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ABSTRACT 

In today’s world, water management is a prior topic in the areas where the usage of water is applicable. Water in the reservoirs is very essential 

for sustainable service provision in many areas such as agriculture, irrigation, water supply, hydropower generation and others.  However, the 

availability of water in the reservoir can be affected in many ways and it’s better to forecast the future for the efficient use of available water. 

The use of artificial intelligence (AI) to forecast factors affecting water availability in the reservoir greatly helps to optimize the operations and 

efficient use of available water. A lot of scholars in the world have used different techniques to forecast the factors affecting the water availability 

in the reservoir to optimize and efficient use of water for different purposes. In modern time, AI is greatly helping in forecasting these factors. 

Machine learning, the subset artificial intelligence, is the popular technique used to forecasts using time series data. Among the popular machine 

learning techniques, Artificial Neural Networks (ANNs), Support Vector Regression (SVR), Wavelet Transforms to preprocess the input data 

for ANN, SVR models to form WA-ANN and WA-SVR autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), 

Adaptive neuro-fuzzy inference system (ANFIS) models are some of the techniques used to forecast stream flow, rainfall, precipitation, tem-

perature, climate and reservoir water level itself. The level of accuracy for each of the variables is different as they are dependent on availability 

of data of trends, type of model used, number of layers in the model, number of parameters and hyper parameters used in the model and other 

factors.  
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1. Introduction  

Water management is essential as water is a core in development of one country. It can be used for different purposes such as drinking 

purpose, agriculture, hydropower generation and so on [21].  For example, world produce 1360 GW of its total power from hydro. Hydropower 

generation decreased by 15 TWh (down 0.4%) in 2021, declining to 4 327 TWh despite a step increase in capacity growth. The decrease was 

caused by droughts in several parts of the world which reduces the available water for power production [19]. Water scarcity and abundance 

which results in flood disaster [18] is another issue in water management. There are many factors that contribute in significant amount of water 

change in the reservoirs. Some of them are climate change which results in change in precipitation pattern and temperature [21]. Therefore, 

forecasting the factors that affect water availability in the reservoir will helps to properly manage available water efficiently and effectively. 

The introduction of artificial intelligence is solving the problems better in water resources management on various areas by creating a better 

algorithm that can accurately forecast the future from time series data. including the hydropower reservoir optimization.  

The integration of artificial intelligence (AI) into hydropower generation and reservoir optimization holds great potential to optimize oper-

ations and efficient use of available water. Using artificial intelligence (AI), it’s possible to the forecast [34] the factors that affect water 

availability in the reservoir such as stream flow, rainfall, precipitation, temperature, land use land cover change effect, and the possibility of 

drought or flood occurrence. This will help the decision makers what to do, when to save or release water, on which reservoir. A lot of models 

for forecasting can be used such as artificial neural networks (ANN), autoregressive integrated moving average (ARIMA), seasonal ARIMA 

(SARIMA), Adaptive neuro-fuzzy inference system (ANFIS) and others. The objective of this paper is to review the models used to forecast 

the factors affecting the availability of water in the reservoir. In this review article, the machine learning techniques used to forecast factors 

affecting water availability has been reviewed and comparisons are made which techniques are performing better. 
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2. AI‑based models for making forecasts 

Artificial intelligence (AI) is primarily concerned with comprehending and carrying out intelligent tasks such as thinking, acquiring new abil-

ities, and adapting to new contexts and challenges. AI is viewed as a field within science and engineering that concentrates on emulating various 

aspects and capacities associated with human intelligence. In contemporary usage, the terms Artificial Intelligence (AI), Machine Learning 

(ML), and Deep Learning (DL) are often employed interchangeably to describe intelligent systems or software. The detailed interaction of 

these three terminologies can be illustrated as follows [30]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: Machine learning (ML) and deep Learning (DL) within the area of artificial intelligence (AI)(Sarker., 2022) 

 

 

Machine learning (ML) is recognized as a contemporary advancement in the realm of AI, primarily centered on the examination of computer 

algorithms employed for the automation of constructing analytical models. Machine learning can be categorized into either supervised or 

unsupervised based on its utilization. In supervised machine learning, a defined objective is established initially. 

Deep learning (DL) is known as another prominent artificial intelligence technique, founded on artificial neural networks (ANN). There are a 

lot of DL techniques that have a lot of uses in many application areas. Although different scholars categorize Machine learning in different 

ways, Fig 2 shows the anatomy of deep learning techniques according to Hongyu Liu [23]. 

 
 

GSJ: Volume 11, Issue 9, September 2023 
ISSN 2320-9186 2024

GSJ© 2023 
www.globalscientificjournal.com



 

Fig 2: Anatomy of Machine learning techniques [23] 

 

Deep learning models are made up of multiple lay-

ers, each serving a specific purpose in the process 

of learning and decomposing useful features from 

data. These layers are stacked one on top of the 

other to form a neural network. The main layers in 

a typical deep learning model include: 

The input layer is the first layer in the neural net-

work and is responsible for receiving the raw input 

data. The number of neurons in this layer is deter-

mined by the dimensionality of the input data. For 

example, in image classification, each neuron in the 

input layer might correspond to a pixel in an image. 

Hidden layers are intermediate layers between the 

input and output layers. These layers are called 

"hidden" because their activations are not directly 

observable from the input or output. 

Deep learning models typically have multiple hid-

den layers, giving rise to the term "deep" learning. 

Fig 3: Artificial neural network layers 

The number of hidden layers and the number of neurons in each layer are hyperparameters that can be adjusted based on the complexity of the 

problem. Each neuron in a hidden layer performs a weighted sum of the inputs from the previous layer, applies an activation function, and 

passes the result to the next layer. After the weighted sum of inputs is calculated in each neuron, an activation function is applied to introduce 

non-linearity into the model. Common activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh. 

Activation functions enable the neural network to model complex relationships in the data and capture features that may not be representable 
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by a linear model. 

The output layer produces the final predictions or outputs of the model. The number of neurons in this layer depends on the task at hand. For 

example, in binary classification, there might be one neuron with a sigmoid activation function, while in multi-class classification, there could 

be multiple neurons with softmax activation. 

The choice of activation function in the output layer depends on the problem. For regression tasks, a linear activation function is often used, 

while for classification tasks, appropriate activation functions are chosen. 

Dropout is a regularization technique that helps prevent over fitting by randomly dropping a fraction of neurons during training. A dropout 

layer can be added to the model to achieve this effect. During each training iteration, some neurons are temporarily removed, which encourages 

the network to be more robust and generalizable. 

Batch normalization is another optional layer that can be added to improve the stability and training speed of deep neural networks. It normalizes 

the activations of each layer by adjusting the mean and variance of each mini-batch during training. 

These are the main layers in a typical deep learning model. The architecture and complexity of the model can vary greatly depending on the 

specific problem and the architecture chosen by the practitioner. Designing the right architecture with the appropriate number of layers and 

neurons is often a crucial part of building an effective deep learning model. 

 

In most cases the there are multiple inputs that affects the output. For each input there is an assignment called weight. Weights are parameters 

within the neural network that are learned during the training process. Each connection between neurons (synapse) has an associated weight. 

These weights determine the strength of the connection between neurons and play a crucial role in the network's ability to learn and adapt to 

the data. During training, the neural network updates these weights through a process called back propagation and gradient descent, aiming to 

minimize the difference between the predicted output and the actual target values. 

In each neuron of a neural network, a weighted sum of the inputs is computed. This weighted sum is a linear combination of the input values 

and their corresponding weights. Mathematically, the summation (also known as the net input) for a neuron can be represented as follows: 

𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 = ∑(𝐼𝑛𝑝𝑢𝑡(𝑖)𝑋 𝑤𝑒𝑖𝑔ℎ𝑡(𝑖) + 𝐵𝑖𝑎𝑠

𝑛

𝑖=0

 

 

Here, Input (i) represents input, weight (i) represents weight assigned to each connection and Bias is an optional bias term. The output of the 

summation is typically passed through an activation function. The activation function introduces non-linearity into the network, allowing it to 

learn complex patterns and relationships in the data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Artificial neural network forward propagation process 

The activation function essentially determines whether a neuron should fire (produce an output) based on the weighted sum of inputs. The 

choice of activation function depends on the specific problem and the characteristics of the data. Different activation functions may be used in 

different layers of a neural network. These components together enable the neural network to model complex relationships in data and make 
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predictions or classifications based on learned patterns. The summarize neural network process is shown in fig 2 

3. Forecasting factors affecting the water availability in the reservoir 

The amount water in the reservoir can be affected in many ways by different factors. While forecasting the factors affecting the water level is 

not an easy work [3], it’s possible to forecast some of them so that it can help to manage the available water for different purposes, such as 

irrigation, water supply, agriculture or hydropower in generation [4].  According to scholars from different sources, some of the factors that 

affect water availability in the reservoir include 

Precipitation: The amount and distribution of rainfall, snowfall, or other forms of precipitation in the reservoir's catchment area directly impact 

the water level and storage capacity of the reservoir [13]. Higher precipitation levels can increase water inflows, while prolonged droughts can 

result in lower water levels.  

Evaporation: is the phenomenon where water is transformed into vapor and released into the atmosphere. Reservoirs that have expansive 

surface areas and higher temperatures typically encounter increased rates of evaporation, which can lead to a gradual decrease in water levels 

and storage capacity over a period. 

The Inflow and Outflow also greatly affect the availability of water in the reservoir. The inflow and outflow rates of water in the reservoir, 

including rivers, streams, and other water sources, influence the water level. Inflow can come from rainfall runoff, snowmelt, or transfers from 

other water bodies, while outflow is typically controlled by dam releases or water withdrawals for various purposes [31]. 

Sedimentation: Sedimentation refers to the accumulation of sediment (such as sand, silt, and clay) in the reservoir. Over time, sedimentation 

reduces the storage capacity of the reservoir, affects water quality, and can potentially impact the functioning of dam infrastructure. 

Climate Change: Climate change can have significant implications for reservoir water. Alterations in precipitation patterns, increased temper-

atures, and changes in the hydrological cycle can lead to shifts in water availability, increased evaporation rates, and more frequent and severe 

droughts or floods, all of which can impact reservoir water levels and quality.  For example, hydropower is particularly vulnerable to changes 

in precipitation and temperature patterns [26]. In their study, Salomon Obahoundje and Arona Diedhiou has identified that climate change is 

predicted to create high rainfall variability and increase in temperature, making water availability uncertain [26]. In their study, about the impact 

of climate change in West Africa, they have concluded that Several nations are presently grappling with water scarcity, expanding the roster of 

countries susceptible to such stress. Within all West African river basins, the interconnections among precipitation, runoff, and water discharge 

are intricate due to changes in land use and land cover (LULCC). The Senegal, Niger, and Volta basins, which house significant hydropower 

facilities, are anticipated to face substantial challenges due to the impacts of climate change and variability. [26]. 

Land Use and Land Cover: Land use and land cover changes have significant effect on the availability of water at local, regional, and global 

scales. These alterations carry significant consequences on a regional and worldwide level, including heightened risks to global biodiversity, 

disruptions in hydrological patterns, elevated soil erosion, and increased sediment loads. [35]. At a local scale, modifications in land utilization 

and its surface coverage will impact watershed runoff, microclimatic conditions, land degradation processes, biodiversity across landscapes, 

soil erosion, and the accumulation of sediment. [31] 

. 

Chilagane N.A. et al on their study Impact of Land Use and Land Cover Changes on Surface Runoff and Sediment Yield in the Little Ruaha 

River Catchment have similar findings. They used a hydrological modeling using Soil and Water Assessment Tool (SWAT Model) to quantify 

the impact of land use and land cover dynamics on catchment water balance and sediment loads. They also carried out the calibration and 

validation of the SWAT model using sequential uncertainty fitting.  The results indicate that changes in land use and land cover have a significant 

impact on the hydrological response of the catchment. An increase in sediment yield and surface runoff along with a decrease in base flow and 

lateral flow were directly associated with the transformation of land use and land cover in the catchment. These transformations, including 

heightened runoff production and sediment transport alongside reduced base flow, carry consequences for the maintenance of flow patterns. 

Specifically, they reduce dry-season river flows, leading to adverse effects on the ecosystem's living organisms, as well as diminished water 

storage and energy generation at the Mtera Hydroelectric Dam. [12]. 

Water Demand: The demand for water from the reservoir, such as for irrigation, industrial use, or domestic supply, can influence water levels. 

High water demand can lead to increased withdrawals, potentially depleting the reservoir's storage capacity. Understanding and considering 

these factors are crucial for effective reservoir management [1], ensuring sustainable water supply, and mitigating potential impacts on the 

ecosystem and water-dependent activities. 

3.1. Why forecasting is important? 

Different researchers put different reasons to forecast factors affecting the availability of water in the reservoir for different reasons. Eyob 

B. on his research on Multivariate Streamflow Simulation Using Hybrid Deep Learning Models put the advantage of forecasting the stream 

flow forecasting mainly in agriculture, domestic water supply, environment, flood control, hydropower generation and early warning systems 

[16]. 

O. gan-Sarıkoç et al on their research on reservoir volume forecasting using artificial intelligence-based models: Artificial Neural Networks, 

Support Vector Regression, and Long Short-Term Memory said that forecasting water level in the reservoir is important for efficient and 

effective plan of water supply, flood control, irrigation for agriculture, and hydroelectric production [29]. Nyasulu et al also researched the uses 

of forecasting factors affecting availability of water in the reservoir in hydropower optimization [25]. In general, the importance of forecasting 

factors affecting water availability in the reservoir can be summarized as shown in fig 5. 
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Fig 5: Importance of forecasting factors affecting water availability in the reservoir 

 

3.2.  Forecasting stream-flow  

Stream flow is the most factor that determines the water in the reservoir. Therefore, accurate stream flow forecasting has a vital role 

in water resource planning and development, mainly in optimal hydropower generation, flood control, and drought warning systems. In 

recent days, technology is greatly helping in forecasting a stream flow at different phases [14], short term, medium and long term.  The 

deep learning algorithms have got enormous attention due to their high-performance forecasting ability.  

Wu C. et al [33] have studied monthly streamflow using data-driven models coupled with data-preprocessing techniques. On their study, 

they proposed crisp distributed support vectors regression (CDSVR) model for monthly streamflow prediction and compared with four 

other models. These models include autoregressive moving average (ARMA), K-nearest neighbors (KNN), artificial neural networks 

(ANNs), and crisp distributed artificial neural networks (CDANN). In the case of distributed models like CDSVR and CDANN, they 

employed the fuzzy C-means (FCM) clustering method to categorize flow data into low, medium, and high levels based on data magni-

tudes. Subsequently, three individual SVRs (or ANNs) were fitted for each category. Additionally, data preprocessing techniques such 

as singular spectrum analysis (SSA) and moving average (MA) were applied to all models to enhance their performance. 

 

According to their finding, the singular spectrum analysis (SSA) showed more significant benefits when applied to the Danjingkou 

dataset, primarily due to the higher complexity of its raw discharge data compared to that of Xiangjiaba. By fine-tuning the correlation 

between input elements and model output, the model analysis notably enhanced the performance of ANN, CDANN, and CDSVR. 

Additionally, they observed that the performance of crisp distributed support vectors regression (CDSVR) declined as the forecasting 

horizon increased. [33] 

Eyob B. et al in their study on Multivariate Streamflow Simulation Using Hybrid Deep Learning Models on Upper Awash River Basin 

(Borkena watershed in Ethiopia) and the Tiber River Basin (Upper Tiber River Basin) stations. They have used 15 years gauged inflow 

data from Upper Awash River Basin and have compared multilayer perceptron (MLP), long short-term memory (LSTM), and gated 

recurrent unit (GRU) with their proposed new hybrid models combination of convolutional neural network (CNN) with long short-term 

memory and multilayer perceptron, CNN-LSTM and CNN-GRU [16].  

They have simulated one-step daily streamflow in different agroclimatic conditions, rolling time windows and a range of variable input 

combinations. They rolled to a different time lag to remove noise in the time series and split the data to training and testing datasets 

using a ratio of 80: 20, respectively as shown in fig 6. 
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Fig 6: Streamflow data used to train and testing. (a) Borkena. (b) UTRB (Eyob B, 2021). 

 

The analysis employed daily data consisting of multiple variables and data collected from various locations within the two basins.. Their 

results showed that, integrating the GRU layer with the convolutional layer and using monthly rolled average daily input time series 

could substantially improve the simulation of stream flow time series as shown in fig 7. 

 

Fig 7: Streamflow time series graph and the corresponding box plot of split data. (a) Borkena. (b) UTRB (Eyob B, 2021). 

 

According to the analysis, CNN-GRU has less rooted mean square error (RMSE) and mean absolute error (MAE), mean squared error 

(MSE) and the coefficient of determination (R2) that are the three statistical regression formulae used to evaluate the accuracy of the 

models. The formula for these regression are as follows. 
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𝑛

𝑖=1

 

Where   yi= actual value 

               yp=predicted value 

               ȳ = the mean (average) of the observed values. 

               n= number of observations 

The lower value of rooted mean square error (RMSE), mean absolute error (MAE) implies higher accuracy of the regression model 

which means the higher accuracy of forecasted value. However, R Squared used to explain how well the independent variables in the 

linear regression model explains the dependent variable. Eyob B. did not put any reason why the combined CNN-GRU is performing 

well over the others model. However, it’s known that the number of layers, the number of parameters and hyper parameters used in each 

model influence the accuracy of forecasting in precipitation.  

In another study, Eyob B. eta al has studied a Short-Term Daily Univariate Streamflow Forecasting Using Deep Learning Models. They 

have compared the effectiveness of Bidirectional Long Short-Term Memory (Bi-LSTM), Stacked Long Short-Term Memory (S-LSTM), 

and Gated Recurrent Unit (GRU) with the classical Multilayer Perceptron (MLP) network for daily streamflow forecasting. In their 

study, they have analyzed the impacts of climatic which is time series characteristics and the lagged time variability on the performance 

of different proposed deep learning models. In this study, MLP and GRU outperform S-LSTM and Bi-LSTM on a nearly equal basis for 

single-step short-term stream flow forecasting in both study river basins and concluded the performance is relative to the lagged time 

variations [17]. 

Abera K. et al in their study on hydrological drought forecasting and monitoring system development using artificial neural network 

(ANN) in Ethiopia have collected a streamflow and precipitation data from 17 streamflow stations and 34 rainfall gauge stations to 

forecast future streamflow and hydrological drought from 2026 to 2099. They had a forecast of streamflow using an artificial neural 

network (ANN). The observed precipitation and streamflow data from the years 1973 to 2014 are used to train and test the ANN model. 

They also used 80:20 ration combination for training and testing respectively.  They concluded that the artificial neural network (ANN) 

is an effective method for predicting streamflow in regions where there is a strong correlation between precipitation and streamflow, as 

observed in the selected stations within the Abbay, Awash, Baro, Omo Gibe, and Tekeze river basins. They also concluded that model is 

not suitable in the arid areas such as Wabishebele, Genale Dawa, and Rift Valley basins. This is the fact that the input data, namely 

precipitation, exhibit greater variability compared to the output variable, streamflow. In arid regions, meteorological drought analysis 

and forecasting prove to be more effective than hydrological drought analysis. Additionally, they made predictions regarding hydrolog-

ical drought using the analyzed streamflow data as input for the streamflow drought index (SDI).[5] 

3.3. Forecasting rainfall and precipitation 

Rainfall is another variable to contribute the water to the reservoirs. Forecasting rainfall amounts is crucial in managing the water 

resources, especially in the tropical areas [2]. It is central for the management of vital economic activities such as irrigation and hydro-

electric power generation. In many countries, rainfall amount and economic growth have been closely interconnected [27].  

In their study, Olusola et al used two multivariate polynomial regressions (MPR) and twelve machine learning algorithms to forecast 

the rainfall.  The twelve machine learning techniques are three artificial neural networks (ANN), four adaptive neuro-fuzzy inference 
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system (ANFIS) and five support vector machine (SVM) algorithms, to estimate monthly and annual rainfalls in a tropical location. 

They obtained their input data from the Nigerian Meteorological Agency (NIMET) to train their model, spanning a 31-year period from 

1983 to 2013 and covering the entire geographical extent of Nigeria. Their assessment, based on the general performance index (c), 

revealed that the algorithms of the adaptive neuro-fuzzy inference system (ANFIS) model consistently outperformed those of the MPR, 

ANN, and SVM models across ten months of the year. Specifically, they found that the bell-shaped algorithm (ANFIS-GBELL) deliv-

ered the best results for January, April, May, July, October, and the annual rainfall. The Gaussian algorithm (ANFIS-GAUSS) excelled 

in November and December, while the subtractive clustered algorithms (ANFIS-SC) performed exceptionally well for August and Sep-

tember rainfall, and the fuzzy c-means algorithms (ANFIS-FCM) for June rainfall. Additionally, the multivariate polynomial regression 

of the second order (MPR-2) model exhibited superior performance for February and March rainfall. These model algorithms demon-

strated a general performance index ranging from 0.906 to 0.996, making them suitable candidates for rainfall estimation across Nigeria. 

[27]. 

Charity et al has forecasted hourly rainfall predictions using different machine learning techniques for Axim in the western region of 

Ghana. They studied the predictive capacity of deep learning and built an Artificial Neural Networks (ANN) model by using the Long 

Short-Term Memory (LSTM) algorithm and the Spearman coefficient based on selected seven parameters reported by the weather 

station. The parameters used as input were rainfall, humidity, wind, mean sea level pressure, dew and temperature. The inputs used and 

the general architecture of ANN model is as shown in fig 8. 

 

Fig 8: Artificial Neural Network Architecture 

 

The researchers have used different combination of inputs to find the best performing combination to forecast the precipitation. Table 

1 shows the different combinations used during the data training and the mean square error (MSE) results. 

 

Parameters MSE Val MSE Training Time (s) Total Computing time (s) 

R&T&M&H 0.0012 0.1540  

 

31916.8 32034.9 

R&M&H 0.0018 0.2177 24186.8 24290. 4 

Precipitation (R) 0.001972 0.1656 6075.5 6096.1 

R&T&M 0.003829 0.1777 23338.3 23435. 2 
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R&T&H 0.004069 0.1624 24528.8 24663. 7 

R&H 0.007898 0.1876 12885.5 12926. 8 

R&T 0.015216 0.1661 12675.7 12714. 1 

R&M 0.022048 0.1652 13052.9 13091. 1 

Temperature (T) 0.291133 0.4206 6041.6 6077.1 

Humidity (H) 0.322180 0.3297 5886.6 5930.0 

Pressure (P) 0.361079 0.3502 5838.7 5860.9 

 

Table 1: The Mean Squared Error results 

 

They conducted a correlation analysis of selected parameters to identify the most influential combination, which significantly affected 

rainfall. They performed validations on each parameter, including Relative Humidity(H), Precipitation (R), Mean Sea Level Pressure 

(MSLP), and Temperature (T). Furthermore, they conducted validations involving Precipitation (R) in relation to Relative Humidity 

(H), Pressure (M), and Temperature, as well as (R) in relation to (T)/(M), (R) in relation to (T)/(H), and (R) in relation to (M)/(H). The 

testing involving Precipitation against Temperature/Pressure/Humidity yielded the most favorable result, with a mean squared error 

(MSE) of 0.002 and a mean absolute error (MAE) of 0.021.[10]. 

Wondmagegn Taye et al. have investigated the use of AI-based models to predict monthly rainfall in 92 Ethiopian stations of meteoro-

logical areas to predict monthly rainfall without climatic data for meteorological stations. They have also examined applicability and 

performance of Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models in predicting long-

term monthly precipitation by using geographical component (longitude, latitude, and altitude) data of ten years collected from 2011 to 

2021. In their study, they have applied a multiple layer feedforward neural networks for rainfall prediction using geographical infor-

mation components. Their research results show that the Adaptive Neuro-Fuzzy Inference System (ANFIS) model performs better than 

the Artificial Neural Networks (ANN) model in all assessment criteria across all testing stations. The Nash–Sutclife efciency coefcients 

(R2) were 0.995 for ANFIS and 0.935 for ANN over testing stations [32].  

Mulualem G. et al have also studied the Application of Artificial Neural Networks in Forecasting a Standardized Precipitation Evapo-

transpiration Index for the Upper Blue Nile Basin. They have developed seven artificial neural network (ANN) predictive models incor-

porating hydro-meteorological, sea surface temperatures, climate, and the topographic attributes to forecast the standardized precipita-

tion evapotranspiration index (SPEI). They selected seven stations in the Upper Blue Nile basin (UBN) of Ethiopia and used thirty years 

data from 1986 to 2015. Their objective was to analyze the sensitivity of the drought-trigger parameters (inputs) and to measure their 

predictive performance by comparing the predicted values with the observed values. Their statistical comparisons of the different models 

showed that accurate results in predicting standardized precipitation-evapotranspiration index (SPEI) values could be achieved by in-

cluding large-scale climate indices. Furthermore, it was found that the coefficient of determination (R2) and the root-mean-square error 

(RMSE) of the best architecture ranged from 0.820 to 0.949 and 0.263 to 0.428 respectively. From their analysis, they have concluded 

that ANNs is an alternative for forecasting the SPEI drought index [24] 

3.4. Forecasting the temperature  

Temperature is another factor that greatly affect the availability of water in the reservoir. Temperature can affect the evaporation; influ-

ence the precipitation amount, water quality and others. To overcome the crisis due to unexpected temperature change, it’s better to 

forecast the future change ion temperature [20].  

Nyasulu, C. et al has forecasted weather on their study “Towards Resilient Agriculture to Hostile Climate Change in the Sahel Region: 

A Case Study of Machine Learning-Based Weather Prediction in Senegal” on their study, they have developed Machine Learning-based 

models adapted to the context of daily weather forecasting for Rainfall, Relative Humidity, and Maximum and Minimum Temperature 

in Senegal. They also made different comparison of machine learning techniques.  Their results show that the Ensemble Model performs 

better than the ten base models. The Ensemble Model results for each input parameters includes: Relative Humidity: Mean Absolute 

Error (MAE) was 4.0126, Mean Squared Error (MSE) was 29.9885, Root Mean Squared Error (RMSE) was 5.4428 and Coefficient of 

Determination (R2) was 0.9335. For Maximum Temperature: Mean Absolute Error (MAE) was 1.2515, Mean Squared Error (MSE) was 

2.8038, Root Mean Squared Error (RMSE) was 1.6591 and Coefficient of Determination (R2) was 0.8205. For Minimum Temperature: 

Mean Absolute Error MAE) was 0.7908, Mean Squared Error (MSE) was 1.1329, Root Mean Squared Error (RMSE) was 1.0515 and 

Coefficient of Determination(R2) was 0.9018. For Rainfall: Mean Absolute Error (MAE) was 0.2142, Mean Squared Error (MSE) was 

0.1681, Root Mean Squared Error (RMSE) was 0.4100 and Coefficient of Determination (R2) was 0.7733. It can be concluded that 

Ensemble model is best performing to forecast the maximum and minimum temperature with the coefficient of determination((R2) 

0.8205 and 0.9018 respectively which is closer to 1. This shows the predicted value can be expressed well by the forecasted value.  is 

from this study in general, it can be concluded that the Ensemble Model is a feasible model to be used for Rainfall, Relative Humidity, 

and Maximum and Minimum Temperature forecasting [25].  
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3.5. Forecasting Evaporation from the reservoir based on climate change 

 

Climate plays a dominant role in influencing the process of evaporation and is projected to have adverse effects on water resources 

especially in the wake of a changing climate. In order to understand the impact of climate change on water resources, artificial intelli-

gence models that possesses rapid decision-making ability, can be used [6].  

Ahi et al. conducted a study titled 'Reservoir Evaporation Forecasting Based on Climate Change Scenarios,' employing an Artificial 

Neural Network (ANN) model. Their research aimed to predict evaporation in Turkey's Karaidemir Reservoir using artificial neural 

networks (ANNs). They utilized daily meteorological data spanning a 30-year reference period, covering the irrigation season, to develop 

ANN models. To project future evaporation, they employed predicted meteorological data based on climate change scenarios from 

HadGEM2-ES and MPI-ESM-MR under the Representative Concentration Pathway (RCP) 4.5 and 8.5 emissions scenarios for the years 

2000 to 2098. The model input parameters included mean temperature (Tmean), maximum temperature (Tmax), minimum temperature 

(Tmin), sunshine duration (n), solar intensity (SI), precipitation (P), wind speed (u), relative humidity (RH), with evaporation (E) as the 

output. Various ANN techniques were also applied. 

 

Their findings concluded that the ANN model demonstrated strong performance in estimation, even with a limited number of input 

parameters. The projected surface water evaporation for the long term (2080–2098) indicated a 1.0% to 3.1% increase for the RCP4.5 

scenarios from the MPI and HadGEM models, and a 14% decrease to a 7.3% increase for the RCP8.5 scenarios, respectively. [6].  

3.6. Forecast a reservoir water level considering the land use and climate change 

Monitoring the water levels of dams holds significance, not just for the effective management of dam operations, but also for tasks 

associated with incorporating reservoir management plans, identifying key factors affecting fluctuations in dam water levels, assessing 

the effects of global climate changes on watershed hydrology, and guaranteeing an ample supply of fresh water [3]. Precise monitoring 

and forecasting of dam water levels are crucial in connection with variables such as inflow rates, reservoir storage, discharge from dam 

reservoirs, evaporation, and infiltration. These variables contribute to uncertainties in dam reservoirs and hold significance in both dam 

operations and modeling. [28]. 

Reliable models are essential for simulating, predicting, and forecasting dam water levels. Nevertheless, the fluctuations in dam water 

levels arise from intricate nonlinear mechanisms involving elements like precipitation, evaporation, inflow from tributaries, terrain 

characteristics, land use patterns, and more. The complexity intensifies when dams rely on multiple water sources, such as precipitation, 

rivers, wells, and inputs from other dams. Consequently, ensuring dependable and precise predictions of dam water levels poses a 

formidable challenge for hydrologists and water resource managers. [28]. 

Ouma y., for the case study of the Gaborone dam and the Bokaa dam in the semi-arid Botswana, from 2001 to 2019 used parametric 

Multivariate Linear Regression (MLR), stochastic Vector AutoRegressive (VAR), Random Forest Regression (RFR) and Multilayer 

Perceptron (MLP) Artificial Neural Network (ANN) models to predict the variability of dam water levels, and compared based on the 

influences of climate factors (rainfall and temperature), climate indices (DSLP, Aridity Index (AI), SOI and Niño 3.4) and land-use land-

cover (LULC) as the predictor variables. 

The prediction outcomes revealed that the linear Multiple Linear Regression (MLR) model struggled to effectively forecast the intricate 

non-linear variations in dam water levels using the predictor variables. The stochastic Vector Autoregressive (VAR) model successfully 

identified a relationship between Land Use and Land Cover (LULC) and dam water levels, achieving an R-squared (R2) value exceeding 

0.95. However, it fell short in adequately capturing the impact of climate factors on dam water levels. Random Forest Regression (RFR) 

and Multi-layer Perceptron Artificial Neural Network (MLP-ANN) models exhibited strong correlations between dam water levels and 

climate factors, along with climate indices. Specifically, they achieved higher R2 values ranging from 0.890 to 0.926 for the Gaborone 

dam, as opposed to 0.704–0.865 for the Bokaa dam. 

When considering LULC for dam water predictions, RFR outperformed MLP-ANN, delivering superior accuracy results for the Bokaa 

dam. However, based on climate factors and climate indices, MLP-ANN produced the most accurate predictions for dam water levels 

in both dams. To enhance prediction results, a hybrid VAR-ANN model was identified as more suitable for integrating LULC and climate 

conditions, effectively predicting the variability of both linear and non-linear time-series components of dam water levels in both dams. 

[28]. 

Kusudo, T. et al on their study of Development and Assessment of Water-Level Prediction Models for Small Reservoirs Using a Deep 

Learning Algorithm used Single-output long short-term memory (LSTM SO) and encoder-decoder long short-term memory (LSTM ED) 

They have used water-level data and rainfall data from 2018 to 2020 in the Takayama Reservoir (Nara Prefecture, Japan) to train, test, 

and assess both models. They came up with the result that the LSTM ED model had better accuracy. They also summarized that LSTM 

model can potentially be used to predict the water levels of reservoirs with limited available hydrological variables for training, such as 

water level and rainfall and discharge events without the inflow and outflow data [22]. 

 

On another study, G. ozdogan-Sarikoc et al forecasted the reservoir volume using Artificial Neural Networks, Support Vector Regression, 

and Long Short-Term Memory. They used eight input parameters to forecast the reservoir volume with previous months’s reservoir 

volume. The input data was as shown in Fig 9 [29]. 
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Fig 9: Artificial Neural Network Architecture and inputs used 

 

These The input parameters were tested usng different combinations and the effects of them on prediction of reservoir volumes were 

investigated. In this model, the root means square error (RMSE), coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), 

and NRMSE values calculated between the observed and predicted reservoir volumes for the Ladik Reservoir were found to be 3.843 

million m3, 0.920 and 0.919, respectively. The best RMSE, R2 and NSE values for the Yedikir Reservoir were found to be 6.424 million 

m3, 0.831 and 0.794 respectively. There researcher also figured out that the model training time has a great impact to forecast accurate 

future reservoir water level. For example, the best model performance for the Ladik Reservoir was obtained when the number of epochs 

was 400 and the number of neurons in th hidden layer was 10. For the Yedikir Reservoir, the model with 400 epochs and 15 neurons in 

the hidden layer provided the best results. The different combination of the inputs is another factor to accurately forecast the reservoir 

water level [29]. 

 

Once the factors affecting the water availability in the reservoir is forecasted, it possible to predict the possibility of flood [18] or drought 

occurrence in the given period of time. Drought forecasts can provide valuable information to help mitigate some of the consequences 

of drought. Data driven models are suitable forecast tools due to their minimal information requirements and rapid development times 

(Belayneh, 2013). There are a lot of machine learning techniques that can help to forecast the possibility of flood occurrence. 

Belayneh et al, compares the effectiveness of five data driven models for forecasting long-term (6 and 12-months lead time) drought 

conditions in the Awash River Basin of Ethiopia. They were forecasted Standard Precipitation Index (SPI 12 and SPI 24) using a tradi-

tional stochastic model (ARIMA) and compared to machine learning techniques such as artificial neural networks (ANNs), and support 

vector regression (SVR). In addition to these three model types, wavelet transforms were used to pre-process the inputs for ANN and 

SVR models to form WA-ANN and WA-SVR models; this is the first time that WA-SVR models have been explored and tested for long-

term SPI forecasting. They have also compared performances of all models using RMSE, MAE, R2 and a measure of persistence. The 

forecast results indicate that the coupled wavelet neural network (WA-ANN) models were better than all the other [8]. 

In another study , Belayneh et al conducted an analysis of short-term drought forecasting using the Standard Precipitation Index (SPI) 

in the Awash River Basin of Ethiopia. They employed wavelet transforms and machine learning techniques as part of their study. Spe-

cifically, artificial neural networks (ANNs) and support vector regression (SVR) were compared with coupled models (WA-ANN and 

WA-SVR), which applied wavelet analysis (WA) for input data preprocessing. This research introduced and evaluated the SVR and WA-

SVR approaches for short-term drought prediction. 

 

The findings from this study revealed that the coupled wavelet neural network models (WA-ANN) emerged as the most effective models 

for forecasting SPI 3 and SPI 6 values over lead times of 1 and 3 months in the Awash River Basin. [9]. 

 

5. Summary of deep learning models used and suggested models 

In summary, a lot of machine learning models and techniques are used to forecast on the factors affecting the availability of water in the 

reservoir to optimize the efficient and effective use of the available water in the reservoir across the world. Table 2 show the comparative 

machine leaning models used in the world. 
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Table 2: Comparison of learning models

Reference Method/ Models used 

Predicted Varia-

ble Study Area 

Re-

gion/coun-

try Suggested Model(s) 

Kusudo, T. et al, 

2022 [22] 

Single-output long short-term memory 

(LSTM SO), 

encoder-decoder long short-term memory 

(LSTM ED) 

Water level Takayama Reservoir 

(Nara Prefecture, Ja-

pan) 

Japan encoder-decoder long short-term memory 

(LSTM ED) 

D. Fister et al, 2021 

[15] 

Deep Learning, Machine Learning (ML), 

Convolutional Neural Network (CNN),  Lasso 

regression, Decision Trees and Random For-

est 

Temperature locations (Paris, 

France) and (Cór-

doba, Spain) 

 France, 

Spain 

 

Ouma, Y.O, 2022 

[28] 

Multivariate Linear Regression 

(MLR), stochastic Vector AutoRegressive 

(VAR), Random Forest Regression (RFR) 

and Multilayer 

Perceptron (MLP) Artificial Neural Network 

(ANN) 

Water Level Dam Water Level 

Prediction, Gaborone 

dam and the Bokaa 

dam, Botswana 

 

Botswana Multilayer 

Perceptron (MLP) Artificial Neural Network 

(ANN) 

Ahi Y. et al, 2022 

[6] 

Artificial Neural 

Networks (ANN) 

Evaporation Karaidemir Reser-

voir, Turkey 

Turkey Artificial Neural 

Networks (ANN) 

Atashi, V et al, 

2022 [7] 

Classical Statistical Method, Classical ML 

Algorithm, State-of-the-art Deep Learning 

Method, Seasonal Autoregressive Integrated 

Moving Average (SARIMA), 

Random Forest (RF), and Long Short-Term 

Memory (LSTM) 

Water Level Red River of the 

North America 

Canada Long Short-Term Memory (LSTM) 

Olusola S. et al, 

2022 [27] 

Multivariate Polynomial 

Regressions (MPR),  Artificial Neural 

Networks (ANN), Adaptive Neuro-Fuzzy In-

ference system (ANFIS), Support Vector Ma-

chine (SVM) 

Rainfall Machine learning 

models for prediction 

of rainfall,  

Nigeria 

Nigeria Multivariate Polynomial 

Regressions (MPR), Neuro-Fuzzy Inference 

system (ANFIS) 
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Wu C. et, 2010 [33] Crisp Distributed Support Vectors Regression 

(CDSVR), Autoregressive Moving Average 

(ARMA), Artificial Neural Networks 

(ANNs), K-nearest neighbors (KNN), and 

Crisp Distributed Artificial Neural Networks 

(CDANN). 

 Streamflow  

Xiangjiaba and Dan-

jiangkou, China 

 

China Artificial Neural Networks (ANNs), Distrib-

uted Artificial Neural Networks (CDANN). 

Abdulkadir T. et al 

[3] 

Artificial Neural 

Networks (ANN) 

Water level Neural Network 

Based Model for 

Forecasting Reser-

voir Storage for 

Hydropower Dam 

Operation, Nigeria 

Africa 

Nigeria Artificial Neural 

Networks (ANN) 

Charity O. et al, 

2021 [10] 

Artificial Neural 

Networks (ANN) model by using the Long 

Short-Term Memory 

(LSTM) algorithm 

Rainfall Rainfall Forecasting 

in Sub-Sahara Af-

rica-Ghana 

Ghana Artificial Neural 

Networks (ANN) 

Chiamsathit, C. et 

al, 2016 [11] 

Multi-Layer Perceptron (MLP) Artificial Neu-

ral Networks (ANN) 

Inflow Ubonratana reser-

voir, Thailand 

Thiland  

Nyasulu, C. et al, 

2022 [25] 

 

Compared their Ensemble Model with ten ML 

regressors: Light Gradient Boosting Machine, 

CatBoost Regressor, Gradient Boosting Re-

gressor, Extreme Gradient 

Boosting, Random Forest Regressor, Orthog-

onal Matching Pursuit, Extra Trees Regressor, 

K Neighbors Regressor, AdaBoost Regressor 

and Decision Tree Regressor. The Ensemble 

Model was developed by stacking the top 

three regressors: CatBoost Regressor, Gradi-

ent 

Boosting Regressor and Light Gradient 

Boosting Machine 

Rainfall, Relative 

Humidity, and 

Maximum and 

Minimum Temper-

ature 

Resilient Agriculture 

to Hostile Climate 

Change in the 

Sahel Region, Sene-

gal 

Senegal Ensemble Model  

Tadesse B. et al, 

2022 [32] 

SARIMA model,  GReTL and 

automatic XLSTAT 

Rainfall The Magoebaskloof 

Dam, South Africa 

South Af-

rica 

SARIMA model 
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Belayneh A.et 

al.,2014 [8] 

Artificial Neural Networks (ANNs), 

Support Vector Regression (SVR), Wavelet 

Neural Network (WA-ANN and Wavelet 

Support Vector Regression WA-SVR) 

Short-term SPI 

drought 

Awash Basin, Ethio-

pia 

Ethiopia Wavelet Neural Network (WA-ANN) 

Belayneh A.et al., 

2014 [9] 

Artificial Neural Networks (ANNs), 

Support Vector Regression (SVR), Wavelet 

Neural Network (WA-ANN and Wavelet 

Support Vector Regression WA-SVR) 

Long-term SPI 

drought 

Awash Basin, Ethio-

pia 

Ethiopia Wavelet Neural Network (WA-ANN) 

Eyob Betru. et al, 

2021 [16] 

Multilayer 

Perceptron (MLP), Long Short-Term Memory 

(LSTM), and Gated Recurrent Unit (GRU), 

New Hybrid Models, 

including CNN-LSTM and CNN-GRU 

Stream flow Tiber River Basin, 

Ethiopia 

Ethiopia Integrating the GRU layer with the convolu-

tional layer and using monthly rolled average 

daily input time series could substantially im-

prove the simulation of streamflow time series 

Eyob Betru. et al, 

2022 [17] 

Stacked Long Short-Term Memory (S-

LSTM), Bidirectional Long Short-Term 

Memory 

(Bi-LSTM), Gated Recurrent Unit (GRU) and  

classical Multilayer Perceptron (MLP) 

Short-Term Daily 

Univariate Stream 

flow 

Borkena (in Awash 

river basin) and 

Gummera (in Abay 

river basin), Ethiopia 

Ethiopia Classical MLP could 

almost equally perform with S-LSTM and 

GRU 

deep learning networks on a small amount of 

streamflow time series data. 

Kassa Abera et al, 

2023 [5] 

Artificial 

Neural network (ANN) 

Stream flow, 

drought 

Abbay, Awash, Baro, 

Omo Gibe, and 

Tekeze river basins, 

Ethiopia 

 Artificial 

Neural network (ANN) 
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Conclusion 

In conclusion, from the reviewed papers on the forecasting factors affecting availability of water in the reservoir, the following can be 

concluded. 

 AI-based modeling is the key to efficient and effective use of available water by applying algorithms to forecast the future 

according to today’s needs.  

 It’s possible to forecast the factors that affect the availability of water in reservoir so that it can be helpful to proper manage-

ment of water resources to be used for different purposes such as hydropower generation. 

 The type of model used, number of parameters and hyper parameters, the quantity of data used to train the model, number of 

layers and the activation function has a great impact on the accuracy of the forecasted values. 

 The most common artificial intelligence techniques used to forecast rainfall are Multivariate Polynomial Regressions (MPR), 

Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference system (ANFIS), Support Vector Machine (SVM) and 

for the streamflow Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), 

New Hybrid Models, including CNN-LSTM and CNN-GRU. 

 The LSTM model can potentially be used as a tool for predicting the water levels of reservoirs with limited available hydr 

logical variables for training, such as water level and rainfall and discharge events without the inflow and outflow data. 

 Multivariate Polynomial Regressions (MPR), Neuro-Fuzzy Inference system (ANFIS) forecasting techniques are preferable 

and have more accuracy rate to forecast short term and long-term rainfall. 

 Once the factors affecting availability of water in the reservoir are forecasted it is possible to predict the possibility of 

drought or flood occurrence so that it will greatly minimize the disaster risks. 

Acknowledgment 

We would like to express my sincere appreciation and gratitude to the science communities around the world who have contributed 

to science development, specifically those whom we used your works as a reference in writing this paper. Your contributions advancing 

scientific knowledge can’t be expressed in this short acknowledgement.  

References 

 

[1] Abdulkadir, T. S. - Sule, B. F. - Salami, A. W. (2012a) Application of Artificial Neural Network Model to the Management of Hydropower Reservoirs along 

River Niger, Nigeria. Annals of Faculty Engineering, Hunedoara–International Journal of Engineering, Tome X –FASCICULE 1(ISSN 1584-2673), pp. 419-

424. http://annals.fih.upt.ro/pdf-full/2012/ANNALS-201. 

[2] Abdulkadir, T. S. - Salami, A. W. - Kareem, A. G. (2012b) Artificial Neural Network Modeling of Rainfall in Ilorin, Kwara State, Nigeria. USEP, Journal of 

Research Information in Civil Engineering, Vol. 9 No 1, pp. 108–120. http://www.useprice.webs.com 

[3] AbdulKadir, T.S., et al., Neural Network Based Model for Forecasting Reservoir Storage for Hydropower Dam Operations. International Journal of Engineering 

Research and General Science, 2015. 3(5): p. 639-647. 

[4] Abdulkadir, T., Salami, A., Anwar, A., & Kareem, A. (2013). Modelling of Hydropower Reservoir Variables for Energy Generation: Neural Network Approach. 

Ethiopian Journal of Environmental Studies and Management, 6(3). doi:10.4314/ejesm.v6i3.12 

[5] Abera, K., & Gebeyehu, A. (2023). Hydrological drought forecasting and monitoring system development using artificial neural network (ANN) in Ethiopia. 

Heliyon, 9(2), e13287. https://doi.org/10.1016/j.heliyon.2023.e13287 

[6] Ahi, Y., Dilcan, I. C., Köksal, D. D., & Gültaş, H. T. (2022, November 4). Reservoir Evaporation Forecasting Based on Climate Change Scenarios Using 

Artificial Neural Network Model - Water Resources Management. https://doi.org/10.1007/s11269-022-03365-0 

[7] Atashi, V.; Gorji, H.T.; Shahabi, S.M.; Kardan, R.; Lim, Y.H. Water Level Forecasting Using Deep Learning Time-Series Analysis: A Case Study of Red River 

of the North. Water 2022, 14, 1971. https:// doi.org/10.3390/w14121971 

[8] Belayneh, A., Adamowski, J., Khalil, B., & Ozga-Zielinski, B. (2014). Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet 

neural network and wavelet support vector regression models. Journal of Hydrology, 508, 418–429. doi:10.1016/j.jhydrol.2013.10.052 

[9] Belayneh, A., Adamowski, J., & Khalil, B. (2015). Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and 

machine learning methods. Sustainable Water Resources Management, 2(1), 87–101. doi:10.1007/s40899-015-0040-5 

[10] Charity Oseiwah Adjei , Wei Tian , Bernard-Marie Onzo, Shiwei Chen , Emmanuel Adu Gyamfi Kedjanyi, Oscar Famous Darteh, 2021, Rainfall Forecasting 

in Sub-Sahara Africa-Ghana using LSTM Deep Learning Approach, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY 

(IJERT) Volume 10, Issue 03 (March 2021) 

[11] Chiamsathit, C., Adeloye, A. J., & Bankaru-Swamy, S. (2016, May 12). Inflow forecasting using Artificial Neural Networks for reservoir operation. Proceed-

ings of the International Association of Hydrological Sciences, 373, 209–214. https://doi.org/10.5194/piahs-373-209-2016 

[12] Chilagane, N.A., Kashaigili, J.J., Mutayoba, E., Lyimo, P., Munishi, P., Tam, C. and Burgess, N. (2021) Impact of Land Use and Land Cover Changes on 

Surface Runoff and Sediment Yield in the Little Ruaha River Catchment. Open Journal of Modern Hydrology, 11, 54-74. 

https://doi.org/10.4236/ojmh.2021.113004 

[13] Deman VMH, Koppa A, Waegeman W, MacLeod DA, Bliss Singer M and Miralles DG (2022) Seasonal prediction of Horn of Africa long rains using machine 

learning: The pitfalls of preselecting correlated predictors. Front. Water 4:1053020. doi: 10.3389/frwa.2022.1053020 

GSJ: Volume 11, Issue 9, September 2023 
ISSN 2320-9186 2038

GSJ© 2023 
www.globalscientificjournal.com

http://annals.fih.upt.ro/pdf-full/2012/ANNALS-201


 

[14] Demeke Endalie, Getamesay Haile, Wondmagegn Taye; Deep learning model for daily rainfall prediction: case study of Jimma, Ethiopia. Water Supply 1 

March 2022; 22 (3): 3448–3461. doi: https://doi.org/10.2166/ws.2021.391 

[15] D. Fister, J. Pérez-Aracil, C. Peláez-Rodríguez, J. Del Ser, S. Salcedo-Sanz, Accurate long-term air temperature prediction with Machine Learning models and 

data reduction techniques, Applied Soft Computing, Volume 136, 2023, 110118,https://doi.org/10.1016/j.asoc.2023.110118. 

[16] Eyob Betru Wegayehu, & Muluneh, F. B. (2021). Multivariate Streamflow Simulation Using Hybrid Deep Learning Models. Computational Intelligence and 

Neuroscience, 2021, 1–16. https://doi.org/10.1155/2021/5172658 

[17] Eyob Betru Wegayehu, & Muluneh, F. B. (2022, February 10). Short-Term Daily Univariate Streamflow Forecasting Using Deep Learning Models. Short-

Term Daily Univariate Streamflow Forecasting Using Deep Learning Models. https://doi.org/10.1155/2022/1860460Ighile 

[18] E.H.; Shirakawa, H.; Tanikawa, H. Application of GIS and Machine Learning to Predict Flood Areas in Nigeria. Sustainability 2022, 14, 5039. 

https://doi.org/10.3390/ su14095039 

[19] International Energy Agency (2022), accessed online on June 20,2022  from https://www.iea.org/reports/hydroelectricity  

[20] Kabo-Bah, A., Diji, C., Nokoe, K., Mulugetta, Y., Obeng-Ofori, D., & Akpoti, K. (2016). Multiyear Rainfall and Temperature Trends in the Volta River Basin 

and their Potential Impact on Hydropower Generation in Ghana. Climate, 4(4), 49. doi:10.3390/cli4040049 

[21] Kaur, H.; Alam, M.A.; Mariyam, S.; Alankar, B.; Chauhan, R.; Adnan, R.M.; Kisi, O. Predicting Water Availability in Water Bodies under the Influence of 

Precipitation and Water Management Actions Using VAR/VECM/LSTM. Climate 2021, 9, 144. https://doi.org/ 10.3390/cli9090144 

[22] Kusudo, T.; Yamamoto, A.; Kimura, M.; Matsuno, Y. Development and Assessment of Water-Level Prediction Models for Small Reservoirs Using a Deep 

Learning Algorithm. Water 2022, 14, 55. https://doi.org/10.3390/ w14010055 

[23] Liu, H., & Lang, B. (2019). Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Applied Sciences, 9(20), 4396. 

doi:10.3390/app9204396  10.3390/app9204396 

[24] Mulualem, G. M., & Liou, Y.-A. (2020). Application of Artificial Neural Networks in Forecasting a Standardized Precipitation Evapotranspiration Index for 

the Upper Blue Nile Basin. Water, 12(3), 643. doi:10.3390/w12030643 

[25] Nyasulu, C.; Diattara, A.; Traore, A.; Deme, A.; Ba, C. Towards Resilient Agriculture to Hostile Climate Change in the Sahel Region: A Case Study of Machine 

Learning-Based Weather Prediction in Senegal. Agriculture 2022, 12, 1473. https://doi.org/10.3390/ agriculture12091473 

[26] Obahoundje, S. and Diedhiou, A. (2022) “Potential impacts of climate, land use and land cover changes on hydropower generation in West Africa: A Review,” 

Environmental Research Letters, 17(4), p. 043005. Available at: https://doi.org/10.1088/1748-9326/ac5b3b 

[27] Olusola Samuel Ojo, Samuel Toluwalope Ogunjo, Machine learning models for prediction of rainfall over Nigeria, Scientific African, Volume 16, 2022, 

e01246, ISSN 2468-2276, https://doi.org/10.1016/j.sciaf.2022.e01246. 

[28] Ouma, Y.O.; Moalafhi, D.B.; Anderson, G.; Nkwae, B.; Odirile, P.; Parida, B.P.; Qi, J. Dam Water Level Prediction Using Vector AutoRegression, Random 

Forest Regression and MLP-ANN Models Based on Land-Use and Climate Factors. Sustainability 2022, 14, 14934. https://doi.org/10.3390/su142214934 

[29] Özdoğan-Sarıkoç, G., Sarikoç, M., Celik, M., & Dadaser-Celik, F. (2023). Reservoir volume forecasting using artificial intelligence-based models: Artificial 

Neural Networks, Support Vector Regression, and Long Short-Term Memory. Journal of Hydrology, 616, 128766. https://doi.org/10.1016/j.jhy-

drol.2022.128766 

[30] Sarker, I. H. (2022, February 10). AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems - 

SN Computer Science. SpringerLink. https://doi.org/10.1007/s42979-022-01043-x 

[31] Sultan RM. The impacts of agricultural expansion and interest groups on deforestation: An optimal forest control model. International Journal of Agricultural 

Resources, Governance and Ecology. 2016;12(2): 137-154. DOI: 10.1504/IJARGE. 2016.076926 

[32] Tadesse  B., Dinka M. The SARIMA model-based monthly rainfall forecasting for the Turksvygbult Station at the Magoebaskloof Dam in South Africa. Polish 

Academy of Sciences (PAN). 2022, No. 53 (IV–VI): 100–107. https://doi.org/10.24425/jwld.2022.140785 

[33] Wu, C. L., Chau, K. W., & Li, Y. S. (2009). Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water 

Resources Research, 45(8). doi:10.1029/2007wr006737 

[34] Zarei, M., Bozorg-Haddad, O., Baghban, S. et al. Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages. Sci 

Rep 11, 24295 (2021). https://doi.org/10.1038/s41598-021-03699-6 

[35] ZLambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics Of Land-Use and Land Cover Change in Tropical Regions. Annual Review of Environment and 

Resources, 28(1), 205–241. https://doi.org/10.1146/annurev.energy.28.050 

 

 

 

GSJ: Volume 11, Issue 9, September 2023 
ISSN 2320-9186 2039

GSJ© 2023 
www.globalscientificjournal.com

https://doi.org/
https://doi.org/10.1038/s41598-021-03699-6



