

GSJ: Volume 7, Issue 11, November 2019, Online: ISSN 2320-9186 www.globalscientificjournal.com

A STUDY ON WEDDERNBURN - ARTIN THEOREM FOR RINGS

Fahad Suleiman, Sammani Abdullahi

Department of Mathematics & Statistics

School of Science & Technology

Federal Polytechnic Kaura Namoda

Zamfara State - Nigeria

+2348037346623 & +2347068706358

fssalai@gmail.com & dagasammaniabdullahi@gmail.com

Abstract: The study depicts that a Wedderburn Artin – theorem for rings is considered to be a semisimple ring R which is isomorphic to a product of finitely many $m_i bym_i$ matrix rings over division rings D_i , for some integers n_i , both of which are uniquely determined up to permutation of the index *i*.

Keywords: Commutativity, Ideal, matrix, module, ring, Semi simple ring, Wedderburn – Artin theorem.

1.

INTRODUCTION

According to Ref. [1], the subject of determining structure of rings and algebras, over which all modules are direct sum of certain cyclic modules has a long a long history. [1] showed that every module over a finite dimensional K – algebra A is a direct sum of simple modules if and only if $A \cong \prod_{i=1}^{m} M_{n_i}(D_i)$ where $m, n_{1,\dots,\in N}$ and each D_i is finite dimensional division algebra over k.

It has been observed from the study of [2] that the first wedderburn Artin theorem has two parts one dealing with finite simple algebra. We let R be a ring with identity. The ring R is called left semisimple ring if the left R module is a semisimple module, i.e., if R is a direct sum of minimal left ideals. In this case $R = \bigoplus_{i \in S} I_i$.

Examples of semisimple rings were stated in [4] as:

- i. If D is a division ring, then the ring $R = M_n(D)$ is left semisimple in the of the definition of Wedderburn Artin theorem. It revealed that R as a left R module is given by $M_n(D) \cong D^n \dots \oplus D^n$, where each D^n is a simple left $M_n(D)$ module and the j^{th} summand D^n corresponds to the matrices whose only non zero entries are in the j^{th} column. The left R module $M_n(D)$ has a composition series whose terms are partial sumsof the n summands D^n .
- ii. If R_1, \ldots, R_n are left semisimple rings, then the direct product $R \cong \prod_{i=1}^n R_i$. Each minimal left ideal of R_i , when included into R, is a minimal left ideal of R. Hence R is the sum of minimal left ideals and is left semisimple.

The main result of this paper is given below

Theorem 2.1: If R is any left semisimple ring, then

$$R \cong M_{n_i}(D_1) \times \ldots \times M_{n_r}(D_r)$$

Where each D_i is a division ring and $M_n(D)$ denotes the ring of $n \times n$ matrices over D

2.

Theorem 2.2: Let *R* be a finite dimensional algebra with identity over field *F*. If *R* is a semisimple ring, then *R* is a semisimple and hence is isomorphic to $M_n(D)$ for some integer $n \ge 1$ and some finite dimensional algebra *D* over *F*. the integer n is uniquely determined by *R*, and *D* is unique upto isomorphic.

In order to obtain our main result, we begin prove the above stated theorems.

Proof of theorem 2.1: By the work of [2] we write *R* as direct sum of minimal left ideals, and then regroup the summand according to their *R* isomorphic type as $R \cong \bigoplus_{j=1}^{r} n_j V_j$, where $n_i V_j$ is the direct sum of n_j submodules R isomorphic to V_j and where $V_i \ncong V_j$ for $i \ne j$. The isomorphison is one of unital left R modules. Now put $D_i^o = End_{R(V_i)}$. This is a division ring by Schur's Lemma as it was proved in [5] research.

Using proposition 10.14 of [2], we obtain an isomorphism of rings of rings

 $\begin{aligned} R^{0} &\cong End_{R}R \cong Hom_{R}\left(\bigoplus_{i=1}^{r}n_{i}V_{i}, \bigoplus_{j=1}^{r}n_{j}V_{j}\right) & 2.1 \\ \text{Define a map } p_{i} : \bigoplus_{j=1}^{r}n_{j}V_{j} \to n_{i}V_{i} \text{ to be the } i^{th} \text{ projection and } q_{i} : n_{i}V_{i} \to \bigoplus_{j=1}^{r}n_{j}V_{j} \text{ to be the } i^{th} \text{ inclusion. Let us see that the right side of } 2.1 \text{ is isomorphic as a ring to } \prod_{i} End_{R(n_{i}V_{i})} \text{ via } \\ \text{mapping } f \mapsto (p_{1}fq_{1}, \dots, p_{r}fq_{r}). \text{ What is to be presented here is that } p_{j}fq_{j} = 0fori \neq j. \text{ Now } \\ p_{j}fq_{i} \text{ is a member of } Hom_{R}(n_{i}V_{i}, n_{j}V_{j}). \end{aligned}$

Referring to (2.1) above, we therefore obtain

$$R^{0} \cong \prod_{i=1}^{r} Hom_{R}(n_{i}V_{i}, n_{j}V_{j}) = \prod_{i=1}^{r} End_{R(n_{i}V_{i})}$$
$$\cong \prod_{i=1}^{r} M_{n_{i}}(End_{R(V_{i})}) \qquad \text{by corollary 10.13 of [3]}$$
$$\cong \prod_{i=1}^{r} M_{n_{i}}(D_{i}^{o}) \qquad \text{by definition of } D_{i}^{o}$$

Reversing the order of multiplication in R^0 and using transpose map to reverse the order of multiplication in each $M_{n_i}(D_i^o)$, we conclude that $R \cong \prod_{i=1}^r M_{n_i}(D_i)$. This proves the existence of the decomposition in the given theorem of the main result. We still need to identify the simple left R module and prove its an appropriate unique statement as contained in [2]. Recalled, in example (i) above, we have decomposition $M_n(D_i) \cong D_i^{n_1} \dots \oplus D_i^{n_i}$ of left $M_{n_i}(D_i)$ modules, and each term $D_i^{n_i}$ is a simple left $M_{n_i}(D_i)$ module. The decomposition proved allows the researchers to regard each term $D_i^{n_i}$ as simple left R module, $1 \le i \le r$. Each of these modules is acted upon by a different coordinate of R, and hence we have projected at least r non – isomorphic simple left R modules as in [3]. The researcher added that any simple R module must be a quotient of R by a maximal left ideal, as we observed in example (ii) hence a composition factor as consequences of the Jordan – Holder theorem in [6]. There are only r non - isomorphic such $V_{j's}$, and we conclude that the number of simple left R modules, up to isomorphism, is exactly r.

For uniqueness, we consider [3] which opined that supposed that $R \cong M_{n'_1}(D_i) \times ... \times M_{n'_s}(D_s)$ as rings. Let $V'_j = (D'_j)^{n'_j}$ be the unique simple left $M_{n'_j}(D'_j)$ module up to isomorphison, and regard V'_j as a simple left R module. Then we have $R \cong \bigoplus_{j=1}^s n'_j V'_j$ as left R modules. By the Jordan Holder Theorem we must have r=s and, after a suitable numbering, $n_i = n'_i$ and $V_i \cong V'_i$ for $1 \le i \le r \le$. Thus we have ring isomorphison

$$(D'_{j})^{0} \cong End_{M_{n'_{i}}(D'_{i})}$$
by lemma 2.1 of [3]
$$\cong End_{R(V'_{i})}$$
$$\cong End_{R(V_{i})}$$
since $V_{i} \cong V'_{i}$
$$\cong D^{0}_{i}$$

Proof of theorem 2.2: from the work of [2] and by finite dimensionality, R has a minimal left ideal V. For r in R, form the set Vr. This is a left ideal, and we claim that it is minimal or is 0. In fact, the function $v \rightarrow vr$ is R linear from V onto Vr. Since V is simple as a left R module, Vr is simple or 0. The sum $I = \sum_{r} withr \neq 0 Vr$ is a two-sided ideal in R, and it is not 0 because $V1 \neq 0$. Since R is simple, I = R. Then the left R module R is exhibited as the sum of simple left R modules and is therefore semisimple. The isomorphism with $M_n(D)$ and the uniqueness now follow from Theorem 2.1 above.

3. CONCLUSION

The prove yield a very good main result in which it shows that a ring R with unity is semisimple, or left semisimple to be precise, if the free left R-module underlying R is a sum of simple R-module. In his short prove of Wedderburn's theorem, [7] states that when R is simple the Wedderburn – Artin theorem is known as Wedderburn's theorem.

REFERNCES

- [1] Behhoodi, M., Daneshvar, A. & Vedadi, M.R. (2016). Two Generalizations of the Wedderburn-Artin Theorem with Applications. *Algebras and Representation Theory*, Vo. 21 No.1, pp 1 18.
- [2] Knapp, A.W. (2016). Advanced Algebra. New York: East Setauket
- [3] Jacobson, Nathan (1989), Basic algebra II (2nd ed.), W. H. Freeman, Lam,
- [4] Tsit-Yuen (2001), A First Course in Noncommutative Rings (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4419-8616-0,
- [5] Kostov, V.P. (1995). A Generalization of the Burnside Theorem and Of Schur's Lemma For Reducible Representations. *Journal of Dynamical and Control Systems*, Vol. 1 No. 4, Pp 551 – 580. DOI: <u>10.1007/s10468-017-9748-2</u>
- [6] Natale, S. (2015). Jordan-Holder Theorem for Finite Dimensional "Hopf Algebras. *Proceedings Of The American Mathematical Society, Vol.* 143 No. 12. Pp 5195 5211.
- [7] Nicholson, W.K. (1993). A Short Proof of the Wedderburn Artin Theorem. New Zealand Journal of Mathematics, Vo. 22 No. 1. Pp 83 – 86.