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ABSTRACT: 

This work presents a One Step Numerical Method for the direct solution of general first order Ordinary 
Differential Equations. The formulawas developed using the interpolation techniques as basis function 
and augmented by adopting the improved Euler – Cauchy approach to solve some Initial Value 
Problemsof Oscillatory and Exponential Ordinary Differential Equations. Accuracy of the method was 
tested with numerical examples and the results showed a good performance better than others. The 
method results were compared with Cauchy – Euler result and error analysis was computed. 
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1.0 INTRODUTION 

In this paper, we present a simpler method for computing numerical solution to the initial value problems  

𝑦𝑦′ = 𝑓𝑓(𝑥𝑥,𝑦𝑦),𝑦𝑦(𝑥𝑥𝑜𝑜) = 𝑦𝑦𝑜𝑜        (1) 

and estimating the errors of the computed solutions using a basis function. 

Theorem 1. [2],[4] 

Let 𝑓𝑓(𝑥𝑥) be a continuous function of 𝑥𝑥 and 𝑦𝑦. A function 𝑦𝑦(𝑥𝑥) that is continuous on an open 
interval 𝐼𝐼 which contains 𝑥𝑥𝑜𝑜  is a solution of the Initial value problem (1) if and only if 𝑦𝑦(𝑥𝑥) is a 
solution of the integral equation  

𝑦𝑦(𝑥𝑥) = 𝑥𝑥𝑜𝑜 + ∫ 𝑓𝑓�𝑥𝑥,𝑦𝑦(𝑥𝑥)�𝑑𝑑𝑥𝑥𝑥𝑥
𝑥𝑥𝑜𝑜

      (2) 

Proof: 

Suppose that 𝑦𝑦(𝑥𝑥) satisfies the initial value problem (1) on an interval 𝐼𝐼 containing 𝑥𝑥𝑜𝑜 , since 
𝑦𝑦(𝑥𝑥) satisfies the differential equation 𝑦𝑦(𝑥𝑥) = 𝑓𝑓�𝑥𝑥,𝑦𝑦(𝑥𝑥)� on 𝐼𝐼, 𝑦𝑦(𝑥𝑥) is a continuous function of 
𝑥𝑥 on 𝐼𝐼. 𝑓𝑓�𝑥𝑥, 𝑦𝑦(𝑥𝑥)� is also a continuous function of 𝑥𝑥 on 𝐼𝐼, since 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is a continuous function 
of 𝑥𝑥 and 𝑦𝑦. Consequently, 𝑓𝑓�𝑥𝑥,𝑦𝑦(𝑥𝑥)� is integrable on 𝐼𝐼. Integrating the differential equation 
𝑦𝑦(𝑥𝑥) = 𝑓𝑓�𝑥𝑥,𝑦𝑦(𝑥𝑥)�, we obtain 
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𝑦𝑦(𝑥𝑥) − 𝑦𝑦(𝑥𝑥𝑜𝑜) = ∫ 𝑦𝑦(𝑥𝑥)𝑑𝑑𝑥𝑥𝑥𝑥
𝑥𝑥𝑜𝑜

= ∫ 𝑓𝑓�𝑥𝑥,𝑦𝑦(𝑥𝑥)�𝑑𝑑𝑥𝑥𝑥𝑥
𝑥𝑥𝑜𝑜

    (3) 

For 𝑥𝑥 ∈ 𝐼𝐼. Imposing the initial condition 𝑦𝑦(𝑥𝑥𝑜𝑜) = 𝑥𝑥𝑜𝑜 , hence, 𝑦𝑦(𝑥𝑥) is the solution of the initial 
value problem (1) for 𝑥𝑥 ∈ 𝐼𝐼, then 𝑦𝑦(𝑥𝑥) satisfies the integral equation (2) for 𝑥𝑥 ∈ 𝐼𝐼.  Now suppose 
that 𝑦𝑦(𝑥𝑥) is a continuous function of 𝑥𝑥 on some interval 𝐼𝐼 containing 𝑥𝑥𝑜𝑜  and that 𝑦𝑦(𝑥𝑥) satisfies 
the integral equation (2). Substituting 𝑥𝑥 = 𝑥𝑥𝑜𝑜  into the integral equation (2), we see that 
𝑦𝑦(𝑥𝑥)satisfies the initial condition 𝑦𝑦(𝑥𝑥𝑜𝑜) = 𝑥𝑥𝑜𝑜 . Differentiating the integral equation (2), we find 
that𝑦𝑦(𝑥𝑥) satisfies the differential equation (1) for 𝑥𝑥 ∈ 𝐼𝐼. So if 𝑦𝑦(𝑥𝑥) satisfies the integral equation 
(2) for 𝑥𝑥 ∈ 𝐼𝐼, 𝑦𝑦(𝑥𝑥) satisfies the initial value problem (1) for 𝑥𝑥 ∈ 𝐼𝐼. 

Applying this theorem, it is established that the solution of initial value problems (1) on the 
interval (𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) is (3). Many scholars [1], [3] have solved the initial value problems using 
various methods with the aim of finding the value of the approximate solution 𝑦𝑦𝑛𝑛+1which 
depends on the solution 𝑦𝑦(𝑥𝑥) on the interval (𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) and the function 𝑓𝑓 in the set  

𝑆𝑆 = {(𝑥𝑥,𝑦𝑦)|𝑥𝑥𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑛𝑛+1, 𝑦𝑦(𝑥𝑥)|𝑥𝑥𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑛𝑛+1    (4) 

2.0 THE DERIVATIVE METHOD 

2.1 Derivation of the Numerical Method 

Consider the basis function is of the type 

𝐹𝐹(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝜆𝜆𝑥𝑥 + 𝐵𝐵𝑥𝑥2 + 𝐶𝐶𝑥𝑥 + 𝐷𝐷      (5) 

Which is oscillatory and exponential function, where 𝐴𝐴,𝐵𝐵,𝑎𝑎𝑛𝑛𝑑𝑑 𝐶𝐶 are determined coefficients 

and 𝐷𝐷 is a constant. 𝜆𝜆 is varies to obtained the robustness of the derived Numerical Method. 

Let 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓𝑛𝑛 , 𝐹𝐹′′ (𝑥𝑥) = 𝑓𝑓𝑛𝑛1, 𝐹𝐹′′′ (𝑥𝑥) = 𝑓𝑓𝑛𝑛2, 

Then, the three consecutives derivatives give 

𝑓𝑓𝑛𝑛 = 𝐴𝐴𝜆𝜆𝑒𝑒𝜆𝜆𝑥𝑥 + 2𝐵𝐵𝑥𝑥 + 𝐶𝐶       (6) 

𝑓𝑓𝑛𝑛1 = 𝐴𝐴𝜆𝜆2𝑒𝑒𝜆𝜆𝑥𝑥 + 2𝐵𝐵        (7) 

𝑓𝑓𝑛𝑛2 = 𝐴𝐴𝜆𝜆3𝑒𝑒𝜆𝜆𝑥𝑥          (8) 

Through expansion from (8), (7) and (6) 

𝐴𝐴 = 𝑓𝑓𝑛𝑛2

𝜆𝜆3𝑒𝑒𝜆𝜆𝑥𝑥
 ,  𝐵𝐵 = 𝑓𝑓𝑛𝑛1

2
− 𝑓𝑓𝑛𝑛2

2𝜆𝜆
,  𝐶𝐶 = 𝑓𝑓𝑛𝑛 −

𝑓𝑓𝑛𝑛2

𝜆𝜆2 − 𝑥𝑥 �𝑓𝑓𝑛𝑛1 −
𝑓𝑓𝑛𝑛2

𝜆𝜆
�   (9) 

Basically, it is a known fact that  

𝐹𝐹(𝑥𝑥𝑛𝑛+1) − 𝐹𝐹(𝑥𝑥𝑛𝑛) = 𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛  

Hence,  

𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 = �𝐴𝐴𝑒𝑒𝜆𝜆𝑥𝑥𝑛𝑛+1 + 𝐵𝐵𝑥𝑥𝑛𝑛+1
2 + 𝐶𝐶𝑥𝑥𝑛𝑛+1 + 𝐷𝐷� − (𝐴𝐴𝑒𝑒𝜆𝜆𝑥𝑥𝑛𝑛 + 𝐵𝐵𝑥𝑥𝑛𝑛2 + 𝐶𝐶𝑥𝑥𝑛𝑛 + 𝐷𝐷) 
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= 𝐴𝐴�𝑒𝑒𝜆𝜆𝑥𝑥𝑛𝑛+1 − 𝑒𝑒𝜆𝜆𝑥𝑥𝑛𝑛 � + 𝐵𝐵(𝑥𝑥𝑛𝑛+1
2 − 𝑥𝑥𝑛𝑛2) + 𝐶𝐶(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛)   (10) 

By simplification, 

�𝑒𝑒𝜆𝜆𝑥𝑥𝑛𝑛+1 − 𝑒𝑒𝜆𝜆𝑥𝑥𝑛𝑛 � = 𝑒𝑒𝜆𝜆𝑥𝑥𝑛𝑛 (𝑒𝑒𝜆𝜆ℎ − 1) , (𝑥𝑥𝑛𝑛+1
2 − 𝑥𝑥𝑛𝑛2) = (2𝑛𝑛 + 1)ℎ2 and (𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛) = ℎ 

Therefore, from 𝑥𝑥𝑛𝑛 = 𝑎𝑎 + 𝑛𝑛ℎ,  

𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 =
𝑓𝑓𝑛𝑛2

𝜆𝜆3 �𝑒𝑒
𝜆𝜆ℎ − 1� + �

𝑓𝑓𝑛𝑛1

2
−
𝑓𝑓𝑛𝑛2

2𝜆𝜆
� (2𝑛𝑛 + 1)ℎ2 + �𝑓𝑓𝑛𝑛 −

𝑓𝑓𝑛𝑛2

𝜆𝜆2 − 𝑥𝑥 �𝑓𝑓𝑛𝑛1 −
𝑓𝑓𝑛𝑛2

𝜆𝜆
�� ℎ 

and we now have the numerical scheme 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ𝑓𝑓𝑛𝑛 + 1
2
ℎ2𝑓𝑓𝑛𝑛1 −

1
𝜆𝜆3 𝑓𝑓𝑛𝑛2 �1 + 1

2
ℎ2𝜆𝜆2 + ℎ𝜆𝜆 − 𝑒𝑒𝜆𝜆ℎ�  (11) 

The existence and uniqueness of the solution of the initial value problem (1) is guaranteed by the 
following theorem: 

Theorem 2 [3] 

We assume that 𝑓𝑓(𝑥𝑥,𝑦𝑦) satisfies the following conditions: 

(i) 𝑓𝑓(𝑥𝑥,𝑦𝑦) is a real function 

(ii) 𝑓𝑓(𝑥𝑥,𝑦𝑦) is defined and continuous in the strip 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏] , 𝑦𝑦 ∈ (−∞,∞) 

(iii) there exists a constant L such that for any 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏] and any 𝑣𝑣1 and 𝑣𝑣2, then 

|𝑓𝑓(𝑥𝑥, 𝑣𝑣1) − 𝑓𝑓(𝑥𝑥, 𝑣𝑣2)| ≤ 𝐿𝐿|𝑣𝑣1 − 𝑣𝑣2| where L is called the Lipschitz constant. Then for any 𝑦𝑦𝑜𝑜 , the 
initial value problem (1) has a unique solution 𝑦𝑦(𝑥𝑥) for 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏].  

The proof to this theorem is all over the textbooks on Numerical Methods. [1, 2] 

However, the properties of the Numerical Scheme (11) to establish the effectiveness, and 
robustness of the method is done and will be in the next paper. 

3.0 IMPLEMENTATION OF THE METHODS 

3.1 The Implementation of the Numerical Scheme (11) on First Order ODE 
Numerical Scheme (11) was tested on some problems and the results are shown below: 

Problem 1. 𝑦𝑦′ = 𝑦𝑦,  𝑦𝑦(0) = 1, 0 ≤ 𝑥𝑥 ≤ 1, 𝜆𝜆 = 1, which is autonomous 

Hence, we have the result 

Table 1: Results of problem 1, for ℎ = 0.1 
 

𝑋𝑋𝑛𝑛  Method (11) Exact Errors 

    0.00 1.000000000000000 1.000000000000000 0.000000000000000000 

GSJ: Volume 8, Issue 4, April 2020 
ISSN 2320-9186 17

GSJ© 2020 
www.globalscientificjournal.com



    0.10 1.105170918075648 1.105170918075648 0.000000000000000000     

    0.20 1.221402758160170 1.221402758160170 2.220446049250313e-16 

    0.30 1.349858807576003 1.349858807576003 2.220446049250313e-16 

    0.40 1.491824697641271 1.491824697641270 4.440892098500626e-16 

    0.50 1.648721270700129 1.648721270700128 6.661338147750939e-16 

    0.60 1.822118800390510 1.822118800390509 8.881784197001252e-16 

    0.70 2.013752707470478 2.013752707470477 1.332267629550188e-15 

    0.80 2.225540928492469 2.225540928492468 1.332267629550188e-15 

    0.90 2.459603111156951 2.459603111156950 1.332267629550188e-15 

    1.00 2.718281828459047 2.718281828459046 1.332267629550188e-15 

 

 

Figure 1: Graphical representation of problem 1 results on table 1 showing the convergence of 

the method. 

 

Problem 2. 𝑦𝑦′ = 𝑥𝑥 + 𝑦𝑦,  𝑦𝑦(0) = 1, 0.0 ≤ 𝑥𝑥 ≤ 1.0, 𝜆𝜆 = 1, ℎ = 0.1, which is non - autonomous 

Hence, we have the result 

Table 2: Results of problem 2, for ℎ = 0.1 
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𝑋𝑋𝑛𝑛  Method (11) Exact Errors 

   0.00 1.000000000000000 1.000000000000000 0.0000000000000000000 

   0.10 1.110341836151296 1.110341836151295 2.220446049250313e-16  

   0.20 1.242805516320340 1.242805516320340 8.881784197001252e-16  

   0.30 1.399717615152007 1.399717615152007 6.661338147750939e-16  

    0.40 1.583649395282542 1.583649395282541 1.332267629550188e-15 

    0.50 1.797442541400258 1.797442541400256 1.554312234475219e-15 

    0.60 2.044237600781020 2.044237600781018 2.220446049250313e-15 

    0.70 2.327505414940955 2.327505414940953 2.220446049250313e-15 

    0.80 2.651081856984938 2.651081856984936 2.220446049250313e-15 

   0.90 3.019206222313903 3.019206222313899 3.552713678800501e-15 

   1.00 3.436563656918095 3.436563656918091 3.552713678800501e-15 

 

 

Figure 3: Graphical representation of problem 2 results on table 2 showing the convergence of 

the method. 

 

3.1.1Comparison of Results 

The result of problem𝑦𝑦′ = 𝑥𝑥 + 𝑦𝑦,  𝑦𝑦(0) = 1, 0.0 ≤ 𝑥𝑥 ≤ 1.0, 𝜆𝜆 = 1, ℎ = 0.1, of Method(11) 
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is compared with Euler – Cauchy method, which clearly revealed that method (11) is better 

Table 3: Comparison of results between Derived Method and Euler – Cauchy Method 

𝑋𝑋𝑛𝑛  Method (11) Euler- Cauchy Exact                                  

   0.00 1.0000000 1.0000000 1.0000000     

   0.10 1.1103418 1.1100000 1.1103418      

   0.20 1.2428055 1.2425750 1.2428055      

   0.30 1.3997176 1.3996268 1.3997176      

    0.40 1.5836493 1.5837303 1.5836493     

    0.50 1.7974425 1.7977322 1.7974425     

    0.60 2.0442376 2.0447791 2.0442376     

    0.70 2.3275054 2.3283485 2.3275054     

    0.80 2.6510818 2.6522840 2.6510818     

   0.90 3.0192062 3.0208337 3.0192062     

   1.00 3.4365636 3.4386926 3.4365636     

 

 

Figure 3: The graphical representation of problem 2 results on table 3 showing the comparison of 

results of convergence of the method. 

 

3.1.2 Error Analysis of the New Method and Euler – Cauchy Method 
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Table 4: Error analysis of results of problem 2 in comparing derived method (11) with Euler – 
Cauchy method 

Xn Error Method (11) Error Euler 
0.00 0.0000000000E+00 0.0000000 
0.10 2.2204460493E-16 0.0003418 
0.20 8.8817841970E-16 0.0002305 
0.30 6.6613381478E-16 0.0000908 
0.40 1.3322676296E-15 0.0000809 
0.50 1.5543122345E-15 0.0002897 
0.60 2.2204460493E-15 0.0005415 
0.70 2.2204460493E-15 0.0008431 
0.80 2.2204460493E-15 0.0012021 
0.90 3.5527136788E-15 0.0016275 
1.00 3.5527136788E-15 0.0021289 

 

 

 

Figure 4: Graphical representation of problem 1 results on table 4 showing the error analysis of 

the comparison in table 4 of convergence of the method. 

 

From this, with other examples, it shows the method converges faster which indicates that the 
method (11) is effective and robust with the properties. 

4.0 CONCLUSION AND RECOMMENDATION 

We have presented a One Step Numerical Formula for the direct solution of general first order Ordinary 
Differential Equations. The formula wasdeveloped using the interpolation techniques as basis function 
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and augmented by adopting the improved Euler – Cauchy method approach for first order ODE problems. 
The accuracy of the method was tested with numerical examples and the results showed a good 
performance. 
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