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Abstract

Developing computer models is a natural part of scientific computing. These models typically combine
components of mature scientific software of varying levels of complexity. Using low-level software libraries
leads to a better performance when running the computer model, but slows down and distracts from
model development because of the need to deal with software related technical details. High-level
interactive programming environments such as Python simplify and speed up development of computer
models but the speed of the numerical solution of the model may be unacceptable for many research
problems. One way to solve such problems is to write Software wrappers and make classical low level
sources available in a Python environment.
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1. Introduction

Developing computer models is a natural part of scientific computing. These models typically combine
components of mature scientific software of varying levels of complexity. Using low-level software libraries
leads to a higher performance when running the computer model, but slows down and distracts from
model development because of the need to deal with software related technical details. High-level
interactive programming environments such as Python simplify and speed up development of computer
models, however the performance of the numerical solution of the model may be unacceptable for many
research problems.
One way to overcome these problems is to write software wrappers which make classical low level
software available under a Python environment. An alternative is to re-implement classical software
packages in modern computer languages such as Python. However, this is a very time consuming
procedure. Particularly this is not just a formal translation and needs well trained scientists who are
not just specialists in computer science but also in the particular field where the problems solved are
coming from. In any case the related problems to be solved in this context are highly complex and need
interdisciplinary knowledge.
One class of problems which appear in a large number of different fields is the solution of nonlinear
equations and more so the solution of systems of nonlinear equations. The classical fields in which such
problems naturally arise range from structural mechanics to fluid dynamics. These problems frequently
appear in the context of partial differential equations. If these problems are discretized then large
scale nonlinear systems of algebraic equations need to be solved. Further applications steam from
the bifurcation analysis of nonlinear systems of algebraic equation. One property of the majority of
nonlinear problems is that they mostly cannot be solved in a closed analytic form. As a consequence,
such problems have to be solved by iterative methods. This adds a further level of complexity to the
solution procedure.
Many important applications require the numerical treatment of nonlinear finite-dimensional systems of
n equations

F (x, τ) = 0,

where the solution x must be studied as a function of a parameter τ . Standard continuation procedures
based on τ -parametrization (see Wacker [14]) exhibit difficulties near points, at which the Jacobian
matrix DFx is singular. These so-called critical points are either turning points or bifurcation points.
Numerical pathfollowing beyond turning points may be performed by an explicit change of the embedding
(replacing τ by some appropriate different parameter, see e.g. Anselone and Moore [1] and Deuflhard
[7]). Chapter 3 of the present thesis deals with some implicit change of the embedding realized by
means of a special (rank-deficient) Newton method for the extended variable F (x, τ). This method,
which basically seems to date back to suggestions of Haselgrove [10], is proved to converge locally
and quadratically (like Newton’s method), as long as bifurcation points are excluded. To speed up the
computations, special Jacobian rank-1 updates are suggested and analyzed. This Newton’s method is
naturally combined with a discrete tangent continuation.

1.1 Statement of the Problem

Several forms of research have been conducted on numerical continuation. In this work, we computed
some numerical codes for the numerical continuation method of systems for algebraic equations and
made them it available to Python. The result of the computer model will be applied for solve some

1
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Section 1.2. Aim and Objectives of the Study Page 2

typical problems for nonlinear systems of algebraic equations.

1.2 Aim and Objectives of the Study

This research aims at constructing software that can find a numerical continuation. We shall achieve
this by the following objectives:

1. Study the theoretical background of the Newton method and of the continuation method.

2. Develop a python codes to deal with the Newton method and the continuation method.

3. Apply the python codes to solve two numerical examples and analyse the obtained results.

1.3 Scope and Limitations of Study

The general intent of this study is to find the numerical continuation method with a focus on nonlinear
systems of algebraic equations. This study will mainly identify and assess the numerical continuation
method and present the numerical codes in python.
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2. Mathematical Background

In this chapter we review some of the mathematical concepts that we will be use in this essay.

2.0.1 Kronecker delta. This is a function of two variables, usually just non-negative integers. The
function is 1 if the variables are equal, and 0 otherwise and is denoted by

δi,p :=

{
1, if p = i

0, if p 6= i.
(2.0.1)

2.0.2 Monotonic Decreasing. A function f : R −→ R is said to be monotonic decreasing, when
x ≤ y implies that f(x) ≥ f(y).

2.0.3 Monotonic Increasing. A function f : R −→ R is said to be monotonic increasing, when x ≤ y
implies that f(x) ≤ f(y).

2.0.4 Definition (Vector Norm). A vector norm on the vector space X is a function || · || : X −→ R
which satisfies the following properties:

1. ||x|| ≥ 0 for all x ∈ X

2. ||x|| = 0 if and only if x = 0

3. ||αx|| = |α|||x|| for all α ∈ R and x ∈ X

4. ||x + y|| ≤ ||x||+ ||y|| for all x,y ∈ X

2.0.5 Definition (Lipschitz Continuity). A function f : Rn −→ Rm is said to be Lipschitz continuous
if there exists a constant L > 0 such that for all x, y ∈ Rn it holds that||f(x)− f(y)|| = L|x− y|. L
is called a Lipschitz constant.

2.0.6 Definition. Linear Operator Let (X, || · ||X), (Y, || · ||Y ) be two normed vector spaces and F :
X −→ Y be an operator. F is called linear operator if for all x, y ∈ X and for all α, β ∈ R it holds
that F (αx+ βy) = αF (x) + βF (y).

2.0.7 Operator Norm. Let (X, || · ||X), (Y, || · ||Y ) be two normed vector spaces and F : X −→ Y be a
linear operator. The operator norm is defined as |||F ||| := sup{||F (x)||Y : x ∈ X where ||x||X ≤ 1}.

2.0.8 Definition (Open Ball). Let (X, || · ||X) be a normed vector space. The open ball centered at
a ∈ X with Radius r > 0 denoted by B(a, r) is defined to be the set B(a, r) := {x ∈ X ‖x− a‖X < r}.
If X = R, the open ball centered at a ∈ R with radius r > 0 is B(a, r) = {x ∈ R : ‖x− a‖ < r} =
(a− r, a+ r).

2.0.9 Definition (Closed Ball). Let (X, || · ||X) be a normed vector space. The closed ball centered at
a ∈ X with Radius r > 0 denoted by B̄(a, r) is defined to be the set B̄(a, r) := {x ∈ X ‖x− a‖X ≤ r}.
If X = R, the closed ball centered at a ∈ R with radius r > 0 is B̄(a, r) = {x ∈ R : ‖x− a‖ ≤ r} =
[a− r, a+ r].

2.0.10 Definition (Convergence). [13]: Let xn be a sequence that converges to x∗, where xn 6= x∗ .
xn is said to converge to x∗ of order α if there exist constants µ > 0 and α > 0, such that

lim
n−→∞

|xn+1 − x∗|
|xn − x∗|α

= µ. (2.0.2)

The case α = 1 is called linear convergence and the case α = 2 is called quadratic convergence.

3
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2.0.11 Definition (Locally Convergence). An iterative method is locally convergent if approximations
xk, where k ∈ N resulting from the method are guaranteed to converge to a solution x∗ when the initial
approximation x0 is already chosen close enough to the solution.

2.0.12 Definition (Globally Convergence). An iterative method that converges for an arbitrary initial
guess x0 is said to be globally convergent.
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3. Newton Method

Over the decades, we learned how to solve equations using various algebraic methods such as the
substitution method, elimination method, and graphical methods. However, when these methods are
not successful, we use the concept of numerical methods. Numerical methods are used to approximate
solutions of equations when exact solutions can not be determined via algebraic methods [13]. This
chapter deals with the Newton method as such, a numerical method. Section 3.1 briefly describes this
algorithm when it is applied to system of equations as well as the main components it uses. Section
3.2 focuses on the convergence properties of the Newton method with respect to systems of equations.

3.1 Newton Method for System of Equations

The procedure of the Newton method applied to system of equations is an iterative algorithm which is
described after introducing the notions of a system of equations as well as the Jacobian matrix which
is as follows:

1. System of Equations: The system of equations consists of n equations and n variables depicted
below, where n ∈ N:

f1(x1, x2, x3, . . . , xn) = 0

f2(x1, x2, x3, . . . , xn) = 0

f3(x1, x2, x3, . . . , xn) = 0

...

fn(x1, x2, x3, . . . , xn) = 0

This system of equations can be denoted as

f(x) = 0,

where 0 denotes the zero vector.

2. Jacobian Matrix: The Jacobian matrix which belongs to the function f : Rn −→ Rn is denoted
as Df(x) and consists of n rows and n columns. The entry aij in this matrix is the derivative of
the function fi with respect to the variable xj . Hence, the Jacobian matrix reads as follows:

Df(x) =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fn(x)
∂x1

· · · ∂fn(x)
∂xn

 . (3.1.1)

3. Algorithm: The Newton method is an iterative algorithm following the procedure below:

(a) Choose an initial guess x0

(b) For all m = 0, 1, 2, . . . n ∈ N

5
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Section 3.2. Convergence of the Newton Method Page 6

i. Compute the Jacobian matrix Df(xm)

ii. Solve the linear system Df(xm)hm = −f(xm)

iii. set xm+1 = xm + hm

(c) The converged value x∗ is returned as the approximation root of f(x)

3.2 Convergence of the Newton Method

The Newton-Kantorovich theorem explains the convergence of the newton method applied to the system
of equations. It describes condition on the initial guess guaranteeing the convergence of the algorithm.

3.2.1 Setup of the Theorem.

1. Let f : Rn −→ Rn be the system of equations to which the Newton method is supposed to be
applied.

2. Let || · || be a norm on Rn.

3. Let X ⊆ Rn be an open subset.

4. Assume that f is differentiable.

5. Assume that the Jacobian matrix Df(x) is locally Lipschitz, i.e. for any open subset U ⊆ X,
there exists L > 0 such that |||Df(x)−Df(y)||| ≤ L||x− y|| holds for all x,y ∈ U.

6. Let x0 ∈ X be the initial guess.

7. Assume that Df(x0) is invertible, i.e Df(x0)−1 exists.

8. Let h0 be given as h0 = −Df(x0)−1f(x0).

9. Let x1 := x0 + h0.

10. Assume that B(x1, ||h0||) := {x ∈ Rn : ||x− x1|| < ||h0||} ⊆ X. Notice that this set is open.

3.2.2 Statement of the Theorem.

If a setup as described above is given and if there exists a Lipschitz constant L on the ball B(x1, ||h0||)
such that α0 := L · |||Df(x0)−1||| · ||h0|| ≤ 1

2 , then it holds that

1. a solution x∗ of f(x) = 0 exists in the close ball

B(x1, ||h0||) := {x ∈ Rn : ||x− x1|| ≤ ||h0||} and

2. the newton methods starting with the initial guess x0 converges to x∗ with at least linear order
of convergence, i.e. there exists M > 0 and q ≥ 1 such that for sufficiently large k, the inequality
||xk − x∗|| ≤M ||xk+1 − x∗||q holds.

If α0 <
1
2 , we have quadratic convergence, i.e. there exists M > 0 such that for sufficiently large k, the

inequality ||xk − x∗|| ≤M ||xk+1 − x∗||2 holds [6].

GSJ: Volume 8, Issue 9, September 2020 
ISSN 2320-9186 581

GSJ© 2020 
www.globalscientificjournal.com



Section 3.3. Some Remarks Page 7

3.3 Some Remarks

The theorem presented in the previous section shows that under certain conditions, the Newton method
converges locally to the root of the system of equations and under certain conditions, we even get
quadratic convergence.

3.3.1 Locally Lipschitz Condition.

For the function f(x) = 9
5x

5
3 , we get the derivative f ′(x) = 3x

2
3 . According to the Newton-Kantorovich

theorem, we check the condition if the derivative f ′ is locally Lipschitz. Consider R and assume there
is Lipschitz constant L > 0 such that

|||f ′(x)− f ′(y)||| < L||x− y||. However, if we consider 0 ≤ x ≤
(
1
L

)3
and choose y = 0, we obtain

|||f ′(x)− f ′(y)||| = |||3x
2
3 − 0||| = |3x

2
3 | = 3x

2
3

for the left hand side of the inequality and L||x|| = L|x| = Lx for the right hand side.
To show that this condition does not hold, we need to compare the derivative such that |||f ′(x) −
f ′(y)||| < L||x− y|| does not hold.

The derivative of the right hand side is 2x−
1
3 which is monotonic decreasing and the derivative of the

right and side is L which is constant. For x =
(
1
L

)3
we obtain

2

((
1

L

)3
)− 1

3

= 2L ≥ L

from which we can conclude that the derivative of the left hand side is greater than the derivative of
the right hand side over the whole interval 0 ≤ x ≤

(
1
L

)3
. Since for x = 0 the left hand side equals

the right hand side, it follows that |||f ′(x)− f ′(y)||| ≥ L||x− y|| contradicting our assumption. Hence,
around x = 0, f ′ is not Lipschitz, i.e. f ′ is not locally Lipschitz. Considering the order of convergence,
the calculation xk+1 = xk− f(xk)

f ′(xk)
= xk− 3

5xk = 2
5xk which implies linear convergence of the iteration.

We conclude that in this case where the Lipschitz continuity does not hold, we do not have quadratic
convergence.

3.3.2 Locality.
From the Newton-Kantorovich theorem, we conclude that the initial guess is essential for the convergence
to the solution. If the provided guess that is sufficiently close to the root of the system, the Newton
method will converge to it. However, if the initial guess is close to a critical point where the Jacobian
matrix is singular, the Newton method will produce a ”next guess” that is far away from the root of
the system of equations. For instance, consider the problem we treat in 5.1.9. Here, the initial guess
[0, 0, 0.08, 0, 0]T leads to convergence whereas we do not obtain convergence when we use the initial
guess [0, 0, 0.10, 0, 0]T .
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Figure 3.1 shows the convergence of the Newton method applied on the system of equations in 5.1.9
when taking the initial guess [0, 0, 0.08, 0, 0]T . Note that the Newton method stops at the latest after
15 iterations and that the tolerance is 10−6.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

||F
(X

)||

Newton's Convergence graph
||F(X)||

Figure 3.1: Convergence

Figure 3.2 shows the non-convergence for the same system of equations when taking the initial guess
[0, 0, 0.10, 0, 0]T .

0 2 4 6 8 10 12 14
0
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Newton's Non-Convergence graph
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Figure 3.2: Non-Convergence
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4. Fundamental Concepts

This chapter introduces some fundamental methods to approximate solutions of differential equations
as well as the continuation method applied to solve nonlinear systems of equations. Based on these
fundamental concepts, we will examine the numerical examples in (REFER TO CHAPTER 5).

[12]

4.1 Approximating Solutions for Differential Equations

Differential equations appear in several fields of science, Hence, solving them is an essential issue. In this
section we explain some fundamental methods used to approximate solutions of differential equations.

4.1.1 Euler Method.

In mathematics and computational science, the Euler method (also called forward Euler method) is a
method for solving first-order ordinary differential equations (ODEs) with a given initial value. It is
the most basic explicit method for numerical integration of ordinary differential equations. The Euler
method is named after Leonhard Euler, who treated it in his book Institutionum calculi integralis [5].
The problem that is given reads as {

y′(t) = f(t, y(t))

y(t0) = y0.

For the Euler method, the time axis is discretized. One step of the Euler method from tn to tn+1 =
tn + h[9] is

yn+1 = yn + hf(tn, yn),

where h > 0 and n ∈ N0. The value of yn is an approximation of the solution to the ODE at time tn,
i.e. yn ≈ y(tn). The Euler method is explicit, i.e. the solution yn+1 is an explicit function of yi for
i ≤ n.

4.1.2 Converting a High Order Differential Equation to a First Order Differential Equation.
Any ODE of order N can be represented as a system of first-order ODEs. To treat the equation

y(N)(t) = f(t, y(t), y′(t), ..., y(N−1)(t)),

we introduce the vector

z(t) :=


z1(t)

...
zN−1(t)
zN (t)

 =


y(1)(t)

...

y(N−1)(t)

y(N)(t)

 .

9
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The vector z′(t) :=


z′1(t)

...
z′N−1(t)
z′N (t)

 can be formulated as

z′(t) =


y(1)(t)

...
yN−1(t)
yN (t)

 =


z2(t)

...
zN−1(t)

f(t, z1(t), ..., zN (t))

 =: g(z(t)).

This is a first-order system in the variable z(t) and can be handled by Euler’s method or, in fact, by any
other scheme for first-order systems[2].

4.1.3 Trapezoidal Rule.
The trapezoidal rule is a numerical method to solve ordinary differential equations where the main idea
stems from computing integrals. The trapezoidal rule is an implicit method which can be considered
as both a Runge-Kutta method and a linear multistep method. Suppose that we want to solve the
differential equation

y′ = f(t, y(t)). (4.1.1)

The trapezoidal rule is given by the formula

yn+1 = yn +
1

2
h(f(tn, yn) + f(tn+1, yn+1)), (4.1.2)

where h and tn are given as in the previous subsection and yndenotes y(tn).
Since the value yn+1 appears on both sides of the equation, this method is implicit. Integrating the
f(t, y(t)) from tn to tn+1 yields

yn+1 − yn =

∫ tn+1

tn

f(t, y(t))dt. (4.1.3)

The trapezoidal rule states that the integral on the right-hand side can be approximated as∫ tn+1

tn

f(t, y(t))dt =
1

2
h(f(tn, yn) + f(tn+1, yn+1)). (4.1.4)

Substituting the right-hand side in (4.1.3) into (4.1.4), we obtain

yn+1 = yn +
1

2
h(f(tn, yn) + f(tn+1, yn+1)). (4.1.5)

4.2 Continuation Method

The continuation method delivers a sequence of closely-spaced solutions to a given set of equations[4].
Hence, there are several fields where this method can be applied such as parameter dependent nonlinear
equations or nonlinear boundary value problems of ordinary differential equations.
In the continuation method, the system f(x) = 0 is augmented to the system g(x) = 0 which reads as
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g(x) =


f1(x)
f2(x)

...
fm−1(x)
xp − α

 =


f1(x1, x2, . . . , xm)
f2(x1, x2, . . . , xm)

...
fm−1(x1, x2, . . . , xm)

xp − α

 , (4.2.1)

where p ∈ {1, 2, ...,m}.
The corresponding Jacobian matrix to the system g(x) is

Dg(x) =


∂f1(x)
∂x1

· · · ∂f1(x)
δxm

...
. . .

...
∂fm−1(x)

∂x1
· · · ∂fm−1(x)

∂xm
δ1,p . . . δm,p

 . (4.2.2)

Once we apply the Newton method and obtain a solution x0 to the augmented system g(x), we move
along the tangent ~t at this point with a step of size h > 0 according to the formula

x1 = x0 + h~t.

This point is used as the next initial guess for the Newton method to obtain another solution to the
system. If the step size h is small enough, x0 and the solution obtained by using x1 as initial guess will
be close to each other. However, if h is too large, the Newton method may run into a point where the
Jacobian matrix is singular. To overcome this problem, h can be adjusted. In addition, the value for p
can be varied.
For the computation of the tangent vector, we use the fact that it is perpendicular to the gradient of f :

∇f ·~t = fx1t1 + fx2t2 + · · ·+ fxm−1tm−1 = 0.

If the jacobian matrix is not singular we can compute the solution of the linear system of the form


∂f1(x)
∂x1

· · · ∂f1(x)
δxm

...
. . .

...
∂fm−1(x)

∂x1
· · · ∂fm−1(x)

∂xm
δ1,p . . . δm,p

 .


t1
...

tm−1
tm

 =


0
0
...
1

 , (4.2.3)

where we insert the value one for the last entry of the right hand side to guarantee that any tangent
vector does not equal the zero vector.

4.2.1 Example: Unit Circle.

The following example to illustrate the continuation method and it is extracted from Burkhart’s paper
with the title ”The Continuation Method for Algebraic Nonlinear Equations” [4]. Consider the equation
for the unit circle is

x2 + y2 = 1 (4.2.4)
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Obviously, if you have one equation with 2 unknowns, it can’t be solved uniquely either for x nor for y.
Hence, the single equation is extended by an equation of the form

x = x0

for some −1 ≤ x0 ≤ 1. Now we arrange both equations in a single system

F (x, y) =

(
x2 + y2

x

)
=

(
1
x0

)
(4.2.5)

Next, we rewrite the nonlinear system in a homogeneous form

F (x, y) =

(
x2 + x2 − 1
x− x0

)
(4.2.6)

considered for the special value x0 = 1/2. By applying the Newton method for the systems of equations
for 4.2.6 taking the initial guess

z0 =

(
x0

y0

)
=

(
0.5
−1

)
,

F reads as

F (0.5,−1) =

(
1
4 + 1− 1
0.5− 0.5

)
=

(
1
4
0

)
.

It can be verified that this system has a Jacobian of the form

J(x, y) =

(
2x 2y
1 0

)
.

After 3 iterations, we obtain the solution(
x3
y3

)
=

(
0.5

−0.86603

)
.

Now, we try the application of Newton’s method for the starting guess

z0 =

(
x0

y0

)
=

(
1
0

)
.

When we try to apply Newton’s method we experience difficulties. The reason is because, for this point
(z0) the Jacobian matrix

J(x∗, y∗) =

(
2 0
1 0

)
is singular.

This implies that Newton’s method will break down at the point x∗ = [1, 0.] while away from this point,
4.2.6 is a good method to use. A way out of this dilemma is to use a different nonlinear system for the
computation. Hence, we consider the alternative augmented system

F (x, y) =

(
x2 + y2 − 1
y − y0

)
. (4.2.7)
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Note that this augmented system can again be iteratively solved. In particular, Points on the circle that
are close to the turning point from above. Note that the Jacobian of system 4.2.7 is given by

J(x, y) =

(
2x 2y
0 1

)
(4.2.8)

while the Jacobian of system 4.2.6 is of the form

J(x, y) =

(
2x 2y
1 0

)
. (4.2.9)

It is straight forward to verify that the Jacobian in 4.2.6 is singular at z = [0,±1] while the Jacobian of
4.2.9 is singular at z = [±1, 0]. Hence, in order to compute points on the unit circle close to the points
z = [±1, 0], it is advisable to apply Newtons method for the augmented system 4.2.7 while for the
computation of points close to z = [0,±1], the augmented system 4.2.6 is advised to be used. Hence,
Newton’s method for the computation of points of the circle 4.2.4 should be implemented in such a
way that it can use either the augmented system 4.2.7 or augmented system 4.2.6. Moving along the
tangent to get new initial guesses and switching between both presented systems appropriately delivers
points on the unit circle as below.

GSJ: Volume 8, Issue 9, September 2020 
ISSN 2320-9186 588

GSJ© 2020 
www.globalscientificjournal.com



Section 4.2. Continuation Method Page 14
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Points on the circle, by the continuation method.

Figure 4.1: Result of Continuation
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5. Numerical Examples

After having described the Newton method as well as the continuation method, we proceed with two
numerical examples in this chapter. In the first section, we deal with a boundary value problem, namely
the Bratu problem and in the second section, we deal with a system of equations describing a chemical
reaction.

5.1 Bratu Problem

The Bratu problem is a boundary value problem and has a wide field of applications such as radiative
heat transfer [11] or in nano-technology[3]. The problem reads as

u
′′

+ τeu = 0, for 0 ≤ t ≤ 1 and τ 6= 0, (5.1.1)

where the boundary conditions are

u(0) = 0 & u(1) = 0. (5.1.2)

We can convert the second order ODE to a first order ODE in 5.1.1 by defining

x1 := u

x2 := u′

z :=

(
x1
x2

)
.

Then we obtain

f(z, τ) := z′ =

(
x′1
x′2

)
=

(
x2
−τex1

)
.

This first orders system is discretized by
0 = t0 < t1 < t1 < · · · < tNt = 1 where tj+1 − tj = h = 1

Nt , j = 0, . . . , Nt− 1.
The implicit trapezoidal method now reads as

yj+1 = yj +
h

2
{f(yj , τ) + f(yj+1, τ)},

where yj :=

(
x1(tj)
x2(tj)

)
and where 0 ≤ j ≤ Nt.

The discretized boundary value can now be formulated as


x1(t0) = 0

x1(tNt) = 0

yj+1 = yj + h
2{f(yj , τ) + f(yj+1, τ)} where 0 ≤ j < Nt.

(5.1.3)

15
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For Nt=2, we get the discretization t0 = 0,t1 = 0.5, and t2 = 1. By using the definition of f(z, τ),
we get 

x1(0) = 0

x1(1) = 0

x1(0.5)− x1(0)− 0.5
2 (x2(0) + x2(0.5)) = 0

x2(0.5)− x2(0)− 0.5
2 (−τexp(x1(0))− τexp(x1(0.5))) = 0

x1(1)− x1(0.5)− 0.5
2 (x2(0.5) + x2(1)) = 0

x2(1)− x2(0.5)− 0.5
2 (−τexp(x1(0.5))− τexp(x1(1))) = 0.

(5.1.4)

The corresponding Jacobian matrix has the form

Df(x, τ) =



∂f0
∂x1(0)

∂f0
∂x2(0)

∂f0
∂x1(0.5)

∂f0
∂x2(0.5)

∂f0
∂x1(1)

∂f0
∂x2(1)

∂f1
∂x1(0)

∂f1
∂x2(0)

∂f1
∂x1(0.5)

∂f1
∂x2(0.5)

∂f1
∂x1(1)

∂f1
∂x2(1)

∂f2
∂x1(0)

∂f2
∂x2(0)

∂f2
∂x1(0.5)

∂f2
∂x2(0.5)

∂f2
∂x1(1)

∂f2
∂x2(1)

∂f3
∂x1(0)

∂f3
∂x2(0)

∂f3
∂x1(0.5)

∂f3
∂x2(0.5)

∂f3
∂x1(1)

∂f3
∂x2(1)

∂f4
∂x1(0)

∂f4
∂x2(0)

∂f4
∂x1(0.5)

∂f4
∂x2(0.5)

∂f4
∂x1(1)

∂f4
∂x2(1)

∂f5
∂x1(0)

∂f5
∂x2(0)

∂f5
∂x1(0.5)

∂f5
∂x2(0.5)

∂f5
∂x1(1)

∂f5
∂x2(1)


. (5.1.5)

Evaluating the above expressions yields the matrix

Df(x, τ) =



1 0 0 0 0 0
0 0 0 0 1 0
−1 −0.5

2 1 −0.5
2 0 0

0.5
2 τexp(x1(0)) −1 0.5

2 τexp(x1(0.5)) 1 0 0
0 0 −1 −0.5

2 1 −0.5
2

0 0 0.5
2 τexp(x1(0.5)) −1 0.5

2 τexp(x1(1)) 1

 . (5.1.6)

5.1.1 Augmented System of Equations.
We can augment the system 5.1.6 by one of the following equations:

τ − α = 0

or

x1(0.5)− α = 0.

(5.1.7)

Note that τ is a parameter in the given system of equations whereas α is a quantity which is dynamically
adjusted during the continuation. This augmentation leads to a quadratic Jacobian matrix such that
the Newton method can be applied. The Jacobian matrix of the augmented system reads as

Df(x, τ) =



∂f0
∂x1(0)

∂f0
∂x2(0)

∂f0
∂x1(0.5)

∂f0
∂x2(0.5)

∂f0
∂x1(1)

∂f0
∂x2(1)

∂f0
∂τ

∂f1
∂x1(0)

∂f1
∂x2(0)

∂f1
∂x1(0.5)

∂f1
∂x2(0.5)

∂f1
∂x1(1)

∂f1
∂x2(1)

∂f1
∂τ

∂f2
∂x1(0)

∂f2
∂x2(0)

∂f2
∂x1(0.5)

∂f2
∂x2(0.5)

∂f2
∂x1(1)

∂f2
∂x2(1)

∂f2
∂τ

∂f3
∂x1(0)

∂f3
∂x2(0)

∂f3
∂x1(0.5)

∂f3
∂x2(0.5)

∂f3
∂x1(1)

∂f3
∂x2(1)

∂f3
∂τ

∂f4
∂x1(0)

∂f4
∂x2(0)

∂f4
∂x1(0.5)

∂f4
∂x2(0.5)

∂f4
∂x1(1)

∂f4
∂x2(1)

∂f4
∂τ

∂f5
∂x1(0)

∂f5
∂x2(0)

∂f5
∂x1(0.5)

∂f5
∂x2(0.5)

∂f5
∂x1(1)

∂f5
∂x2(1)

∂f5
∂τ

∂f6
∂x1(0)

∂f6
∂x2(0)

∂f6
∂x1(0.5)

∂f6
∂x2(0.5)

∂f6
∂x1(1)

∂f6
∂x2(1)

∂f6
∂τ


, (5.1.8)
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where f6 refers to one of the equations in 5.1.7 which is equivalent to

Df(x, τ) =



1 0 0 0 0 0 0
0 0 0 0 1 0 0
−1 −0.5

2 1 −0.5
2 0 0 0

0.5
2 τexp(x1(0)) −1 0.5

2 τexp(x1(0.5)) 1 0 0 0
0 0 −1 −0.5

2 1 −0.5
2 0

0 0 0.5
2 τexp(x1(0.5)) −1 0.5

2 τexp(x1(1)) 1 0
0 0 0 0 0 0 1


if we have the constraint f6 = τ −α. If we choose the constraint f6 = x1(0.5)−α, the position of the
value 1 in the last row changes and the Jacobian matrix becomes

Df(x, τ) =



1 0 0 0 0 0 0
0 0 0 0 1 0 0
−1 −0.5

2 1 −0.5
2 0 0 0

0.5
2 τexp(x1(0)) −1 0.5

2 τexp(x1(0.5)) 1 0 0 0
0 0 −1 −0.5

2 1 −0.5
2 0

0 0 0.5
2 τexp(x1(0.5)) −1 0.5

2 τexp(x1(1)) 1 0
0 0 1 0 0 0 0


.

5.1.2 Application of the Continuation Method.
For this numerical example, we choose f6 = x1

(
tNt/2

)
− α as the additional function and proceed

according to the steps below:

1. Start with α = 10−4.

2. Apply the Newton method to the augmented system of equations which yields a solution for u
where its maximum has the value of α.

3. Move along the tangent to get the new initial guess with a step size of h = 0.5. From this initial
guess, read the value for x1(tNt/2) and set this value for α.

4. Apply the Newton method with the new initial guess and the new alpha obtained in the previous
step.

5. Repeat steps 2 to 5.

For the dynamical update of the additional constraint which was also performed in this project see the
corresponding code in the Appendix.

5.1.3 Results.
The figures below show the results obtained from the continuation method as described in the previous
subsection. Figure (5.1) depicts the plot of the umax against τ where Nt = 2 whereas figure (5.2)
shows the cases for different values of Nt. Concretely, each point in the curves is the pair of umax
corresponding to x1(tNt/2) and τ obtained through the Newton method starting with a certain initial
guess. The initial guesses are updated by following the tangent as described in the previous subsection.
We observe that for almost each τ, we obtain two values umax, i.e. for almost each τ, we get two
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solutions u of the Bratu problem. The only value for τ where we have one solution is the turning point
where the Jacobian matrix is singular.
We observe that after the turning point, the curve increases exponentially. In particular, τ converges
towards 0 and umax is unbounded on the upper part of the curve.
The second figure shows that as Nt increases, the turning point moves to the left. However, in any
choice of Nt, the curves show the same properties as described in the case of Nt = 2. In A, we illustrate
the meaning of Nt. Concretely, for different values of Nt, we get different solutions of u and hence,
different values for umax. Increasing Nt leads to smoother solutions.

Figure 5.1: Bratu Problem

Figure 5.2: Bratu Problem
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5.1.4 Chemical Reaction.
Chemical reactions that can be described by nonlinear equations have been studied experimentally by
many researchers [8]. The system of nonlinear equations that we deal with in this section indicates
a chemical reagent x to the medium of the chemical reaction and the change of its concentration in
this medium. These equations present interesting mathematical properties (stability and turning point).
The problem reads as



f0 = α(1− x3)exp
(

10x1
1+

10x1
γ

)
− x3 = 0

f1 = αB(1− x3)exp
(

10x1
1+

10x1
γ

)
+ β1θc1 − 10(1 + β1)x1 = 0

f2 = x3 − x4 + α(1− x4)exp
(

10x2
1+

10x2
γ

)
= 0

f3 = 10x1 − 10(1 + β2)x2 + αB(1− x4)exp
(

10x2
1+

10x2
γ

)
+ β2θc2 = 0

(5.1.9)

where γ,B, β1, β2, θc1 , θc2 and α are physical parameters such that γ = 1000, B = 22, β1 = β2 =
2, θ1 = θ2 = 0, x0 = {0, 0, 0, 0, 0}.
The corresponding Jacobian matrix has the form

Df(x, τ) =


∂f0
∂x1

∂f0
∂x2

∂f0
∂x3

∂f0
∂x4

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

 . (5.1.10)

Evaluating the above expressions yields the matrix

Df(x, τ) =

[
α(1− x3)E1E3 0 −αE1 − 1 0

αB(1− x3)E1E3 − 10(1 + β1) 0 −αBE1 0
0 α(1− x3)E2E4 1 −1− αE2

10 −10(1 + β2) + αB(1− x4)E2 ∗ E4 0 −αBE2

]
,

where 
E1 = exp(10x1/(1 + 10x1/γ))

E2 = exp(10x2/(1 + 10x2/γ))

E3 = ((1 + 10x1/γ)10− 10x1(10/γ))/(1 + 10x1/γ)2

E4 = ((1 + 10x2/γ) ∗ 10− 10x2(10/γ))/(1 + 10x2/γ)2.

(5.1.11)

5.1.5 Augmented System of Equation.
Define x5 := α. We can augment the system 5.1.9 by introducing the equation xp − τ = 0, where p
ranges from 1 to 5.
Note that α is a parameter in the given system of equations whereas τ is a quantity which is dynamically
adjusted during the continuation. This augmentation leads to a quadratic Jacobian matrix such that
the Newton method can be applied.

In order to compute new solutions, it is essential to stay close to the solution curve corresponding to
the system of equations. By choosing the step size h to be small, we ensure that we do not deviate too
much from the solution curve. If the step size h is large, the system may not converge or it may take
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a long period to converge. Moving along the tangent to get new initial guesses and switching between
the different constraints appropriately makes it possible to move beyond the turning points.

The corresponding Jacobian matrix has the form

Df(x, τ) =


∂f0
∂x1

∂f0
∂x2

∂f0
∂x3

∂f0
∂x4

∂f0
∂x5

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f1
∂x5

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f2
∂x5

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f3
∂x5

∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4

∂f4
∂x5

 . (5.1.12)

Evaluating the expressions from above yields the matrix

Df(x, τ) =

 α(1− x3)E1E3 0 −αE1 − 1 0 (1− x3)E1

αB(1− x3)E1E3 − 10(1 + β1) 0 −αBE1 0 B(1− x3)E1

0 α(1− x3)E2E4 1 −1− αE2 (1− x3)E2

10 −10(1 + β2) + αB(1− x4)E2 ∗ E4 0 −αBE2 B(1− x4)E2

δ1,p δ2,p δ3,p δ4,p δ5,p

 ,
where E1, E2, E3 and E4 are as in 5.1.11.

5.1.6 Application of Continuation Method.
For this numerical example, we choose f4 = xp − τ where 1 ≤ p ≤ 5. The procedure that we follow is
described as follows:

1. Start with τ = 0 and 1 ≤ p ≤ 5.

2. Apply the Newton method to the augmented system of equations which yields a solution for the
augmented system of equations.

3. Move along the tangent to get the new initial guess with a step size of h = 0.02.

4. Set the index of the entry of the tangent which has the highest absolute value to be equal to p.

5. From this initial guess, read the value for xp and set this value for τ .

6. Apply the Newton method with the new initial guess and the new τ obtained in the previous step.

7. Repeat steps 2 to 6.

5.1.7 Results.
The figures below show the results obtained from the continuation method as described in the previous
subsection. Concretely, each point in the curves is the pair of α corresponding to x5 and x2 obtained
through the Newton method starting with a certain initial guess. The initial guesses are updated by
following the tangent as described in the previous subsection. We observe that we have several solu-
tions where the pairs of α and x2 differ from each other. We observed that we also have six turning
points in the curve where we plot α against x2. We observe that after the point around the pair(
x2
α

)
≈
(

0.012
0.22

)
, the curve becomes stable. In particular, α converges towards 0.25 whereas x2 is

unbounded.
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Figure 5.3: Chemical Reaction
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6. Conclusion

In this project, we studied the theoretical background of the Newton method. In particular, we focused
on its application to systems of equations. Here, the Newton-Kantorovich theorem was explained to
show the conditions and properties of the convergence of this method.
With the python codes that we developed, we solved two numerical examples, namely the Bratu problem
and a system of equations describing a chemical reaction. We adjusted the codes such that p was
changed dynamically according to the tangent vector.
The examination of the obtained results showed that we could move beyond the turning points with the
implemented continuation methods in both numerical examples.
Further research can be conducted in python by considering different problems and by using the imple-
mentations developed in this project.

22
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Appendix A. Some additional data

A.1 Bratu Problem

Here we provided the explicit expressions for the system of the equations corresponding to the Bratu
problem for the cases Nt=4 and Nt=8.

For Nt = 4,we get the discretization t0 = 0,t1 = 0.25, t2 = 0.5,t3 = 0.75 and t4 = 1.
By using the definition of f(z, τ) we get

x1(0) = 0

x1(1) = 0

x1(0.25)− x1(0)− 0.25
2 (x2(0) + x2(0.25)) = 0

x2(0.25)− x2(0)− 0.25
2 (−τexp(x1(0))− τexp(x1(0.25))) = 0

x1(0.5)− x1(0.25)− 0.25
2 (x2(0.25) + x2(0.5) = 0

x2(0.5)− x2(0.25)− 0.25
2 (−τexp(x1(0.25))− τexp(x1(0.5))) = 0

x1(0.75)− x1(0.5)− 0.25
2 (x2(0.5) + x2(0.75)) = 0

x2(0.75)− x2(0.5)− 0.25
2 (−τexp(x1(0.5))− τexp(x1(0.75))) = 0

x1(1)− x1(0.75)− 0.25
2 (x2(0.75) + x2(1)) = 0

x2(1)− x2(0.75)− 0.25
2 (−τexp(x1(0.75))− τexp(x1(1))) = 0

(A.1.1)

If we consider τ as variable will yield

x1(0) = 0

x1(1) = 0

x1(0.25)− x1(0)− 0.25
2 (x2(0) + x2(0.25)) = 0

x2(0.25)− x2(0)− 0.25
2 (−τexp(x1(0))− τexp(x1(0.25))) = 0

x1(0.5)− x1(0.25)− 0.25
2 (x2(0.25) + x2(0.5) = 0

x2(0.5)− x2(0.25)− 0.25
2 (−τexp(x1(0.25))− τexp(x1(0.5))) = 0

x1(0.75)− x1(0.5)− 0.25
2 (x2(0.5) + x2(0.75)) = 0

x2(0.75)− x2(0.5)− 0.25
2 (−τexp(x1(0.5))− τexp(x1(0.75))) = 0

x1(1)− x1(0.75)− 0.25
2 (x2(0.75) + x2(1)) = 0

x2(1)− x2(0.75)− 0.25
2 (−τexp(x1(0.75))− τexp(x1(1))) = 0

τ − α = 0

(A.1.2)
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For Nt = 8, t0 = 0, t1 = 0.125, t2 = 0.25, t3 = 0.375,t4 = 0.5, t5 = 0.625, t6 = 0.75, t7 = 0.875
and t8 = 1.
By using the definition of f(z, τ) we get

x1(0) = 0

x1(1) = 0

x1(0.125)− x1(0)− 0.125
2 (x2(0) + x2(0.125)) = 0

x2(0.125)− x2(0)− 0.125
2 (−τexp(x1(0))− τexp(x1(x1(0.125))) = 0

x1(0.25)− x1(0.125)− 0.125
2 (x2(0.125) + x2(0.25)) = 0

x2(0.25)− x2(0.125)− 0.125
2 (−τexp(x1(0.125))− τexp(x1(0.25))) = 0

x1(0.375)− x1(0.25)− 0.125
2 (x2(0.25) + x2(0.375)) = 0

x2(0.375)− x2(0.25)− 0.125
2 (−τexp(x1(0.25))− τexp(x1(0.375))) = 0

x1(0.5)− x1(0.375)− 0.125
2 (x2(0.375) + x2(0.5)) = 0

x2(0.5)− x2(0.375)− 0.125
2 (−τexp(x1(0.375))− τexp(x1(0.5))) = 0

x1(0.625)− x1(0.5)− 0.125
2 (x2(0.5) + x2(0.625)) = 0

x2(0.625)− x2(0.5)− 0.125
2 (−τexp(x1(0.5))− τexp(x1(0.625)) = 0

x1(0.75)− x1(0.625)− 0.125
2 (x2(0.625) + x2(0.75)) = 0

x2(0.75)− x2(0.625)− 0.125
2 (−τexp(x1(0.625))− τexp(x1(0.75))) = 0

x1(0.875)− x1(0.75)− 0.125
2 (x2(0.75) + x2(0.875)) = 0

x2(0.875)− x2(0.75)− 0.125
2 (−τexp(x1(0.75))− τexp(x1(0.875))) = 0

x1(1)− x1(0.875)− 0.125
2 (x2(0.875) + x2(1)) = 0

x2(1)− x2(0.875)− 0.125
2 (−τexp(x1(0.875))− τexp(x1(1))) = 0

(A.1.3)
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If we consider τ as a variable

x1(0) = 0

x1(1) = 0

x1(0.125)− x1(0)− 0.125
2 (x2(0) + x2(0.125)) = 0

x2(0.125)− x2(0)− 0.125
2 (−τexp(x1(0))− τexp(x1(x1(0.125))) = 0

x1(0.25)− x1(0.125)− 0.125
2 (x2(0.125) + x2(0.25)) = 0

x2(0.25)− x2(0.125)− 0.125
2 (−τexp(x1(0.125))− τexp(x1(0.25))) = 0

x1(0.375)− x1(0.25)− 0.125
2 (x2(0.25) + x2(0.375)) = 0

x2(0.375)− x2(0.25)− 0.125
2 (−τexp(x1(0.25))− τexp(x1(0.375))) = 0

x1(0.5)− x1(0.375)− 0.125
2 (x2(0.375) + x2(0.5)) = 0

x2(0.5)− x2(0.375)− 0.125
2 (−τexp(x1(0.375))− τexp(x1(0.5))) = 0

x1(0.625)− x1(0.5)− 0.125
2 (x2(0.5) + x2(0.625)) = 0

x2(0.625)− x2(0.5)− 0.125
2 (−τexp(x1(0.5))− τexp(x1(0.625)) = 0

x1(0.75)− x1(0.625)− 0.125
2 (x2(0.625) + x2(0.75)) = 0

x2(0.75)− x2(0.625)− 0.125
2 (−τexp(x1(0.625))− τexp(x1(0.75))) = 0

x1(0.875)− x1(0.75)− 0.125
2 (x2(0.75) + x2(0.875)) = 0

x2(0.875)− x2(0.75)− 0.125
2 (−τexp(x1(0.75))− τexp(x1(0.875))) = 0

x1(1)− x1(0.875)− 0.125
2 (x2(0.875) + x2(1)) = 0

x2(1)− x2(0.875)− 0.125
2 (−τexp(x1(0.875))− τexp(x1(1))) = 0

τ − α = 0

(A.1.4)
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A.2 Some Additional Simulations for the Bratu Problem

Here some addition simulation to illustrate the solutions of u for different values of Nt. Note that
m = 10 (highest number of iterations) and that the tolerance is 10−7
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(a) The left graph shows the solution of u for Nt = 2 and the right one shows
the residuals obtained during the Newton method.
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(b) The left graph shows the solution of u for Nt = 4 and the right one shows
the residuals obtained during the Newton method.
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(c) The left graph shows the solution of u for Nt = 8 and the right one shows
the residuals obtained during the Newton method.
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(d) The left graph shows the solution of u for Nt = 100 and the right one
shows the residuals obtained during the Newton method.

GSJ: Volume 8, Issue 9, September 2020 
ISSN 2320-9186 601

GSJ© 2020 
www.globalscientificjournal.com



Section A.2. Some Additional Simulations for the Bratu Problem Page 27

Algorithm 0: Newton’s method for Bratu Problem

import numpy as np
from scipy.linalg import solve, norm
import matplotlib.pyplot as plt
def newtonBratu(f, df, Nt, m, tol, x0, p):

x = x0
c = [ ]
alpha = x0[p]

for i in range(0, m): do
fnorm=norm(f(x0, Nt, alpha, p), 2)
c.append(fnorm)
if fnorm<tol: break then

else:
s = solve(df(x0, Nt, p), -f(x0, Nt, alpha, p))
x = x0 + s
x0 = x

end
return x, c, p

end

Algorithm 1: Tangent for Bratu Problem

import numpy as np
from scipy.linalg import solve, norm
import matplotlib.pyplot as plt
def tangent (Nt, x, tanVecprevious, p, df2):

x0= x
df= df2(x0, Nt, p)
b= np.zeros(len(df))
b[len(b) - 1]= 1
tanVec = solve(df, b)
tanVec = tanVec/norm(tanVec, 2)

if (np.dot(tanVec, tanVecprevious) < 0): then
tanVec = tanVec * (-1)
pnew = np.argmax(tanVec)

end
return tanVec, pnew
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Algorithm 2: Stepsize for Bratu Problem

import numpy as np
from scipy.linalg import solve, norm
import matplotlib.pyplot as plt
from tangent import tangent
def step(Nt, sol, tanVecprevious, p, h, df2):

tan = tangent(Nt, sol, tanVecprevious, p, df2)
tanVec = tan[0]
pnew = tan[1]
xnewguess = sol + h * tanVec

return xnewguess, pnew, tanVec
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Algorithm 3: Continuation for Bratu

import numpy as np
from scipy.linalg import solve, norm
import matplotlib.pyplot as plt
from newton import newtonBratu
from tangent import tangent
from step import step
def dfNt(x, Nt, p):
df = np.zeros((2 * Nt + 2 + 1,2 * Nt + 2 + 1))
h = (1./Nt)/2
df[0, 0]= 1
df[1, 2 * Nt]= 1
df[len(df) - 1, p]= 1
for i in range(2 * Nt):

j = i + 2 do
if (j % 2 == 0): then

df[j, j - 2] = -1
df[j, j - 2 + 1] = -h
df[j, j - 2 + 2] = 1
df[j, j - 2 + 3] = -h

else:
df[j, j - 3] = h * x[len(x)-1] * np.exp(x[j - 3])
df[j, j - 3 + 1] = -1
df[j, j - 3 + 2] = h * x[len(x) - 1] * np.exp(x[j - 1])
df[j,j - 3 + 3] = 1
df[j, len(df) - 1] = h * (np.exp(x[j - 3])+np.exp(x[j - 1]))

end
return df

end
def fNt(x, Nt, alpha, p):
f = np.zeros(2 * Nt + 2 + 1)
h = (1./Nt)/2
f[0]= x[0]
f[1]= x[len(f) - 3]
f[len(f) - 1] = x[p] - alpha
for i in range(2 * Nt):
j = i + 2 do

if (j % 2 == 0): then
f[j] = x[j] - x[j - 2] - h * (x[j - 1] + x[j + 1])

else:
f[j] = x[j] - x[j - 2] + h * x[len(x) - 1] * (np.exp(x[j - 3]) + np.exp(x[j - 1]))

end
return f

end
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Algorithm 4: Continuation for Bratu Problem

def Continuation(numIter, f, df, Nt, m, tol, x0, p, tanVecprevious, h):
retTau=[]
retPeak=[]
for i in range(numIter): do

sol = newtonBratu(f, df, Nt, m, tol, x0, p)
tan = tangent (Nt, sol[0], tanVecprevious, p, df)
x01 = sol[0] + h * tan[0]
x0 = x01
p = tan[1]
retTau.append(sol[0][len(sol[0]) - 1])
retPeak.append(sol[0][2])
tanVecprevious = tan[0]
return retTau, retPeak

end
tol = 1.e-5
m = 20
p = 2
continuationit = 100
h = 0.5
for i in range(2, 11): do

Nt= i
x0= np.zeros(2 * Nt + 2 + 1)
tanVecprevious= np.ones(2 *Nt + 2 + 1)
a= Continuation(continuationit, fNt, dfNt, Nt, m, tol, x0, p, tanVecprevious, h)
plt.plot(a[0], a[1], ”.-”, label=”Nt =” + str(Nt))
plt.xlabel(”Tau”)
plt.ylabel(”Umax”)
plt.grid()
plt.legend()
plt.savefig(”Bratu-Problem.Pdf”)

end
plt.show()
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Algorithm 5: Newton for Chemical Reaction

import numpy as np
from scipy.linalg import solve, norm
def newtonChemical(f, df, m, tol, x0, p):
x= x0
n= len(x0)
alpha= x0[p]
for i in range(0,m): do

fnorm = norm(f(n, x0, alpha, p),2)
if (fnorm<tol): break then

else:
s= solve(df(n, x0, p), -f(n, x0, alpha, p))
x= x0 + s
x0= x

end
return x, p

end

Algorithm 6: Tangent for Chemical Reaction

import numpy as np
from scipy.linalg import solve, norm
def tangent (x, tanVecprevious, p, df):

x0= x
n= len(x0)
df= df(n, x0, p)
b= np.zeros(len(df))
b[len(b)-1] = 1
tanVec = solve(df, b)
tanVec = tanVec/norm(tanVec,2)

if (np.dot(tanVec, tanVecprevious) < 0): then
tanVec = tanVec * (-1)

end
pnew = np.argmax(abs(tanVec))
return tanVec,pnew
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Algorithm 7: continuation for Chemical Reaction

import numpy as np
from scipy.linalg import solve, norm
import matplotlib.pyplot as plt
from newton import newtonChemical
from tangent import tangent
def fcn(n, u, alpha, p):

f = np.zeros(n)
E1 = np.exp(10 * u[0]/(1. + 0.01 * u[0]))
E2 = np.exp(10 * u[1]/(1. + 0.01 * u[1]))
f[0] = u[4] * (1. - u[2]) * E1 - u[2]
f[1] = 22 * u[4] * (1. - u[2]) * E1 - 30 * u[0]
f[2] = u[2] - u[3] + u[4] * (1. - u[3]) * E2
f[3] = 10 * u[0] - 30 * u[1] + 22 * u[4] * (1. - u[3]) * E2
f[4] = u[p] - alpha

return f def dfcn(n, u, p):
df = np.zeros((n - 1 + 1, n))
E1 = np.exp(10 * u[0]/(1. + 0.01 * u[0]))
E2 = np.exp(10 * u[1]/(1. + 0.01 * u[1]))
E1d = E1 * (10 * (1. + 0.01 * u[0])- 10 * u[0] * 0.01)/pow((1. + 0.01 * u[0]), 2)
E2d = E2 * (10 * (1. + 0.01 * u[1])- 10 * u[1] * 0.01)/pow((1. + 0.01 * u[1]), 2)
df[0,0] = u[4] * (1 - u[2]) * E1d
df[0,2] = -u[4] * E1 - 1
df[0,4] = (1. - u[2]) * E1
df[1,0] = 22 * u[4] * (1. - u[2]) * E1d - 30
df[1,2] = -22 * u[4] * E1
df[1,4] = 22 * (1. - u[2]) *E1
df[2,1] = u[4] * (1. - u[3]) * E2d
df[2,2] = 1
df[2,3] = -1 - u[4] * E2
df[2,4] = (1. - u[3]) *E2
df[3,0] = 10
df[3,1] = -30 + 22 * u[4] * (1. - u[3]) *E2d
df[3,3] = -22 * u[4] * E2
df[3,4] = 22 * (1. - u[3]) * E2
df[4,p] = 1

return df
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Algorithm 8: continuation for Chemical Reaction

def Continuation(numIter, x0, tanVecprevious, p, h, f, df, m, tol):
cu5 = [ ]
cu2 = [ ]

for i in range(numIter): do
sol = newtonChemical(f, df, m, tol, x0, p)
tan = tangent (sol[0], tanVecprevious, p, df)
x01 = sol[0] + h * tan
x0 = x01
p = tan[1]
print(”In iteration”, i, ”the value of p is”, p)
cu5.append(sol[0][4])
cu2.append(sol[0][1])
tanVecprevious = tan[0]

end
return cu5, cu2

m= 10
tol= 1e-4
alpha= 0.00
x0= np.zeros(5)
p= 4
tanVecprevious = np.ones(5)
numIter= 162
h= 0.02
b= Continuation(numIter, x0, tanVecprevious, p, h, fcn, dfcn, m, tol)
fig= plt.figure(figsize=(6,4))
plt.plot(b[0], b[1], ”r.-”)
plt.xlabel(”x2”)
plt.ylabel(”x5”)
plt.grid()
plt.savefig(”Chemical Reaction.pdf”)
plt.show()
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