterate design 

based on feedback and to address trade-

offs. 

 

 

 

5. Results and Discussion 

 

This evaluation aims to assess the proposed CNN-based system architecture for automated 

detection and classification of deepfake images from videos. The architecture integrates 

multimodal fusion techniques to enhance the model's ability to analyze multimodal data, 

including visual, auditory, and metadata information. By leveraging multimodal fusion, the 

architecture aims to improve detection accuracy, reduce false-positive rates, enhance 

computational efficiency, ensure scalability, and bolster robustness against adversarial attacks. 

 

 

 

 

5.1 Identification of Risks and Trade-offs 

 

a. Risk: Overfitting - Introducing multimodal fusion with metadata may increase the risk of 

overfitting, where the model memorizes the training data instead of learning generalizable 

features. Regularization techniques such as dropout (Srivastava et al., 2014) and batch 

normalization (Ioffe & Szegedy, 2015) can mitigate this risk by introducing noise during 

training and stabilizing the learning process. 

 

b. Trade-off: Detection Accuracy vs. Computational Efficiency - While multimodal fusion can 

improve detection accuracy by leveraging complementary information from multiple 

modalities, it may increase computational complexity, leading to slower inference times. 

Techniques such as model quantization (Gupta et al., 2015) and efficient network architectures 

(Tan & Le, 2019) can address this trade-off by reducing the computational cost without 

sacrificing accuracy. 

 

c. Vulnerability: Metadata Reliability - Relying on metadata for multimodal fusion introduces 

vulnerabilities, as inaccurate or biased metadata can mislead the model. Data validation and 

preprocessing techniques (Géron, 2019) are essential for ensuring the reliability and 

consistency of metadata, thereby mitigating this vulnerability. 
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d. Trade-off: Robustness vs. Complexity - Enhancing the architecture with multimodal fusion 

and metadata integration may improve robustness against adversarial attacks but can also 

increase model complexity. Techniques such as model modularization (Buschmann et al., 

1996) and abstraction can help manage this trade-off by simplifying the architecture while 

maintaining robustness. 

 

5.2 Impact of Changes on Performance Criteria 

 

a. Detection Accuracy: Multimodal fusion with metadata enriches the model's representation 

by incorporating additional context from multiple modalities, leading to improved detection 

accuracy (Arevalo et al., 2017; Aytar et al., 2016). 

 

b. False Positive/Negative Rates: The integration of multimodal fusion techniques helps reduce 

false positives/negatives by providing a more comprehensive understanding of the input data 

(Dolhansky et al., 2020; Li et al., 2020). 

 

c. Computational Efficiency: Techniques such as model pruning (Howard et al., 2017) and 

hardware acceleration (Sze et al., 2017) optimize computational efficiency by reducing the 

model's size and accelerating inference speed. 

 

d. Scalability: Distributed computing solutions (Abadi et al., 2016; Shi et al., 2020) enable the 

architecture to scale effectively, allowing it to handle large volumes of data and increasing its 

applicability in real-world scenarios. 

 

e. Robustness: Multimodal fusion enhances robustness against adversarial attacks by 

incorporating diverse sources of information, making it more challenging for attackers to 

manipulate the model (Goodfellow et al., 2014; Madry et al., 2018). 

 

4. Feedback and Iterative Refinement 

The evaluation reveals the need for balancing trade-offs between detection accuracy, 

computational efficiency, and model robustness. Feedback includes optimizing regularization 

techniques, model compression, and robustness against adversarial attacks. Iterative refinement 

involves optimizing the architecture based on feedback, modularizing the model, and updating 

it to adapt to evolving threats and challenges in deepfake detection. 

 

6. Conclusion 

 

This research contributes to the ongoing development of effective solutions for combating 

deepfake-related threats. This research study presented a novel CNN-based architecture for 

automated detection and classification of Deepfake images from Video. The CNN-based 

architecture incorporates multimodal fusion at two stages – one at the early stage and the 

second at the late stage. The evaluation of the architecture produced risks, trade-offs, and 

vulnerabilities, and the impact of changes on several performance criteria including Detection 

Accuracy, computational complexity, metadata reliability, etc.  
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While CNN-based architectures have made progress in detecting deepfakes, there are still 

several challenges to overcome. The rapid evolution of deepfake techniques necessitates 

ongoing architectural innovation to keep up with emerging threats. Furthermore, the scarcity 

of large-scale labelled datasets creates a significant bottleneck in training robust and 

generalizable models. 

 

Future research should focus on exploring novel architectural paradigms, integrating 

multimodal information, and improving CNN model interpretability and explainability in order 

to find more effective solutions. By addressing these challenges and encouraging 

interdisciplinary collaboration, the field can move closer to more reliable and trustworthy 

automated detection systems for combating the spread of deepfake content. 
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