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Abstract 

Arterial stiffness has emerged and is established as a vascular biomarker with potentially high 
prognostic value when determining cardiovascular risk. There is a high demand for 
comprehensive experimental research and mathematical modeling of renal artery mechanics 
which would best explain their mechanical behavior. The aim of this study is to understand how 
the renal artery behaves under a tension stress condition and reproduce it through a 
mathematical and computational approach. Human cadaveric arteries are tested in 3D 
inflation-extension biomechanical experiments; first generation data (i.e. external diameter, 
lumen pressure, axial force) are transformed, via continuum mechanics formulation, into 
second generation data (i.e. circumferential stress, axial stress, circumferential strain in no load 
state). Following the response of the phenomenological functions, a computational model is 
validated to detect the overall properties of a user defined hyper-elastic material for structural 
simulation in human renal arteries tissues. The results of this study can be used as engineering 
methods in clinical practice by providing a surgeon/interventionist the data required to 
efficiently plan and implement procedures. Also, comparing different techniques by simulated 
models enables spotting any problems of in vivo situations and optimization of surgical 
methodologies. 

Keywords: 3D inflation-extension, ANSYS simulative model, human renal artery, hyper-elastic 
models  

 

 

  

GSJ: Volume 9, Issue 5, May 2021 
ISSN 2320-9186 520

GSJ© 2021 
www.globalscientificjournal.com

http://www.globalscientificjournal.com/
mailto:spomakidou@outlook.com


1. Introduction 

 

The renal arteries, which constitute the only vascular supply to the kidneys, are paired arteries 
arising from the lateral side of the abdominal aorta below the level of the superior mesenteric 
artery at the upper lumbar level. A renal artery enters the kidney through the hilum which is 
located where the kidneys curve inward into a concave shape. Normally, the renal artery splits 
into two main branches, each in turn, splitting into numerous segmental arteries delivering 
blood to different areas of the kidneys (Gulas et al., 2018; Leslie & Sajjad, 2019). 

The abdominal aorta and its branches are of utmost importance in the blood distribution 
system and any abnormal function of these vessels could consequently cause problems to 
organs directly connected with them. One particularity of the renal microcirculation is that the 
excretory performance of the kidneys is closely associated to the intra-renal haemodynamics 
(Chade, 2014). This, in combination with the exposure of the kidney microvasculature to 
variations or abnormalities in blood flow through the macro-microvascular interaction (Climie 
et al., 2019), highlights the role of the renal artery in the overall kidney function.  

Despite the plethora of studies investigating the mechanical properties of large blood vessels, 
few have focused on the renal arteries. The need for understanding the renal artery mechanical 
behaviour has been increasingly acknowledged, not only for its direct relationship with kidney 
function but also due to the extended implications to the overall health. The extent and 
severity of renal artery pathology has been argued to be reflective of the overall atherosclerotic 
burden (Textor et al., 2009). Renovascular disease, which is mainly associated with 
atherosclerotic renal artery stenosis, is accompanied by reduced perfusion of the kidney and is 
a major cause for hypertension development. Renovascular hypertension has been reported 
among the most common underlying etiologies of secondary forms of hypertension and of 
treatment-resistant hypertension (Hermann and Textor, 2018). Renal haemodynamic state is 
linked to the vascular nature of the kidney and, thus, closely related to the systemic circulation. 
It has been demonstrated that renal haemodynamics and arterial stiffness are associated in 
patients with renal disease but also in patients with elevated blood pressure only (Calabia et al., 
2014). 

Arterial stiffness has emerged and is being established as a vascular biomarker with potentially 
high prognostic value when determining cardiovascular risk and identifying early vascular 
disease (Zanoli et al., 2019). The importance of gaining insights into the mechanical behaviour 
of the micro and macro – vasculature is becoming even more profound when considering the 
projections from the American Heart Association which states that “by 2035 almost half of the 
US population will suffer a cardiovascular disease while the total direct and indirect costs will 
soar, exceeding $1 trillion” (American Heart Association, 2017).   

Since the ‘90s much research has been dedicated to the biomechanics of the arterial wall, with 
seminal publications improving our understanding and introducing new approaches (Fung 
1993; Humphrey 2002). Different methods have been employed to characterize the mechanical 
properties of blood vessels, including, but not limited to, in vitro tensile testing, non-invasive in 
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vivo vascular ultrasound and mathematical models (Butlin et al., 2020; Vappou et al., 2010). 
Working on porcine artery specimens, Avril et al. (2013) have proposed a biomechanical model 
that predicts the relationship between axial force and internal pressure and discussed the 
implications of the orientation and deposition of collagen fibers. Another study by Zhou et al 
(2014) has applied an experimental and theoretical approach to quantify the passive 
mechanical response of the primary porcine renal artery and develop a model facilitating the 
calculation of stress and strains under physiological loading.   

Clearly, there is an increasing demand for comprehensive experimental research and 
mathematical modeling of renal artery mechanics which would better explain the overall 
mechanical behavior. To the authors knowledge, there are no reports in the literature on the 
human renal artery mechanical properties, neither a mathematical formulation for stresses and 
strains nor a computational simulation to topologically describe stress and strain allocation as 
well as predicting tensors in high perming loads.  

The main objective of this study is two-fold; first, to determine and validate a mechanical model 
that can describe the renal artery mechanical properties and, second, to enrich material 
libraries with a biomaterial that can simulate real-life tissue behavior. Furthermore, the 
constructed model could be a valuable tool for the definition of critical stress-strain tensors 
that generate pathogens in renal arteries.  

Within this scope, human cadaveric arteries are tested in 3D inflation-extension biomechanical 
experiments; first generation data (i.e. external diameter, lumen pressure, axial force) are 
transformed, via continuum mechanics formulation, into second generation data (i.e. 
circumferential stress, axial stress, circumferential strain in no load state). Furthermore, the 
implementation of Strain Energy Density (SED) phenomenological functions were utilized to 
adopt the optimal SED for renal arteries and validate the modeled vs. experimental data with 
phenomenological functions. Finally, a computational model is developed with the state-of-the-
art finite element code ANSYS, exploiting the above experimental data in conjunction with 
second generation data.  
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2. Materials and methods 

2.1 Experimental Procedure 

2.1.1 Tissue specimens and morphometric measurements 

Seventeen human renal arteries (9 left and 8 right) were used for the experimental part of this 
study. The specimens were received from the abdominal aorta (Figure 1, left) of 11 human 
cadavers; metadata information is provided in Table A1 of Appendix 1. Arteries were then 
dissected, appearing as cylindrical tubes (Figure 1, right) and were gently trimmed of adjacent 
tissues, taking care to leave as much of adventitia intact. The ex situ segment length was within 
the range of 5-10 mm. 

 

Figure 1: Fresh abdominal aorta from a 24 years old male after cleaning adherent tissues  

 

It is known that the state in which the artery is excised from the body is not a stress-free state; 
when the arterial ring of circular geometry (no load state, NLS) is cut in the radial direction, it 
springs open into an open sector (zero stress state, ZSS), characterized by an opening angle. The 
angle formed by two radii drawn from the inner wall's midpoint to the open sector's inner wall 
tips is known as the opening angle (Guo et al., 2005). Rings were laid in a Petri dish containing 
calcium-free Krebs solution at 37.8oC and photos were taken by a digital camera (model E400; 
Olympus Optical Co. Ltd, Tokyo, Japan) under a stereomicroscope (Stemi 2000C; Carl Zeiss 
Optical, Chester, VA, USA), at two different time-points: a. at NLS, and b. at the ZSS, 30 minutes 
after the radial cut. 

The morphometric characteristics including circumferential length of outer and inner wall, wall 
thickness and opening angle, were assessed with an image analysis software (Image-Pro Plus 
v.4.5; Media Cybernetics Inc, Silver Spring, MD, USA). Residual strains were calculated for the 
inner and outer arterial wall by the ratio of the respective circumferential length in the NLS over 
the circumferential length in the ZSS.  
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2.1.2 Extension-Inflation experimental procedure 

The extension-inflation experimental procedure was conducted as described in Sokolis (2012). 
The experimental set-up is shown in Figure 2. The renal arteries segments were cannulated at 
their ends with stainless steel catheters. They were filled with calcium-free Krebs solution, 
including 0.25% EGTA, and put horizontally in a bath containing the same fluid, which was set to 
37.8oC and aerated with carbogen at pH=7.4.  

 

Figure 2: The experimental set-up used for the inflation-extension testing 

 

At one end, the catheter was stationary, while at the other end, it was attached to a force 
transducer (Fort 100; World Precision Instruments, Hertfordshire, UK), recording the 
longitudinal force with an accuracy of 0.25 g. This catheter was suspended from a micrometer 
(Tesa Technology, Renens, Switzerland), permitting longitudinal extension of the renal arteries 
from 120% to 160%, in 10% increments. Length measurements as the separation distances 
between catheters were justified by the large segments aspect ratio, i.e. average length to 
external diameter, presumably making unimportant the errors caused by edge effects.  

Renal artery segments were extended from 100% to 160% of their in-situ length and then 
submitted to inflation while their length was kept fixed during pressurization. The lumen of the 
renal arteries segments was inflated/deflated in the range of 0–200 mmHg pressure with a step 
rate of 0.15 mmHg/s, and sensed by a transducer (BLPR; World Precision Instruments) with an 
accuracy of 0.5 mmHg. The external radius was continuously monitored at the central portion 
by a laser micrometer (LS-3100; Keyence Corp., Osaka, Japan), with 1 mm accuracy.  

Five loading–unloading cycles served for preconditioning. Preliminary tests not shown within 
this paper demonstrated that preconditioning and the ensuing inflation/extension testing had 
no effect on the NLS and ZSS geometry of the renal artery specimens, including their opening 
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angle, therefore, validating the use of non-preconditioned specimens for the determination of 
residual strains. Data was amplified and stored on an accompanying computer using an 
acquisition interface (Labview v7.1; National Instruments, Austin, TX, USA).  

2.1.3 1st generation data 

First generation data were produced based on the experimental procedure. The renal artery 
wall is treated as a single, homogeneous cylinder, ignoring its layered structure, which includes 
an intimal, medial, and adventitial layer, which is beyond the scope of this study (Sokolis et al., 
2013). The kinematic equations under longitudinal extension and lumen pressure, are shown in 
the Appendix 2.1. 

2.1.4 Identification of material parameters 

In order to describe the mechanical properties from the experimental procedure it was 
necessary to compute the material parameters, which was achieved by fitting equations (see 
section 2.1.6) to pressure–radius–force data with user-defined C-routines programmed in 
MicroCal Origin (v7.5; OriginLab Corp., Northampton, MA, USA), via a least-squares Simplex 
algorithm. All simulations pertained to loading data, substantiated by the little measurable 
hysteresis. The parameter values were restrained by inequalities of thermodynamic origin, 
ensuring physically realistic values and SEF (Strain Energy Function) positivity. The objective 
function minimized the normalized squared differences between the experimental data and 
model predictions. Data were considered every 0.5 mmHg, from 1 to 200, encompassing a 
number of 600 data points for all stretch ratios. Optimization was repeated for various initial 
parameters to ensure global rather than local extrema, which is a common problem with 
multivariate nonlinear optimization. To facilitate the selection of proper initial parameter 
values for the biphasic models, the low-pressure data were fitted first using only the quadratic 
terms of the below Equations in section 2.1.5, and then was the entire data set fitted by both 
terms of the two-term SEF. The goodness of fit was estimated by the root-mean-square (RMS) 
error ε and over-parameterization. 

2.1.5 Phenomenological Model - Strain Energy Density Functions 

The aforementioned experimental data of this study were fitted with a quadratic (orthotropic) 
and exponential (orthotropic) SEF, proposed by Zhou & Fung (1997):  

𝑊𝑊 = 𝑞𝑞 + 𝐾𝐾(𝑒𝑒𝑄𝑄 − 1), 𝑞𝑞 = 𝑏𝑏𝜃𝜃𝜃𝜃 𝐸𝐸𝜃𝜃2 + 𝑏𝑏𝑧𝑧𝑧𝑧𝐸𝐸𝑧𝑧2 + 𝑏𝑏𝜃𝜃𝑧𝑧𝐸𝐸𝜃𝜃   𝐸𝐸𝑧𝑧  , 

Equation 1 Fung Quadratic SEF 

which is based in Fung and Neo-Hookean (isotropic) - exponential (orthotropic) SEF as 
presented in the following equations. 

Fung SEF is expressed via Green strains 𝐸𝐸𝜃𝜃  and  𝐸𝐸𝑧𝑧  in the θ and z directions as below (Fung et 
al., 1979): 

𝑊𝑊 = 𝐾𝐾(𝑒𝑒𝑄𝑄-1), Q=𝑐𝑐𝜃𝜃𝜃𝜃 𝐸𝐸𝜃𝜃2 + 𝑐𝑐𝑧𝑧𝑧𝑧𝐸𝐸𝑧𝑧2 + 𝑐𝑐𝜃𝜃𝑧𝑧𝐸𝐸𝜃𝜃   𝐸𝐸𝑧𝑧   ,  
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Equation 2 Fung SEF 

where 𝑐𝑐𝜃𝜃𝜃𝜃 , 𝑐𝑐𝑧𝑧𝑧𝑧 , and 𝑐𝑐𝜃𝜃𝑧𝑧  (non-dimensional) are the material parameters and K is a scaling factor.  

The neo-Hookean (isotropic) and exponential (orthotropic) SEF is postulated for large elastic 
arteries by Weizsäcker et. al (1988 & 1995): 

𝑊𝑊 = 𝜇𝜇(𝐼𝐼1 − 3) + 𝐾𝐾(𝑒𝑒𝑄𝑄 − 1) , 

Equation 3 Neo-Hookean SEF 

where μ is a stress-like parameter, 𝐼𝐼1 =trC is the first invariant of the right Cauchy–Green strain 
tensor, C=2E+I and Q is the quadratic function (Sokolis et al., 2013).  

 

2.1.6 2nd generation data 

After the computation of material parameters using the aforementioned SEF, the 2nd 
generation data are produced using the equations in Appendix 2, which will also be used in the 
simulation part of this study. A direct enforcement of incompressibility allowed the 
consideration of a SEF that is a 2D function of circumferential and longitudinal strains as a 
constitutive descriptor in the general thick-walled setting (Li et al., 2018). 

 

2.2 Simulation Procedure 

The material behavior was simulated using a 3D engineering simulation software, ANSYS 
software package (ANSYS, 19.2). In this section, the simulation procedure is briefly described, 
including the 3D geometrical model used and some essential theoretical background for the 
simulation, the boundary conditions and the numerical computations. 

Since blood flow simulation is out of the scope of the present study, and the focus is placed on 
how the structural part of an artery is acting to external forces, the fluid simulation domain in 
the model is suppressed, additionally saving computational time and resources. 

2.2.1 Geometry 

The geometry used for the simulation is that of a symmetrical cylindrical tube with the same 
length as the real artery specimens and uniform thickness along the entire length. The 3D 
model used for the simulation was generated by the Design Modeler CAD module of ANSYS 
software. We adopted the Cartesian coordinate system with z axis assigned for longitude. The 
length of the modeled artery was set at L=15mm, the external radius at Router=3.63 mm and the 
thickness at t=1.18 mm. The prescribed model refers to a random sample and represents the 
solid domain Ωs, which is divided in five parts: the solid body, the inner surface of the cylinder, 
the outer surface and the two cross section areas normal to z axis of global coordinate system 
shown in Figure Α1 (Appendix 3). 
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2.2.2 Incompressibility Factor 

The behavior of a human tissue could be approached with a near-incompressible, isotropic 
hyperelastic material (Scotti et al., 2008). When a material like this deforms, its volume is 
maintained due to mass conservation in conjunction with the unchanged material density. This 
is why the third invariant I3 of the Cauchy-Green deformation tensor, is taken equal to 1 and the 
strain-energy function can be expressed as a function of invariants I1 and I2. 

A hyperelastic material could reveal stretch-locking effects during its deformation, in which the 
molecular chains are under maximum strain rates. In order to prevent such an effect during 
simulation in commercial software like ANSYS, the invariant I3 is not suppressed but is taken 
into account in the strain-energy function. This consideration adds a small compressibility 
factor D, defined as follows: 

𝐷𝐷 =
3(1 − 2𝜈𝜈)

𝐸𝐸
 

where ν is the Poisson ratio and E the Young modulus. This is directly related with the bulk 
modulus K as shown below.  

𝛫𝛫 =
1
𝐷𝐷

 

In order to prevent a stretch locking situation in simulation, the K factor must be prevented 
from being infinity, so the Poisson ratio tends to a value of 0.5, in order the D factor not to be 
zero. 

 

2.2.3 Hyperelastic model 

The artery wall is assumed as a non-linear, orthotropic material with hyperelastic 
characteristics and near-incompressible behavior with a density of ρw=1.2g/cm3 (Scotti et al., 
2008). The wall tissue represented in this work has average characteristics of a hyperelastic 
material that was reproduced from our experimental data. 

In order to reproduce a material with the prescribed behavior, it is necessary to choose a 
suitable model for the strain energy function. The Mooney – Rivlin model is a hyperelastic 
material model, which uses the first and second invariant 

 

 of the left Caushy-Green deformation tensor. The aforementioned fit took place using a 
Mooney-Rivlin model of 5 parameters for the strain-energy density function (ANSYS, 19.2) 

shown below: 

𝑊𝑊 = � 𝐶𝐶𝑝𝑝𝑞𝑞 (𝐼𝐼1 − 3)𝑝𝑝(𝐼𝐼2 − 3)𝑞𝑞
𝑁𝑁

𝑝𝑝 ,𝑞𝑞=0

⏟𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐 + �
1
𝐷𝐷𝑚𝑚

(𝐽𝐽 − 1)2𝑚𝑚
1

𝑚𝑚=1

⏟𝑉𝑉𝐷𝐷𝑉𝑉𝑉𝑉𝑚𝑚𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐  
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where Cpq are the material constants which are computed from the curve fitting module using 
uniaxial and biaxial experimental data, available in ANSYS software. The strain energy function 
has two terms, the deviatoric which is responsible for the material deformation and the 
volumetric which is related with the volumetric strain in order to approach the near 
incompressible behavior. This model was chosen due its ability to estimate strain conditions 
with local values at about 200% and its good approximation using biaxial test results (Kim et al., 
2012). 

2.2.4 Experimental Data Fitting 

In order to use the model described in the above section, the ANSYS software prerequisites 
experimental data. The fitting curve module can use uniaxial and biaxial data in order to fit a 
curve from which a user defined material behavior can be described. 

The curves that were produced from the experimental axial and circumferential stress (σz and 
σth to circumferential strain (εth) are used as uniaxial and biaxial data respectively. The fitting 
curve module of ANSYS software performs a least squares analysis, from which the Mooney-
Rivlin constants can be determined using experimental data. In this analysis the sum of squared 
error between experimental and Cauchy stresses values is minimized, according to the function 
below (ANSYS, 19.2): 

𝐸𝐸 = ��𝑇𝑇𝐷𝐷𝐸𝐸 − 𝑇𝑇𝐷𝐷�𝐶𝐶𝑗𝑗 ��
2

𝑛𝑛

𝐷𝐷=1

 

where E is the least squares residual, 𝑇𝑇𝐷𝐷𝐸𝐸  the experimental stress values, 𝑇𝑇𝐷𝐷�𝐶𝐶𝑗𝑗 � engineering 
stress values as function of the Mooney-Rivlin constants and n the number of the experimental 
data points. 

As the above equation minimized by setting the variation of the squared residual 𝛿𝛿𝐸𝐸2 to zero, a 
set of equations in the form 𝜗𝜗𝐸𝐸2/𝜗𝜗𝐶𝐶𝑗𝑗 = 0 can be used to compute the Mooney-Rivlin 
constants. 

The material curve that was produced after the experimental data fit in ANSYS is presented in 
Figure 3. 
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Figure 3: Material curve fitting in ANSYS Software 

The Mooney-Rivlin constants that are calculated after the curve fitting procedure are shown in 
Table 1. 

 

Table 1: Material constants obtained from the Mooney-Rivlin function. The incompressibility 
parameter is manually inserted as a value very close to, but not equal to, zero, in order to 
simulate the near-incompressible behavior with a Poisson ratio of 0,49999. 

Material Constant C10 (Pa) 2581.304 
Material Constant C01 (Pa) -1792.49 
Material Constant C20 (Pa) 4235.106 
Material Constant C11 (Pa) -3346.19 
Material Constant C02 (Pa) 1193.273 
Incompressibility Parameter D1 (Pa^-1) -1.00E-05 
 

2.2.6 Domain Discretization 

The numerical solution is computed through the finite element method (FEM) in the solid 
domain, used in ANSYS software (ANSYS, 19.2). The hexahedral meshing method was chosen 
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due to axisymmetric geometry and its simplicity but also because it outweighs an unstructured 
mesh on computational time and memory cost. 

The model is composed of 395560 linear, hexahedral elements with eight nodes per element 
and 434496 nodes in total. A mesh sensitivity analysis is described in section 3.2.2 explaining 
the adequacy of the selected mesh size. This mesh achieves a balance between CPU simulation 
time and results in errors in contrast to using a finer mesh, and it is shown in Figure 4. 

 

Figure 4: Computational domain discretization 

The represented mesh is generated through the ANSYS mesh module (ANSYS, 19.2). A 
multizone method is used in conjunction with an edge sizing limitation for the inner circular 
edges of the model and an inflation method for the circular cross sections of the cylinder as 
shown above. 

The numerical simulation of a hyperelastic near incompressible material could reveal problems 
like shear or volumetric locking. The shear-locking (Stolarski, 1983) is a problem based on 
geometric model characteristics and can be overcome with a finer mesh at the affected areas. 
However, a volumetric locking (Wells et al., 2002) is a numerical problem which occurs due to 
material property and can be dealt, using an element type that can anticipate with the code 
locking problem. From element scope and during deformation the volume must be maintained 
in order to simulate an incompressible or near incompressible material behavior. This is 
achieved through an internal hydrostatic pressure P of the material which is used to establish 
an equilibrium of the equations which involves the displacements u and the external loads F, as 
it is shown below. 

[𝐾𝐾𝑉𝑉𝑉𝑉  𝐾𝐾𝑉𝑉𝑢𝑢  𝐾𝐾𝑢𝑢𝑉𝑉  𝐾𝐾𝑢𝑢𝑢𝑢  ] �
𝛥𝛥𝑉𝑉
𝛥𝛥𝑢𝑢
� = �

𝛥𝛥𝐹𝐹
0
� 

Thus, such a kind of simulation demands the use of an element with a mixed u-p formulation 
capability (Scotti, 2008; Stolarski, 1983). Thus, a Solid185 element type, according to ANSYS 
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shortage (ANSYS, 19.2), is applied to finite elements in order to generate the solution matrix of 
the equations as shown in Figure 5. 

 

Figure 5: Solution matrix 

This element is preferred due to its capability to deal with hyperelastic behavior with large 
strains. It is also suitable for mixed u-p formulation where u is the corresponding displacement 
and p the internal hydrostatic pressure that is generated in a hyperelastic material during its 
deformation in order to simulate deformations of near incompressible materials such as an 
artery wall. Further from the volume conservation, this element uses a selective reduced 
integration method, known as B-bar method, which handles shear and volumetric locking 
phenomena in such kind of simulations (ANSYS, 19.2).  

2.2.7 Simulation Procedure 

The simulation procedure is separated in two parts. The first part includes the displacement 
where the cylindrical model is lengthened along the z axis under specific boundary conditions, 
and the second refers to the applied pressure where the model is stretched to its final state 
according to the modified boundary conditions and the applied external loads. 

2.2.8 Boundary Conditions 

During the first step of the simulation procedure, the cylindrical model is stretched along the z – 
axis. In order to achieve this deformation two kinds of boundary conditions are applied to the 
cylinder: a fixed support and a displacement one, as set by other studies (Scotti, 2008). The 
former is applied to the cross-sectional area normal to plane z=0 and the latter to the opposite 
cross-sectional area normal to z=15mm. The displacement support Degrees of Freedom (DOFs) 
are restricted to zero along x- and y- axis and are free for movement along z>15mm according 
to user input. The deformation takes place in one step and after the completion of this the 
DOFs are locked to the final position for the steps that will follow. The boundary conditions for 
this step are illustrated in Figure 6. 
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Figure 6: 1st step boundary conditions (top), 1st step pre-deformation state (middle) and 1st 
step after deformation state (bottom) 

 

The 1st step solution is taken as a starting point for the 2nd step where the previous boundary 
conditions are suppressed and new are applied. In order for the fluid domain to be suppressed 
in the simulation, a pressure across the inner surface of the artery wall was applied. The model 
is also fixed to the global coordinate system with two fixed supports, one per inner edge of the 
cross-sectional areas as shown in Figure 7. 
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Figure 7: 2nd step boundary conditions (top), 2nd step pre-deformation state (middle), 2nd step 
post- deformation state (bottom) 
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2.2.9 Numerical computation 

As a static structural problem, solution is evaluated in sub-steps through an iterative procedure, 
until a desirable level of convergence is achieved. The matrix form of the equations is as 
follows.  

[𝐾𝐾]{𝑉𝑉} = {𝐹𝐹𝐷𝐷} 

where K the stiffness matrix, u the displacement vector and Fa the applied loads vector. The 
stiffness matrix is a function of the unknown vector u so the above expression is a set of 
nonlinear equations. In this study, the Newton-Raphson iterative method (Scotti, 2008) was 
deployed to solve the nonlinear equations. According to this method, the following set of 
equations was used: 

�𝐾𝐾𝐷𝐷𝑇𝑇�{𝛥𝛥𝑉𝑉𝐷𝐷} = �𝐹𝐹𝐷𝐷� − �𝐹𝐹𝐷𝐷𝑛𝑛𝐷𝐷� 

{𝑉𝑉𝐷𝐷+1} = {𝑉𝑉𝐷𝐷} + {𝛥𝛥𝑉𝑉𝐷𝐷} 

 

Where, i is the current equilibrium iteration, 𝐾𝐾𝐷𝐷𝑇𝑇  the Jacobian matrix and 𝐹𝐹𝐷𝐷𝑛𝑛𝐷𝐷  the vector of 
restoring loads corresponding to element internal loads. Both of them are computed from the u 
vector in i iteration. The right-hand side is the residual out of balance load vector as the system 
is out of equilibrium. The convergence criteria are set to the order of magnitude of 10-4 for the 
displacements and forces. 

2.3 Statistical analysis 

The normality of the distribution of continuous variables was assessed using the Shapiro-Wilk 
test. For the morphometric results, comparisons between two groups were performed by two-
tailed Student’s t-test, using the SPSS software for Windows, version 16.0. (SPSS Inc, Chicago, IL, 
USA) Variables are presented as mean ± standard error (SE), unless otherwise stated. Bivariate 
associations were analyzed using Pearson R correlation. For the validation of model to 
experimental data, the nonlinear regression software package inside MicroCal Origin (v7.5; 
OriginLabw, Corp., Northampton, MA, USA) The two-tailed t-test and ANOVA followed by the 
Bonferroni post hoc test were used to test for directional differences in 3D models, 
respectively. Post-hoc multiple comparisons were also performed with Tukey test. Statistical 
significance was defined as p<0.05.  

3. Results 

3.1 Experimental Results 

3.1.1 Morphometric results 

After radial incision of the ring specimens, the mean opening angle of the arteries open sectors 
was found 121 ± 6o. When examining the left and right renal arteries separately, the mean 

GSJ: Volume 9, Issue 5, May 2021 
ISSN 2320-9186 534

GSJ© 2021 
www.globalscientificjournal.com



opening angle was 117 ± 7o and 125 ± 10o, respectively, although no statistically significant 
difference was detected between the two groups.    

Figure 8, top, depicts the scatterplot showing the correlation between the residual strain in the 
outer wall with differing opening angle for the left and the right renal arteries, separately. 
Outer wall residual strains showed a strong positive correlation with opening angle (OA) for the 
total of arteries (r=0.451, p=0.003) (trendline not shown in plot) as well as for both left renal 
arteries (r=0.476, p=0.034) and right renal arteries (r=0.514, p=0.014), separately. In order to 
illustrate any difference in the relationship of the opening angle with the contribution of inner 
and outer surface residual strains, the residual strain difference (outer minus inner residual 
strains) is plotted over the opening angle values in Figure 8, bottom. The difference in residual 
strain was strongly positively correlated with OA for both left (r=0.521, p=0.018) and right 
(r=0.502, p=0.017) renal arteries. Elevation of the OA is accompanied by a greater increase in 
the residual strain of the outer wall than that of the inner wall. 
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Figure 8: Residual strain in outer wall (top) and difference in residual strain (outer-inner) 
(bottom), with differing opening angle 

 

When examining the male and female samples, separately, no significant correlation was found 
between the difference in residual strain and the OA, although there has been a trend for a 
moderate correlation in female samples (r=0.382, p=0.097). 

On the total of samples, OA was strongly negatively correlated with increasing age (r= - 0.667, 
p=0.035). Interestingly, a very strong correlation pattern was detected within the right artery 
samples (r= - 0.842, p=0.002), while no correlation was found for the left arteries. The 
respective scatterplots are shown in Figure 9. When examining the correlation between OA and 
age for the female and male specimens separately, no correlation was detected. Arterial 
thickness did not reveal any significant correlation with opening angle in neither male nor 
female subjects. 
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Figure 9: Age-opening angle for left and right arteries  

 

 

3.1.2 1st Generation Data 

Axial force and external radius data are plotted as functions of inflating pressure for each of the 
different longitudinal pre-stretch levels (Figure 10). External radius was found to increase with 
pressure while axial force presented a pre-stretch dependent behavior. The radius curve shapes 
displayed a biphasic pattern; the initial phase occurred at low pressures, namely from 0 to 
approximately 4kPa, and was characterized by a variation in radius, whereas the second phase, 
occurring at higher pressures, was accompanied by establishing these dimensions. Conversely, 
axial force exhibited limited range values at low pressures and a wide range at high pressures. 
Increasing the level of pre-stretch resulted in a shift towards higher forces but lower radius, a 
behavior attributed to Poisson effect.  
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Figure 10: Axial force and external radius data as functions of inflating pressure for left and 
right arteries (left), female and male samples (middle) and young (<45 y.o.) and old (>45 y.o.) 

samples (right) 

 

3.1.3 2nd Generation Data 

Figure 11 shows circumferential and longitudinal Cauchy stresses as a function of 
circumferential stretches. Increasing the level of longitudinal pre-stretch resulted in the curve 
shifting leftward, as a result of the Poisson effect. The lumen pressure against force and lumen 
pressure against radius plots are constructed by the use of equations A7 and A8 of Appendix 
A2. 
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Figure 11: Circumferential and Longitudinal Cauchy stresses as a function of circumferential 
stretches for left and right arteries (left), female and male samples (middle) and young (<45 

y.o.) and old (>45 y.o.) samples (right) 

 

Representative circumferential and longitudinal stress as a function of circumferential strain 
data of left and right renal data from a male sample are shown in Figure 12. Non-significant 
gender differences were revealed. Regional differences were observed among left and right 
arteries of both male and female samples, with left renal arteries being stiffer and less 
compliant. 

All SEFs were simulated adequately (𝑅𝑅2 > 0.90), but the biphasic SEF (quadratic and Fung – 
type SEF) afforded the most accurate simulation. Fung- type SEF offered poor simulation both 
to the circumferential and longitudinal data. Neo-Hookean and Fung – type SEF underestimated 
the low - stress longitudinal data; while it captured properly the circumferential stress data. 
Finally, the quadratic and Fung – type SEF afforded superior fit to all data. Via the quadratic 
term, the biphasic model afforded improved simulations of low – stress data and via the 
exponential term captured the normal and high stress data.  

Table 2 (see section 3.2.2) lists the model parameters optimised, as well as the RMS errors ε 
and the determinants of the correlation matrix of material parameters det(R) computed. 
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Figure 12: Representative circumferential (red) and longitudinal (blue) stress vs. 
circumferential strain data of left and right renal data from a male sample 

3.2 Simulation Results 

In this section, the experiment of the applied axial and circumferential stretch is compared with 
the corresponding simulations. The rationale behind using a customized material produced 
from the experimental data is explained and the mesh independence is presented.  

3.2.1 Neoprene Rubber Test 

First, the response of a ready-to-go material from the ANSYS engineering library data called 
Neoprene Rubber (ANSYS, 19.2) is examined. This material is hyperelastic and isotropic with 
incompressible behavior which is suitable for the simulation. The advantage is that the 
following simulations would have the same formation except from the used material that 
would be the user customized. 
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Figure A2 in Appendix 3 presents the Neoprene Rubber response under an axial stretch of 20% 
and a following deformation through the application of internal pressure at 26 kPa. As it can be 
observed, the material could not handle the total applied pressure load, which led to a non-
converging solution. More specifically, the material received only 36% of the total pressure until 
the simulation termination. Based on this, it was decided that the use of a user defined material 
was necessary in order to simulate a stiffer behavior and have a better response to higher 
loads.  

3.2.2 Mesh independence 

Figure 13 shows the simulation stress-strain curves for 20% axial stretch and an internal 
pressure of 26kPa for three different mesh sizes. The normal mesh is generally constructed with 
an average element size of 0.10mm. The coarse mesh is approximately 15% smaller on the total 
number of elements than the normal one, with an average element size of 0.11mm, while the 
fine one is 18% bigger on the total number of elements, with an average element size of 
0.09mm. For the coarse mesh the required RAM is 8% less than the normal and 24% more in 
the fine mesh. Regarding the computational time, the coarse mesh needs 4% less time, and the 
fine mesh needs 154% more time, compared to the normal. Finally, the differences between 
the computed values for the strain and stress are below 1% (Table 2).  
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Figure 13: Mesh independence for circumferential stresses (top) and axial (bottom) stresses 

 

Table 2: Mesh independence compare values 
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  Normalized 
Values (%) 

Eth Sth Sz Time RAM Element 
Number 

Mesh 
Type 

Normal 100 100 100 100 100 100 
Fine 99.94 99.61 99.42 254.17 124.9 118.11 

Coarse 100.08 100.46 100.69 95.83 91.82 84.63 
 

Taking into account the coarse and fine mesh requirements for computational time and 
memory in anticipation with the results differences, which are considered reasonable for this 
research analysis, the normal mesh is chosen in order to be used in the following simulations. 

 

3.2.3 Simulations 

Figures 14-19 show the comparison of the model response with the experimental data for 20%, 
40% and 50% axial stretch, followed by internal pressure loading until 26kPa. 

 

 

 

 

Figure 14: Circumferential Stress-strain curves for experimental versus simulated values for 
λ=1.2 
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Figure 15: Axial Stress-strain curves for experimental versus simulated values for λ=1.2 

 

 

 

 

Figure 16: Circumferential Stress-strain curves for experimental versus simulated values for 
λ=1.4 
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Figure 17: Axial Stress-strain curves for experimental versus simulated values for λ=1.4 

 

Figure 18: Circumferential Stress-strain curves for experimental versus simulated values for 
λ=1.5 

  
 

Figure 19: Axial Stress-strain curves for experimental versus simulated values for λ=1.5 
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4. Discussion on results and conclusions 
 

Biomechanical properties of arteries have been under scrutiny over the last decades. 
Experimental research is necessary in order to examine the mechanical properties in relation to 
structural and functional changes; however, fresh human tissues are scarce and difficult to 
obtain. To the best of our knowledge, this is the first study examining the mechanical properties 
of human renal arteries with respect to functionality, material characterization and presenting a 
computational model to interrogate aspects of the mechanical behaviour of the renal arteries 
not possible to examine experimentally. 

The analysis has shown a strong correlation between the opening angle and the residual strains 
in the outer surface regarding all renal arteries (independent from gender). There was no 
correlation between the opening angle and the residual strains in the inner surface and very 
good correlation between the difference of the residual strains (outer surface-inner surface), 
independently to gender difference. Residual stresses have a crucial role in the vascular 
mechanical behavior. Inner walls exhibit residual compressive strains while outer walls exhibit 
residual tensile strains; these ‘‘opposing’’ residual strains contribute to equalize the stress 
through the wall due to internal pressure. The compressed intima is thus better protected from 
the luminal flow. 

With respect to the relationship between opening angle and age, the results revealed that 
there was strong negative correlation in male subjects and in the right arteries. Several studies 
in the literature have demonstrated that ageing is associated with arterial stiffening. However, 
this relationship has been established for large elastic arteries, and there has been no 
conclusive evidence provided on the behavior of muscular arteries (Borlotti et al., 2012; Leloup 
et al., 2015; Ruitenbeek et al., 2008; Zhang et al., 2013). It has also been reported that elastic 
lamellae undergo fatigue and progressive fragmentation occurs with time; this phenomenon is 
believed to be predominant in the elastic arteries due to high stretch amplitude (O’Rourke and 
Hashimoto, 2007). Published data from an in-vitro study has shown that while indeed stiffness 
in elastic arteries increases with ageing, this pattern is not observed in muscular arteries 
(Mitchell et al., 2004). One limitation of the current study is the small number of samples which 
may have reduced the chance of detecting correlations in same-gender groups or in left renal 
arteries. 

Radius versus luminal pressure relation shows that at the range of 0 to approximately 4kPa, the 
radius exhibits a precipitous increase which is moderated at higher pressures, in fact almost 
flattening for pressures greater than 20kPa. Increasing levels of pre-stretch pushes the curve of 
radius-luminal pressure downwards and seems to lead to a faster shift in the load bearing 
towards the stiffer collagen substructure. This is in accordance with literature findings, as, at 
low pressures, the artery is predominantly supported by the crimped elastin fibers which are 
easily stretched and keep the loads evenly distributed throughout the tissue; at higher 
pressures the much stiffer – reported to approximately three orders of magnitude - collagen 
fibers are fully engaged and take the role of the main load-bearing component, in fact 
preventing the rupture of the artery at very high pressures (Chow et al., 2014).   

GSJ: Volume 9, Issue 5, May 2021 
ISSN 2320-9186 546

GSJ© 2021 
www.globalscientificjournal.com



Findings from the first-generation data (axial force versus lumen pressure and cylindrical radius 
versus lumen pressure) were similar for the left and right renal arteries. Incremental differences 
were demonstrated in the forces for male against female subjects, which may result to less 
arterial failures for females (Kander et al., 2017; Ryu et al., 2020).  The same results were 
revealed for radius in female versus male subjects, presumably because of the higher mean size 
of males against females. When examining the role of age, again the incremental values may be 
explained by the quantity of elastin fibers that is responsible for the elastic tissue behavior. 
Through ageing, the elastin fibers collapse so the tissue cannot return to previous state without 
enforced actions (Fhayli et al., 2019).  

The second-generation data follow the patterns of first generation data for all stretch ratios 
𝜆𝜆 = 1.3, 𝜆𝜆 = 1.4, 𝜆𝜆 = 1.5. We also use phenomenological Strain Energy Function Fung-
Quadratic that fitted very well to experimental data for stretch ratios 𝜆𝜆 = 1.3, 𝜆𝜆 = 1.4, 𝜆𝜆 =
1.5 as we can conclude by numerical matrix of coefficients.  

Regarding the simulation results, first it can be observed that only a user-defined material can 
overcome the load application and succeed at a converged solution. Furthermore, it should be 
noted that while, on one hand, the simulation results follow the experimental data, especially 
in small strains (below 0.5), on the other hand, a higher curve end is observed in the stress and 
strain value. This could be ascribed to the use of the error minimization tool which was 
employed for the translation of the material response. What is observed from the Figures 15, 
17 and 19, which refer to the axial direction of stress, is a pattern of shifted curves of the 
experimental data compared to the simulation. This difference is attributed to the two-step 
simulation process where the pressure application is taking place at an advancing step, 
following the axial stretching, thereby leading to which zeroing of the axial stress condition. In 
the experiment, the sample is in an actual axial pre-stress condition due to stretching before 
pressure loading.  

In this study, it was not possible to use a ready material with hyperelastic, isotropic, 
incompressible behavior like Neoprene Rubber, due to its inability to respond to high loads. In 
anticipation, a user defined material characterized based on biaxial experimental results, 
enabled producing an orthotropic, hyperelastic and near incompressible material. This material 
can overcome the aforementioned problem of high loads and achieve a converged state 
solution with acceptable results regarding the response of strain – stress curves. This 
observation verifies the initial identified need and scope of the experimental approach to 
construct a bio-material library. 

The difference between simulation and experiment also supports the initial selection of using 
an orthotropic material instead of an isotropic one. This is also explained by the application of a 
Mooney-Rivlin instead of Neo-Hookean model, due to its capability of using biaxial data instead 
of only uniaxial in order to characterize the material, which consequently leads to an 
orthotropic behavior. Furthermore, a Mooney-Rivlin model can present a better behavior in 
large deformation states (above 100%). This is seen from the simulation stress-strain curves 
which range in the same order of magnitude with those that are produced from the 
experiments. 
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Overall, a major contribution of this study is the enrichment of the engineering material library 
regarding biomaterials. This could prove beneficial not only in structural cases but also in 2-way 
Fluid Structure Interaction (FSI) cases, where a biomaterial is acting simultaneously with a fluid, 
e.g. blood. Results regarding the material response to load application are supported by both a 
mathematical and software simulation approach, which further strengthens the quality of the 
material construction and characterization. In future studies, user-defined fitters could be 
applied in order to exploit experimental values and extract new materials that can eliminate the 
divergence between experimental and simulation procedures. Concerning the simulation 
procedure, a different model could also be applied for the strain energy function in order to 
describe the material response. The Mooney Rivlin model uses the first and second invariant of 
the left Cauchy-Green deformation tensor. MRI stacks of arteries can further be used in order 
to extract a 3D model that represents a real-life human tissue. Combining all of the above, a 2-
way FSI simulation can be established and lead to more accurate results in order to observe and 
simulate many different situations from the in vivo status. 
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Appendix 1 
 

Table A1: Cadaver sampling metadata (L: left, R: right, M: male, F: female, Y: Yes, N: No) 

 

 

Table A2: Parameters of the SEF optimized to the experimental pressure-diameter-force data 
of renal artery 
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Appendix 2 

2.1 Kinematics 

The principal extension ratios, 𝜆𝜆𝜃𝜃 , 𝜆𝜆𝑧𝑧 , and 𝜆𝜆𝐷𝐷  were as follows: 

𝜆𝜆𝜃𝜃 =
𝜋𝜋𝐷𝐷
𝜃𝜃𝑅𝑅 

Equation A1 

𝜆𝜆𝑧𝑧 =
𝑉𝑉
𝐿𝐿

 

Equation A2 

The right-hand side of the radial component 𝜆𝜆𝐷𝐷 , was calculated using the incompressibility 
hypothesis. 

𝜆𝜆𝐷𝐷 =
𝜕𝜕𝐷𝐷
𝜕𝜕𝑅𝑅

=
𝜃𝜃𝑅𝑅𝐿𝐿
𝜋𝜋𝐷𝐷𝑉𝑉

 

Equation A1 

describing the circumferential θ, longitudinal z, and radial r axes, deformations L and l were the 
respective lengths of the segment, and R and r were the radial positions of a material particle in 
the zero stress and loaded states, respectively, while θ = π - a, where a is the opening angle. 

The non-vanishing components of the Green strain tensor were as follows: 

𝐸𝐸𝑗𝑗 = 1
2

(𝜆𝜆𝑗𝑗2-1), j=𝜃𝜃, 𝑧𝑧, 𝐷𝐷 

Equation A4 

Internal radius 𝐷𝐷𝐷𝐷was determined by integrating the previous equation.: 

𝐷𝐷𝐷𝐷 = �𝐷𝐷𝑒𝑒2 − (𝑅𝑅𝑒𝑒2 − 𝑅𝑅𝐷𝐷2)
𝜃𝜃
𝜆𝜆𝑧𝑧𝜋𝜋

 

Equation A5 

 In relation to the external radius, re, as determined during the extension/inflation experiment, 
and the corresponding radii Ri and Re at zero-stress state. 

 

2.2 Constitutive formulations  

 As a result, differences in Cauchy stresses were recovered as: 

𝜎𝜎𝑗𝑗 − 𝜎𝜎𝐷𝐷 = 𝜆𝜆𝑗𝑗2
𝜕𝜕𝜌𝜌𝜊𝜊𝑤𝑤(𝐸𝐸𝜃𝜃 ,𝐸𝐸𝑧𝑧)

𝜕𝜕𝐸𝐸𝑗𝑗
 𝑗𝑗 = 𝜃𝜃, 𝑧𝑧 

Equation A6 
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Integrating the equilibrium equation in the r-axis, 𝜕𝜕𝜎𝜎𝐷𝐷
𝜕𝜕𝐷𝐷

+ 𝜎𝜎𝜃𝜃−𝜎𝜎𝐷𝐷
𝐷𝐷 = 0, across thickness along with 

the boundary conditions, at inner surface 𝜎𝜎𝐷𝐷 |𝐷𝐷=𝐷𝐷𝐷𝐷 = −𝑢𝑢, and external surface, 𝜎𝜎𝐷𝐷 |𝐷𝐷=𝐷𝐷𝑒𝑒 = 0, 
lumen pressure P was obtained The lumen pressure P was calculated by integrating the 

equilibrium equation in the r-axis, 𝜕𝜕𝜎𝜎𝐷𝐷
𝜕𝜕𝐷𝐷

+ 𝜎𝜎𝜃𝜃−𝜎𝜎𝐷𝐷
𝐷𝐷 = 0, through thickness and the boundary 

conditions at the inner surface, 𝜎𝜎𝐷𝐷 |𝐷𝐷=𝐷𝐷𝐷𝐷 = −𝑢𝑢, and the external surface, 𝜎𝜎𝐷𝐷 |𝐷𝐷=𝐷𝐷𝑒𝑒 = 0. 

𝑢𝑢 = ∫ 𝜎𝜎𝜃𝜃−𝜎𝜎𝐷𝐷
𝐷𝐷

 dr𝐷𝐷𝑒𝑒
𝐷𝐷𝐷𝐷

=∫ 𝜆𝜆𝜃𝜃
2 𝜕𝜕𝜌𝜌𝜊𝜊𝑤𝑤
𝜕𝜕𝐸𝐸𝜃𝜃

𝑑𝑑𝐷𝐷
𝐷𝐷

𝐷𝐷𝑒𝑒
𝐷𝐷𝐷𝐷

 

Equation A7 

The integral of longitudinal stress over the wall cross-section on the two ends of the artery 
segment equals the sum of longitudinal force F and pressure force in the z direction, according 
to the equilibrium equation: 

𝐹𝐹 = 𝜋𝜋� [2(𝜎𝜎𝑧𝑧 − 𝜎𝜎𝐷𝐷) − (𝜎𝜎𝜃𝜃 − 𝜎𝜎𝐷𝐷)]𝐷𝐷𝑑𝑑𝐷𝐷
𝐷𝐷𝑒𝑒

𝐷𝐷𝐷𝐷
= 𝜋𝜋� 2𝜆𝜆𝑧𝑧2  

𝜕𝜕𝜌𝜌𝜊𝜊𝑤𝑤
𝜕𝜕𝐸𝐸𝑧𝑧

𝐷𝐷𝑑𝑑𝐷𝐷
𝐷𝐷𝑒𝑒

𝐷𝐷𝐷𝐷
− 𝜋𝜋� 2𝜆𝜆𝜃𝜃2  

𝜕𝜕𝜌𝜌𝜊𝜊𝑤𝑤
𝜕𝜕𝐸𝐸𝜃𝜃

𝐷𝐷𝑑𝑑𝐷𝐷
𝐷𝐷𝑒𝑒

𝐷𝐷𝐷𝐷
 

Equation A8 

For a thick-walled cylinder, stresses and strains are functions of the radius vector r. The 
following formulae give the average Cauchy stresses, 〈𝜎𝜎𝜃𝜃〉, 〈𝜎𝜎𝑧𝑧〉, and 〈𝜎𝜎𝐷𝐷〉 in the three axes, as 
well as the average circumferential extension ratio 〈𝜆𝜆𝜃𝜃〉: 

〈𝜎𝜎𝜃𝜃〉 =
𝑝𝑝𝐷𝐷𝐷𝐷

𝐷𝐷𝑒𝑒 − 𝐷𝐷𝐷𝐷
 

Equation A9 

〈𝜎𝜎𝑧𝑧〉 =
𝐹𝐹 + 𝑝𝑝𝜋𝜋𝐷𝐷𝐷𝐷2

𝜋𝜋(𝐷𝐷𝑒𝑒2 − 𝐷𝐷𝐷𝐷2)
 

Equation A10 

〈𝜎𝜎𝐷𝐷〉 = −
𝑝𝑝𝐷𝐷𝐷𝐷

𝐷𝐷𝑒𝑒 + 𝐷𝐷𝐷𝐷
 

Equation A11 

〈𝜆𝜆𝜃𝜃〉 =
𝜋𝜋(𝐷𝐷𝑒𝑒 + 𝐷𝐷)𝐷𝐷
𝜃𝜃(𝑅𝑅𝑒𝑒 + 𝑅𝑅𝐷𝐷)

 

Equation A12 

The upon formalism was adopted by relevant experimental methodology, Elastic Properties in 
the Circumferential Direction in Isolated Rat Small Intestine (Duch BU, 1996; Sokolis et al., 
2013). 
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Appendix 3 

 

Figure A1: 3D geometric model used in simulation procedure 

 

 

 
Figure A2: Neoprene-Rubber material model under unconverged simulation 

 

 

List of Figure and Table Captions 

 

Figure 1: Fresh abdominal aorta from a 24 years old male after cleaning adherent tissues 

Figure 2: The experimental set-up used for the inflation-extension testing 

Figure 3: Material curve fitting in ANSYS Software 

Figure 4: Computational domain discretization 
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Figure 5: Solution matrix 

Figure 6: 1st step boundary conditions (top), 1st step pre-deformation state (middle) and 1st step after 
deformation state (bottom) 

Figure 7: 2nd step boundary conditions (top), 2nd step pre-deformation state (middle), 2nd step post- 
deformation state (bottom) 

Figure 8: Residual strain in outer wall (top) and difference in residual strain (outer-inner) (bottom), with 
differing opening angle 

Figure 9: Age-opening angle for left and right arteries  

Figure 10: Axial force and external radius data as functions of inflating pressure for left and right arteries 
(left), female and male samples (middle) and young (<45 y.o.) and old (>45 y.o.) samples (right) 

Figure 11: Circumferential and Longitudinal Cauchy stresses as a function of circumferential stretches for 
left and right arteries (left), female and male samples (middle) and young (<45 y.o.) and old (>45 y.o.) 
samples (right) 

Figure 12: Representative circumferential (red) and longitudinal (blue) stress vs. circumferential strain 
data of left and right renal data from a male sample 

Figure 13: Mesh independence for circumferential stresses (top) and axial (bottom) stresses 

Figure 14: Circumferential Stress-strain curves for experimental versus simulated values for λ=1.2 

Figure 15: Axial Stress-strain curves for experimental versus simulated values for λ=1.2 

Figure 16: Circumferential Stress-strain curves for experimental versus simulated values for λ=1.4 

Figure 17: Axial Stress-strain curves for experimental versus simulated values for λ=1.4 

Figure 18: Circumferential Stress-strain curves for experimental versus simulated values for λ=1.5 

Figure 19: Axial Stress-strain curves for experimental versus simulated values for λ=1.5 

Figure A1: 3D geometric model used in simulation procedure 

Figure A2: Neoprene-Rubber material model under unconverged simulation 

Table 1: Material constants obtained from the Mooney-Rivlin function. 

Table 2: Mesh independence compare values 

Table A1: Cadaver sampling metadata (L: left, R: right, M: male, F: female, Y: Yes, N: No) 

Table A2: Parameters of the SEF optimized to the experimental pressure-diameter-force data of renal 
artery 
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