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Abstract

A predictor-corrector class of Continuous Trigonometrically-Fitted Method for
Solving Oscillatory (CTMSO) Second Order Ordinary Differential Equations in
this research paper is developed . The method coefficients is proportional to
the approximate solution frequency and step size. The CTMSO generates a dis-
crete trigonometrically-fitted second order ordinary differential equation as a by-
product. The main predictors needed for the evaluation of the implicit methods
are obtained to be of the same order with the method at whatever point of colloca-
tion. The method stability qualities are described, and the method usefulness and
efficiency are demonstrated by solving linear and nonlinear initial value oscillatory
problems.

Keywords: Linear multistep,interpolation techniques,Trigonometric-fitting,
predictor-corrector.

1 Introduction

The numerical solution of the second order initial value problem is examined.

y′′ = f(x, y, y′), y(x0) = y0, y
′(x0) = y′0, xε[a, b] (1)

Equation (1) is the result of a variety of physical processes, across a wide range
of applications notably in engineering, such as the movement of a vehicle either a
rocket or a satellite, electric circuit, fluid dynamic as well as other areas of appli-
cation, it is well-thought out that this type of equation can be solved directly or
indirectly or by converting the problem to a set of first-order differential equations
before attempting to address the problem using any of the available techniques
Chan et al. (2014), Gholamtabar Lambert (1973), Kayode and Adegboro (2018).
Other methods based on exponential fitting techniques have been developed (see
Simos (1998a, 2002), Van de Vyver (2005a), Van de Vyver (2006b), Monovasilis et
al. (2013), and Nguyen et al. 2007). The exponentially-fitted approaches are mo-
tivated by the idea that if the frequency, or a good estimate of it, is known ahead
of time, these methods will be more advantageous than polynomial-based meth-
ods. Ngwane and Jator (2014) created a continuous trigonometrically-fitted second
derivative approach whose coefficients are dependent on frequency and stepsize,
and the method is built with trigonometric basis functions. Numerical experiments
show that the method for numerically solving ordinary differential equations with
oscillatory solutions is effective. The CTMSO presented in this study, on the
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other hand, avoids the computation of higher order derivatives, which can increase
computing cost, particularly when applied to nonlinear systems. We propose a
CTMSO of order 4 in this study, and its application is extended to oscillatory
issues. The following is a breakdown of how this article is structured. Deriva-
tion of the CTMSO for solving the problem in Section 2. Section 3 delves into
the CTMSO’s analysis and execution. Section 4 provides numerical examples to
demonstrate the CTMSO’s accuracy and efficiency. Finally, Section 5 contains the
paper conclusion.

2 Derivation of the Method

CTMSO is obtained by approximating the exact solution y(x) by searching the
solution y(x, u), which provides a discrete method as a by-product. The method
has the form

y(x) =
k∑
j=0

ajx
j + ak+1sin(wx) + ak+2cos(wx) (2)

will be used as a basis function to approximate the solution of the second order
initial value problems of the form
The second derivative of (2) is given as:

y′′ =
k∑
n=j

j(j − 1)ajx
i−2 − w2ak+1sin(wx)− w2ak+2cos(wx) (3)

Through interpolation of (2) at xn+j, j = 0, k−1, collocation of (3) at xn+j, j =
0(3)k to obtain k + 3 system of equation

y(xn+j, u) = yn+j, j = 0(2) (4)

d2

dx2
(y(xn+j, u)) = fn+j, j = 0(2)k (5)

Equations (2) and (3) lead to a system of 3k system equations which is solved
by Cramer’s rule to obtain a′js. Our continuous CTMSO is constructed by substi-
tuting the values of a′js into equation (2). After some algebraic manipulation, the
CTMSO is expressed in the form

y(x) = αn(x,w)+αn+2(x, )+h
2(βn(x,w)fn+βn+1(x,w)fn+1+βn+2(x,w)fn+2+βn+3(x,w)fn+2)

(6)
where, w is the frequency,αn(w, x), αn+2(w, x), βn(w, x), βn+1(w, x), βn+2(w, x), βn+3(w, x)
are continuous coefficients. The continuous coefficients in Equation (6) is used to
generate the method of the form in Equation (2). Thus, evaluating (6) at x = xn+2

and letting u = wh, we obtain the coefficients of (2) as follows:

α0 = − 1

2

α2 =
3

2

β0 = −1

4
(
sin (u)u2 + 4 cos (3u) sin (u) cos (u)− 4 sin (3u) (cos (u))

2
+ 2 cos (u) sin (u) + 2 sin (3u)

w2 sin (u) (−1 + cos (u))
)

β1 =
1

2
(
u2

w2
)

β2 =
1

4
(
4u2 cos (u)− u2 + 6 cos (u)− 6

w2 (−1 + cos (u))
)

β3 = −1

2
(
2 cos (u) + u2 − 2

w2 (−1 + cos (u))
)

(7)
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The frequency flow of (6) can be shown below

Figure 1: 3D plot Frequency for the method

3 Error Analysis and Stability

3.1 Local Truncation Error

The Taylor series is used for small values of u (see Simos (1998). Thus the coeffi-
cients in equation (7) can be expressed as

β0 =
1

24
u2w2 +

1

480

u4

w2
+

1

12096

u6

w2
+

1

345600

u8

w2
+

1
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w2
+

691

237758976000

u12

w2
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2
(
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w2
)
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7

8
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− 1

115200
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w2
− 1

3548160

u10

w2
− 691
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u12
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β3 =
1

12

u2

w2
+

1

240

u4

w2
+

1
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+

1

172800
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+
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u10
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+

691
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u12

w2

(8)

For practical computations when u is small, it is advisable to use the series ex-
pansion (8) . Thus the Local Truncation Error for method (7) subject to equation
(8) is obtained as
Local Truncation Error for CTMSO

h6

12096
(w2y(4)(xn) + y6(xn)) + 08

−h6

4032
(w2y(4)(xn) + y6(xn)) + 08

h6

6048
(w2y(4)(xn) + y6(xn)) + 08

The local truncation error are ( 1
12096

, 1
2
, −1
4032

, 1
6048

) and it has at lease order of order 4

Remark 1. The CTMSO (12) is consistent as it has order p > 1 and zero-stable,
hence it is convergent since zero stability + consistency = convergence
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3.2 Stability

Proposition 1. The trigonometrically-fitted second derivative method (7) is ap-
plied to a test equation y′′ = −λ2y, where λ is a real constant (see Jator et al.
(2013)), it yields

yn+2 = M(γ2;u)yn+1, γ = hλ;u = kh (9)

with

M(γ2;u) =
A0 + γ2β0
A1 − γ2β1

(10)

where the matrix M(γ2;u) is the amplification matrix which determines the sta-
bility of the method.

Proof. We begin by applying (7) to the test equation y′′ = λ2y respectively,
by letting γ = hλ, u = kh, we obtain a linear equation which is used to solve for
yn+2 with (10) as consequence.
Definition 1. A region of stability is a region in the γ − u plane, in which the
rational function |M(γ;u)| ≤ 1
Definition 2. The method (7) is zero stable provided the root of the first charac-
teristics polynomial have modulus less than or equal to unity and those of modulus
unity are simple (Lambert (1973)).
Definition 3. Method (7) is consistent if it has order p > 1 (Nwagne and Ja-
tor (2017)) The trigonometrically-fitted second derivative method is consistent as
it has order p > 1 and zero stable, hence convergent. Since Convergence =Zero
stability + consistency

The method is zero stable provided the roots Rj, j = 1; 2; 3 of the first charac-
teristic polynomial ρ(R) specified by ρ(R) = 2r2 − 3r + 1 = 0 for r = −1

2
, 1, 1 and

the multiplicity does not exceed 1 (see Obarhua and Adegboro (2021)).

Figure 2: 2D plot for Zero Stability CTMSO
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Linear Stability and Region of Absolute Stability of the Method

Figure 3: Region of Absolute Stability of the method

4 Numerical Examples

The performance and accuracy of the newly developed CTMSO are reviewed in
this part for a number of well-known oscillatory IVPs, both linear and nonlinear
situations. For the computation, the fitting frequency of each problem is utilized
as the default frequency. The approximation solutions’ absolute errors or max-
imum errors are estimated and compared to results from existing approaches in
the literature. r(−t) represents an error of the kind r ∗ 10−t. All calculations
were completed using written Maple 2016.1 code and the Windows 8.1 operating
system.
Example 1

y′′ = −100y + 99sin(x)

y(0) = 1, y′(0) = 11, xε[0, 1000], h =
1

3200
, w = 5000

where the analytical solution is given by

y(x) = cos10x+ sin(10x) + sinx

This requires only 3N + 1 function evaluations in N steps compared to 3N + 1
and 4N function evaluation in N,For instance , if we let n = 0 in the continuous
scheme, then y1 is obtained on the sub interval [x0;x1], as y0 is obtained from the
IVP, in a similar way, if we let n = 1, y2 is obtained on the subinterval [x1;x2],
as y1 is known from the previous computation and so on until we reach the final
subinterval [xN−1;xN ]. Hence this methods performs better.
Example 2
Consider the Scalar test equation

y′′ = −w2y, y(0) = 1, y′(0) = 0, w = 10, h =
π

200

Exact y(x) = coswx
Example 3

y′′ = −w2y, y(0) = 1, y′(0) = −2, w = 10, h =
π

200
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Exact y(x) = sinwx
Example 4
Linear Kramarz problem.

y′′ =

(
2498 4998

−2499 −4999

)
y(t), y(0) =

(
2

−1

)
, y′(0) =

(
0

0

)
, 0 ≤ t ≤ 100

Exact solution: (2cos(t),−sin(t))t

Example 5
Almost Periodic Problem) Van de Vyver

y′′1 = y1 +
1

1000
cos(x), y1(0) = 1, y′1(0) = 0

y′′2 = y2 +
1

1000
sin(x), y2(0) = 0, y′2(0) = 0.9995, xend = 10

with the theoretical solution: y1(x) = cos(x) + 0.0005xsin(x), y2(x) = sin(x) −
0.0005cos(x)
Example 6

t′′1 = −2 + 2osx, 0 ≤ x ≤ 1

Exact solution: t(x) = cos(x) + xsin(x)

Example 7

Resonance Vibration of a Machine

A stamping machine applies hammering forces on metal sheets by a die attached to

the plunger which moves vertically up and down by a fly wheel makes the impact

force on the metal sheet and therefore the supporting base, intermittent and cyclic.

The bearing base on which the metal sheet is situated has a mass, M = 2000kg.

The force acting on the base follows a function: f(t) = 2000sin(10t),in which

t=time in seconds. The base is supported by an elastic pad with an equivalent

spring constant k = 2 ∗ 105N/M. Determine the differential equation for the in-

stantaneous position of the base y(t) if the base is initially depressed down by an

amount 0.1m.

Solution: The mass- spring system above is modeled as differential equation:

The Bearing base mass = 2000kg

Spring constant k = 2 ∗ 105N/m

Force (ma) on the metal sheet= md2y
dt2

= my′′

i.e. ma = my′′ = 2000sin(10t); where a = y′′

Initial conditions on the system are

y(t0) = y0;
dy
dt
|t = 0 = y′(t0) = y′(0); t0 = 0, y′0 = 0.1

6

GSJ: Volume 10, Issue 5, May 2022 
ISSN 2320-9186 958

GSJ© 2022 
www.globalscientificjournal.com



Therefore, the governing equation for the instantaneous position of the base y(t)

is given by

My′′ + ky = F (t); y(t0) = y0, y
′(t0) = y′0

Theoretical solution: y(t) = 1
10
cos10t+ 1

200
sin10t− t

20
cos10t

Table 1: Comparison of the new error with Simon (1998), Ngwane and Jator (2017)
N Simon (1998) Ngwane and Jator new method

(2017) CTMSO
1000 1.4e− 1 2.14e− 1 2.1e− 12
2000 3.4− 2 5.98e− 5 1.6e− 12
4000 1.1e− 3 2.06e− 5 9.8e− 13
8000 8.4e− 5 1.26e− 6 6.5e− 13
16000 5.5e− 6 7.79e− 8 3.7e− 13
32000 - 4.67e− 9 5.3e− 14

Table 1 shows the comparison for computed error for CTMSO, error signifies

the efficiency of the new method solved with problem 1.

Figure 4: Efficiency curve for example 1
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Table 2: Comparison of the new error with Ali Shorki (2014) for problem 2
x Ali Shorki (2014), CTMSO

p = 5 p = 4
5π 2.3659e− 04 9.19640760e− 07
10π 5.1547e− 04 9.55693810e− 07
15π 6.2689e− 04 4.62577449e− 07
20π 8.3654e− 04 5.60483146e− 07

Table 2 Error comparison for the new method CTMSO which signifies the

accuracy of the new method solved with problem 2 over existing method.

Figure 5: Efficiency curve for example 2
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Table 3: Result of problem 3 for CTMSO , h = π
200

of p = 4

x y-exact y-computed Errors
5π 0.999876521928723 0.999877444367191 9.22438468e− 07
10π 0.999506118208559 0.999507076711142 9.58502583e− 07
15π 0.998888880312983 0.998893520728652 4.64041567e− 06
20π 0.998024960672684 0.998030590827594 5.63015491e− 06
25π 0.996914572637924 0.996920306632039 5.73399411e− 07
30π 0.995557990425848 0.995567466109030 947568318e− 06

Table 3 shows the computed result for CTMSO, error signifies the accuracy of

the new method solved with problem 3.

Table 4: Comparison of the new error with Nguyen et al. (2012), Nwagne and
Jator (2017), Adeniran and Longe (2017).

x Nguyen. x Ngwane and Jator Adeniran and CTMSO
et al(2007) (2014) Longe (2017)

73 10 1.3e− 15 5.9e− 15 2.20e− 17
143 9.0− 12 43 8.4e− 15 1.1e− 15 1.20e− 17
170 3.7e− 12 80 7.1e− 15 0 8.10e− 18

Table 4 shows the comparison table, error for the new method CTMSO signifies

the accuracy of the new method solved with problem 4 over existing method.
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Figure 6: Efficiency Curve for example 4

Table 5: Comparison of the new error with Denba e tal.(2015),Senu (2009),Van de
Vyver (2006), Anastassi and Kosti (2016)

N METHOD FCN MAXE
10 CTMSO 40 1.00041315e− 6
22 Demba (2017) 88 1.894082e− 1
146 Senu (2009) 584 5.907771e− 4
215 Anastassi and Kosti (2016) 1290 7.375736e− 1
578 Van de Vyver (2006) 2315 2.175738e− 1
20 CTMSO 80 8.10309863e− 7
49 Demba (2017) 196 1.246609e− 3
363 Senu (2009) 1452 1.215852e− 5
825 Anastassi and Kosti (2016) 4955 5.685758e− 2
2901 Van de Vyver (2006) 11610 2.175738e− 1
60 CTMSO 240 1.26020827e− 7
230 Demba (2017) 920 1.303536e− 6
1821 Senu (2009) 7284 1.826680e− 8
3180 Anastassi and Kosti (2016) 19090 3.817832e− 3
29131 Van de Vyver (2006) 116536 8.569318e− 5

80 CTMSO 320 8.9999990e− 8
574 Demba (2017) 2296 1.303536e− 6
4574 Senu (2009) 18296 1.826680e− 8
24548 Anastassi and Kosti (2016) 147308 3.817832e− 3
292676 Van de Vyver (2006) 1170722 8.569318e− 5

Table 5 above shows the comparison table, error for the new method CTMSO

signifies the efficiency of the new method solved with problem 4 over existing

method.
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Figure 7: Efficiency Curve for example 5

Table 6: Comparison of the new error with Ismail (2021), Adeyeye and Omar
(2017)Kuboye and Omar (2015)

N METHOD MAXE
0.01 CTMSO e+ 00
0.01 Ismail (2021) 2.212510e− 16
0.01 Adeyeye and Omar (2017) 8.881784e− 15
0.01 Kuboye and Omar (2015) 1.428607e− 11

Table 6 above shows the comparison table, error for the new method CTMSO

signifies the efficiency of the new method solved with problem 6 over existing

method.
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Table 7: Table for problem 7, showing the accuracy of the new method
N y-exact y-computed CTMSO

max||yi − y(xi)||
0.01 0.0999999500016710 0.0999998999887522 5.001291880e− 08
0.02 0.0999998000134000 0.0999995999588829 2.000545171e− 07
0.03 0.0999995500453379 0.9999909992110980 4.501242281e− 07
0.04 0.0999992001077328 0.0999983995987475 8.005089850e− 07
0.05 0.0999982003653984 0.9999749875707910 1.251453858e− 06
0.06 0.0999982003653984 0.0999963975445895 1.802820808e− 06
0.07 0.0999975505816685 0.0999950956725539 2.454909110e− 06
0.08 0.0999968008703942 0.0999935928127285 3.208057660e− 06
0.09 0.0999959512423277 0.9999188924400080 4.061998320e− 06
0.10 0.0999950017083162 0.0999899846564115 5.017051900e− 06

Table 7 shows the computed result for the new method, error signifies the

efficiency of the new method solved with problem 7.

5 CONCLUSION

A non self-stating Continuous Trigonometrically-fitted Discrete technique for solv-

ing periodic IVPs with an algebraic 4 order is presented. The methods’ conver-

gence and accuracy were established, and the approach was evaluated with several

standard oscillatory second order ordinary differential equations problems, where

it was shown to be accurate and compare favorably to other ways in literature,

as shown in Tables 1-7 above. Example 3 does not have any contest. All com-

putations were carried out using written codes in Maple 2016. and executed on

Windows 8.1 operating system.
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