

GSJ: Volume 10, Issue 4, April 2022, Online: ISSN 2320-9186

www.globalscientificjournal.com

Activity Concentration and Radium Equivalent Significance in Soil from Oil and Gas Fields in Nembe Communities, Bayelsa State, Nigeria

N.B. Esendu¹, G.O.Avwiri² and C.P.Ononugbo³

¹Institute of Natural Resources, Environment and Sustainable Development (INRES), University of Port-Harcourt, Rivers State, Nigeria

^{2,3}Department of Physics, University of Port-Harcourt, Rivers State, Nigeria

bennimifa@yahoo.com¹, gregory.avwiri@uniport.edu.ng², onochinyere@yahoo.co.uk³

ABSTRACT

The activity concentration and radium equivalent significance in soil from selected Nembe oil and gas fields and host communities, Bayelsa State, Nigeria were determined using gamma-ray spectrometry. The activity concentrations of ⁴⁰K, ²³⁸U and ²³²Th in soil samples have their minimum values as 127.68±8.31 Bqkg⁻¹, 0.00 Bqkg⁻¹ and 6.05 ± 0.62 Bqkg⁻¹ and their maximum values as 775.89±42.68 Bqkg⁻¹, 51.89±42.64 Bqkg⁻¹ and 109.67 ± 9.75 Bqkg⁻¹ respectively. The average values of ⁴⁰K, ²³⁸U and ²³²Th are 439.96±24.87 Bqkg⁻¹, 20.82±6.00 Bqkg⁻¹ and 49.66±5.23 Bqkg⁻¹ respectively, were recorded for the oil and gas fields. The radium equivalent estimated from activity concentration of ⁴⁰K, ²³⁸U and ²³²Th in soil samples values ranged from 35.23 Bqkg⁻¹ to 235.03 Bqkg⁻¹ with an average value of 125.71 Bqkg⁻¹ and found to be lower than the world average value of 370 Bkg⁻¹ set by the Organization of Economic Cooperation and Development. The obtained average results of soil samples of ⁴⁰K, ²³⁸U and ²³²Th were compared with UNSCEAR, 2000 standard and are higher above the recommended standard of 400.0 Bqkg⁻¹ and 35 Bqkg⁻¹ for ⁴⁰k and ²³²Th and lower than the recommended standard of 33 Bqkg⁻¹ for ²³⁸U. Therefore, the use of this soil for industrial and domestic activities will not pose any radiological threat to human health.

Keynotes: Soil; Activity Concentration; Oil and Gas fields, Nembe Communities and Radium Equivalent. *Corresponding author: E-mail: bennimifa@yahoo.com;

1. Introduction

The environment we live contains natural occurring radioactive materials (NORMs) which spread widely and exit in geological different formations such as rocks, soil, air and water. Many researchers have revealed the effects of natural radioactivity in the environment. All humans are constantly exposed to a significant fraction of the background radiation. The constant exploitation, exploration, mining and processing of petroleum by the oil and gas companies may have posed serious environmental effects to occupational workers and people living around these facilities. Nembe communities in Niger Delta region is one of the single largest oil and gas producing communities and have greatly contributed to the growth of Nigeria economy. It has attracted foreign and local exchange earnings as well as attracted direct capital investment to the country (Avwiri *et al.*, 2007).

During oil and gas exploration, exploitation and production activities, technically enhanced naturally occurring radioactive materials (TENORM) are brought to the surface environment. The major radionuclides that are largely present in the soil and produce radiation are 40 K, 238 U and 232 Th. The release of these materials may contain radioactive elements like uranium and thorium and their daughter products, 226 Ra and 228 Ra. These radioactive wastes like produce water, scales, sludge, and used drilled mud are usually discharged into the land of the study location (Chad-Umoren, 2012). It has been reported by various researchers that the obtained average results of activity concentrations of natural radionuclide in soil and water associated with oil and gas fields environment contain radioactive materials like uranium, thorium and their progenies Ra-226 and Ra-228 (Emelue *et al.*, 2014; Eke *et al.*, 2014; Ahijjo *et al.*, 2018 and Avwiri *et al.*, 2017). Oil and gas firms are considered to be the largest users of ionizing radiation source and radiation emitting devices in nuclear well logging, non-destructing testing (NDT) and in process industry for quality control (Emelue *et al.*, 2014).

Several studies on the analysis of naturally occurring radionuclides in soil samples from oil and gas fields have been evaluated to determine their activity concentrations using gamma spectroscopy. Agbalagba *et al* (2012) carried out analysis of naturally occurring radionuclide in soil samples from oil and gas field environment of Delta State using gamma spectroscopy. He revealed that the activity concentration of the samples ranged from 19.2 ± 5.6 Bqkg⁻¹ to 94.2 ± 7.7 Bqkg⁻¹ with mean value of 41.0 ± 5.0 Bqkg⁻¹ for ²²⁶Ra, 17.1 ± 3.0 Bqkg⁻¹ to 47.5 ± 5.3 Bqkg⁻¹ with mean value of 29.7 ± 4 Bqkg⁻¹ for ²³²Th and 107.0 ± 10.2 Bqkg⁻¹ to 712.4 ± 38.9 Bqkg⁻¹ with a mean value of 412.5 ± 20.0 Bqkg⁻¹ for ⁴⁰K. These values obtained are well within the

world average and values reported elsewhere in other countries, but are little above some countries reported average values and some part of Nigeria.

Muhammed *et al.*, (2010) studied the distribution of gamma-emitting radionuclides in soils around the Centre for Energy Research and Training (CERT) Ahmadu Bello University, Zaria, Northern Nigeria and found out that estimated concentrations of ²³²Th, and ²³⁸U were considerably lower when using a germanium detector (HpGe) than from sodium Iodide detector (NaI(Tl)) system in the laboratory. However, the mean activity concentrations were higher for ²³²Th and ⁴⁰K but lower for ²³⁸U when compared to world average values.

Edomi *et al.*, (2018) studied the radionuclides in soils from selected oil and gas producing communities in Delta Central, Delta State, Nigeria. The results revealed the presence of 238 U, 232 Th and 40 K respectively. The minimum values for these radionuclides' activity concentrations are 83.76+4.10, 4.10+0.12 and 1.92+0.09 Bqkg⁻¹ respectively. It was observed that the activities of 40 K and 232 Th are higher than that of 238 U. The specific activities of 40 K and 232 Th are below the worldwide average while that of the values obtained from 238 U is above standard.

2. Materials and Methods

2.1 Study Area

Nembe is one of the eight local government areas of Bayelsa State in the Niger Delta region and bounded by Brass, Southern Ijaw and Ogbia Local Government Areas. Its headquarters is Nembe in the east of the area, which lies between latitudes 4° 32' 22'' N and longitude 6°24'59''E. Nembe and its environs comprises of fresh water and salt water respectively. The Okoroma/Tereke communities' areas are where fresh waters are found and the soil is made up of clay with raffia and palm trees. There are numerous oil and gas wells spread around the communities. While the salt waters environment comprises Nembe oil and gas and fields and major parts of the areas are submerged. The study covers some areas were oil and gas flow-stations, oil wells, residential and farms of communities which could be termed the hot spot for TENORM. The impact of oil and gas exploration has direct effects on the environment resulting to degradation, pollution and contamination which posed radiological health effect on members of the public and host communities. Figure 1. Map shows the study areas of Nembe oil and gas fields and communities.

Fig 1: Map of Nembe Oil and Gas fields and Communities

2.2 Sample Collection and Preparation

Forty (40) soil samples were collected from selected sites or areas of oil and gas fields in Nembe communities and its environs from a pre-determined depth of 0.5m - 1.0m (Girigisu *et al.*, 2013). The soil samples prepared for gamma spectrometry following the standard methods and sealed. The sealed samples were then stored for 28 days according to acceptable practice so that ²³⁸U and its progenies will attain secular equilibrium (Eshiemomoh *et al.*, 2021).

2.3 Activity Concentration

The activity concentration of natural existing radionuclides ²³⁸U, ²³²Th and ⁴⁰K was determined by using gamma ray spectrometry. Gamma counting was carried out using a Model 802 Sodium Iodide NaI(TI) detector for each of the sample as well as the standard source and background. The assembly has an internal magnetic / light shield, aluminum housing, fourteen (14) pin connectors and a kilovolt external source. The detector was enclosed and shielded with a 6cm lead to ensure that the radiation from the laboratory environment is curtained. The purpose of the background counts is to ensure that appropriate correction in the quantified activities are affected. Also, the standard count allows the quantification of the identified radionuclide using the less error prone absolute method. In order to commence radioactivity counting, energy calibration of the spectrometer was carried out using three gamma standard sources Cs-137, Am-241 and Co-60 were placed into 6cm lead shield of Model 802 Sodium Iodide NaI (TI) detector chamber. The data acquisition software (acquired gamma energies for each sample) used is Genie 2000 from Canberra Nuclear products. Samples were measured for a period of 29000 seconds per one sample and the peak area for each energy in the spectrum was used to calculate the activity concentrations in each sample using the equation below:

$$Ac = \frac{c_{net}}{\gamma \, x \, \varepsilon(E_y) x \, m} \tag{1.0}$$

Where C_{net} represent peak net counts, γ represent the emission of specific energy, A is the activity in Bq/kg and $\epsilon(E_{\gamma})$ is the absolute efficiency of the full energy peak of the detector and m is activity per unit mass. The Data obtained are converted to conventional units using factors to determine the activity concentrations of 40 K, 232 Th and 238 U. (Knoll, 2010, Ghoshal, 2008)

2.4 Radium Equivalent Activity Ra_{eq})

For comparative purpose, the radium equivalent activity (Ra_{eq}) is used to assess radiological hazard associated with material or gamma output from different mixtures which contains different concentrations of uranium (radium), thorium and potassium. The measurement unit of radium equivalent is Bq/kg (Becquerel's per kilogram) and can be calculated using equation below:

$$Ra_{eq} = A_{Ra} + 1.43A_{Th} + 0.077A_k \tag{2.0}$$

Where A (Ra), A (Th) and A (k) are the specific activities of 226 Ra, 232 Th and 40 K (in Bq/kg). In defining radium equivalent activity, the assumption was made that 370Bq/kg of 226 Ra, 259 Bq/kg of 232 Th and 4810 Bq/kg of 40 K yields the same gamma dose rate. (Diab *et al.* 2008; UNSCEAR, 2000)

3.1. Results

The results of the radiological evaluation of soil in selected Nembe oil and gas fields and the host communities in Bayelsa State, Nigeria are presented in Table 1, Figures 2 show radium equivalent values compared with standard.

Table 2: Comparison of natural radioactivity concentration in (Bqkg⁻¹) in soil samples with previous study reported from different Countries of the World.

27

S/n	Sample codes	Sample locations	K-40U-238Th-232(Bq/kg)(Bq/kg)(Bq/kg)		Th-232 (Bq/kg)	Raeq (Bq/kg)
1	NCV001-S	Nembe Creek	480.73±27.07	17.85±4.55	18.57±1.95	81.42
2	NC1 003-S	Well 7	357.57±21.77	14.79±3.66	55.32±30.95	121.43
3	NC1 004-S	Well 27	547.28±30.73	19.61±4.65	54.52±5.24	139.71
4	NC1 007-S	Well 10	442.84±26.92	51.89±42.64	42.64±4.21	146.96
5	NC1 009-S	Well 74/8	495.12±27.92	20.23±5.31	66.02±6.16	152.76
6	NC1 010-S	Well 5	522.25±29.36	19.53±4.98	42.45±4.11	120.45
7	NC2 011-S	Well 34	486.57±27.53	15.39±4.05	57.21±5.33	134.67
8	NC2 014-S	Well 50	598.27±33.55	32.10±7.82	87.47±7.98	203.25
9	NC1 015-S	Well 20	467.87±26.63	24.71±5.86	62.40±5.74	149.97
10	NC4F020-S	NC4FS	326.72±19.24	29.46±7.01	60.21±5.53	140.72
11	NC1F022-S	NC1FS	393.02±22.84	22.25±5.35	88.03±7.88	178.39
12	NCV 023-S	Okokokiri	622.19±34.71	35.18±7.99	61.34±5.84	170.80
13	NCV 024-S	Akakumama	566.10±31.73	32.63±7.35	65.15±6.19	169.38
14	NCV 025-S	Alagoa-tereke	727.80±40.26	22.16±5.69	109.67±9.75	235.03
15	NCV 026-S	Ologoama	546.17±30.77	27.88±6.16	63.71±6.01	161.04
16	NCV 029-S	Ologoama-Farm Area	720.91±39.89	12.58±3.35	99.29±8.63	210.07
17	NCV 030-S	Edwinkiri fishing	245.23±15.86	15.64±3.86	33.81±3.54	82.87
18	NCV 031-S	Nembe City	233.73±14.09	4.49±1.17	25.51±2.35	58.97
19	NCV 032-S	Etieama 1	168.32±10.17	11.87±2.85	9.48±0.96	38.38
20	NCV 033-S	Etieama 2	528.58±29.82	32.10±6.97	55.52±5.23	152.19
21	NCV 034-S	Ekese-tubo	598.94±33.40	24.27±5.27	58.33±5.41	153.80
22	NCV 035-S	Basanbiri -Nembe	775.89±42.68	39.49±8.89	44.77±4.48	163.25
23	NCV 036-S	Nembe City	353.73±20.94	29.35±7.41	50.17±4.75	128.33
24	NCV 037-S	Tombi -Nembe	259.38±14.74	6.61±1.54	6.05±0.62	35.23
25	NCV 038-S	Nembe city Center	492.35±27.71	6.16±1.58	20.01±2.08	72.69
26	NCV 039-S	Amasara Polo- Nembe	206.94±12.09	15.43±3.65	11.01±1.11	47.11

Table 1: Specific Activity Concentration of Rac	dionuclides in soil and corresponding Radium
Equivalent in Soil Samples collected from Stud	dy Area.

15.74±4.05 26.63±2.62

69.01

NCV 040-S Otatubo- Nembe 197.31±12.36

GSJ ISSN	: Volume 10, Issu I 2320-9186	ie 4, April 2022				228
28	NC1 006-S	Well 13	420.76±23.87	33.86 ± 7.89	37.01 ± 3.57	119.18
29	NC2 013-S	NC2 013-S Well 64		45.73 ± 9.82	40.82 ± 4.12	129.16
30	NC4 019-S	Well 41	440.63±25.14	31.66 ± 6.89	43.14 ± 4.35	127.28
31	NCV 027-S	Ewoama	445.67±23.94	BDL	21.32 ± 1.77	64.80
32	NC1 005-S	Well 19	495.98±28.10	14.6 ± 3.79	107.72± 9.26	206.83
33	NC4 018-S	Well 28	187.9 ± 10.30	BDL	26.88 ± 2.22	52.91
34	NC2 016-S	Well 49/51/39	572.47±26.00	18.90 ± 5.00	55.83 ± 5.34	142.81
35	NC2 021-S	Well 22	457.47±26.00	29.99 ± 6.98	59.95 ± 5.43	150.94
36	NC1 002-S	Well 16	467.07±25.12	13.54 ± 2.74	58.64 ± 4.77	133.36
37	NC1 008-S	Well 12	490.93±27.79	9.49 ± 2.61	53.39 ± 5.22	123.99
38	NC4 017-S	Well 61	127.68 ± 8.31	7.73 ± 1.86	17.19 ± 1.72	42.14
39	NC2F012-S	NC2FS	282.06±16.64	11.78 ± 3.03	32.32 ± 3.07	79.72
40	NCV 028-S	Well X	522.55±29.47	16.00 ± 3.97	56.64 ± 5.28	137.23
	M	ean	439.96±24.87	20.82±6.00	49.66±5.23	125.71
	M(UNSCE/	ean AR, 2000	439.96±24.87 400	20.82±6.00	49.66±5.23 30	125.71 370
	M4 UNSCE4	ean AR, 2000	439.96±24.87 400 Raeq World Av	20.82±6.00 35 e(NEA-OECD, 1979)	49.66±5.23 30	125.71 370
	Ma UNSCEA 400	ean AR, 2000	439.96±24.87 400 Raeq World Av	20.82±6.00 35 e(NEA-OECD, 1979)	49.66±5.23	125.71 370
	400 350 300 250 200 150 100 50 0 400 250 200 150 100 50 0	ean AR, 2000	439.96±24.87 400 Raeq World Av	20.82±6.00 35 e(NEA-OECD, 1979)	49.66±5.23	125.71 370

2289

Fig 2: Comparison of activity concentration of Raeq in soil samples with NEA-OECD, 1979 Standard across the study area.

S/N		Mean Activity Concentration				Reference	
			5 ⁻¹)				
	Countries	²³⁸ U	²³² Th	⁴⁰ K	²²⁶ Ra		
1	Saudi Arabia	-	12.3	535.0	9.5	El-Tahor and Al-Zahram (2014)	
2	Iran	-	43.4	555.1	38.8	Asgharizadeh et al., (2013)	
3	Bangladesh	30.93	61.65	467.8	-	Rahman et al., (2012)	
4	Jordan	57.7	18.1	138.40	44.9	Saleh and Abu (2014)	
5	Yemen	-	36.26	358.12	30.41	Harb et al., (2014)	
6	Baghdad-Iraq	-	21.74	434.67	25.81	Adel Mehdi et al.,(2014)	
7	Northern -India	56.02	91.56	340.78	63.85	Rohit and Manmohan (2012)	
8	Najaf-Iraq	77.33	9.36	426.31	-	Al-Gazaly et al (2014)	
9	Turkey	55.42	22.86	131.8	32	Akozcan et al.,(2014)	
10	Nigeria	20.8	49.7	439.9	125.7	This Present study	
	World Average	33	35	400	30	UNSCEAR, 2008	

Table 2: Comparison of Natural radioactivity concentration in (Bqkg ⁻¹) in soil samples with
previous study reported from different Countries of the World (Eshiemomoh, 2021)

3.2 Discussion

The results of mean activity concentration of naturally occurring radionuclide of 40 K, 238 U and 232 Th and the radium equivalent measured in selected Nembe oil and gas fields and host communities of Nembe local government area, Bayelsa State, Nigeria were shown in Table 1. The mean activity concentrations of 40 K in soil samples have its lowest value as 127.68±8.31 Bqkg⁻¹ at NC4017-S and its highest value as 775.89±42.68 Bqkg⁻¹ at NCV035-S with an average value of 439.96±24.87 Bqkg⁻¹. The mean activity concentration of 238 U in soil samples have its lowest value as 0.00 Bqkg⁻¹ at NCV027-S and NC4018-S and its highest value as 51.89±42.64 Bqkg⁻¹ at NC1007-S with an average value of 20.82±6.00 Bqkg⁻¹. Lastly, the specific activity concentration of 232 Th in soil samples have its lowest value as 6.05±0.62 Bqkg⁻¹ at NCV037-S and its highest value as 109.67±9.75Bqkg⁻¹ at NCV025-S Community with an average value of 49.66±5.23 Bqkg⁻¹.In comparing the obtained average results of soil samples of 40 K, 238 U and 232 Th with UNSCEAR, 2000 standard, it was deduced that the obtained average results of 40 K and

2291

²³²Th are higher above the recommended standard of 400.0 Bqkg⁻¹ and 35 Bqkg⁻¹ while ²³⁸U is lower than the recommended standard of 33 Bqkg⁻¹. The anomalous high value of activity concentration of ⁴⁰K and ²³²Th could be attributed to the oil and gas exploration, oil spill sabotage and drilling activities that took place across the entire study area (Avwiri et al., 2017; Ovuomarie *et al.*, 2018). The activity concentration of ⁴⁰K, ²³⁸U, ²³²Th and ²²⁶Ra in soil samples from the studied areas have been compared with similar works investigated in other countries and summary results are presented in Table 2. The ²³⁸U values result was lower than reported values for soil of Turkey (55.42 Bqkg⁻¹), Jordan (57.7 Bqkg⁻¹), Bangladesh (30.93 Bgkg⁻¹), Najaf-Irag (77.33 Bgkg⁻¹) and Northern India (56.02 Bgkg⁻¹). It was also found that the mean value of the activity concentration of ²³²Th was higher than reported values for soil of Turkey (22.86 Bqkg⁻¹), Najaf-Iraq (9.36 Bqkg⁻¹), Baghdad-Iraq(21.74 Bqkg⁻¹), Yemen (36.26 Bqkg⁻¹), Jordan (18.1 Bqkg⁻¹), Iran (43.4 Bqkg⁻¹) and Saudi-Arabia (12.3 $Bgkg^{-1}$) while the activity concentration of ${}^{40}K$ in soil samples of the present study was lower than reported values for soil of Saudi-Arabia (535.0 Bqkg⁻¹), Iran (555.1 Bqkg⁻¹) and Bangladesh (467.8 Bqkg⁻¹), but higher than the rest countries as stated in Table 2. Finally, the activity concentration of ²²⁶Ra in soil samples in the current study was higher than reported values for soil of all countries (Table 2). The discrepancies in the activity concentration of the radioactivity levels in the soil of various locations of the world depend on the geographical and geology conditions of the area and the agricultural lands were fertilizer was used in large extent (Alharbi, 2013).

The result obtained from the current study was compared with similar work done in Nigerian environment. The activity concentration of ²²⁶Ra in soil is higher than that reported in selected solid mineral mining Sites and crude oil spilled communities of Niger Delta region (Eshiemomoh *et al.*, 2021; Audu *et al.*, 2021; Ovuomarie *et al.*, 2018 and Avwiri and Ononugbo, (2012). This could be attributed to the quantity of spilled oil and duration of oil and gas activities in the area (Agbalagba *et al.*, 2012). The mean radium equivalent calculated from activity concentration of ⁴⁰K, ²³⁸U and ²³²Th in soil samples are presented in Table 1 and figure 2. The values ranged from 35.23 Bqkg⁻¹ to 235.03 Bqkg⁻¹ with an average value of 125.71 Bqkg⁻¹. It was observed that each of the oil and gas fields and host communities were lower than the world average value of 370 Bkg⁻¹ set by the organization of Economic cooperation and development (NEA-OECD, 1979). Therefore, the use of this soil for domestic and industrial application will not pose any radiological threat to human

health since radium equivalent activity is widely used to assess the radiation hazards associated with materials that contain 226 Ra, 232 Th and 40 K in Bq kg⁻¹.

4. Conclusion

The Radiological evaluation of soil samples in selected Nembe oil and gas fields and the host communities have been carried out. We hereby conclude as follows:

- The study revealed that the average results of ⁴⁰K and ²³²Th are higher above the recommended standard of 400.0 Bqkg⁻¹ and 35 Bqkg⁻¹ while ²³⁸U is lower than the recommended standard of 33 Bqkg⁻¹.
- 2) The radium equivalent (Raeq) in each of the selected Nembe oil and gas fields and host communities investigated were lower than the world average value of 370 Bkg⁻¹.
- 3) Therefore, the use of this soil for domestic and industrial application will not pose any radiological threat to human health and the environment.

Competing Interests

The Authors declared that no competing interest exist and are grateful to the Institute of Radiation Protection and Research, Ibadan constituted by Nigerian Nuclear Regulatory Authority (NNRA) where the gamma spectrometry was carried out.

References

- Agbalagba EO, Meindinyo RK (2010) Radiological impact of oil spilled environment: a case study of the Eriemu Well 13 and 19 oil spillage in Ughelli region of Delta State, Nigeria. Indian J Sci Technol 2: 1001–1005
- Agbalagba, O.E., Avwiri, G.O and Ononugbo, C.P. (2016). GIS mapping of impact of industrial activities on the terrestrial background ionizing radiation levels of Ughelli metropolis and its environs, Nigeria. *Environmental Earth Sciences* 75(21):1-10.
- Agbalagba, EO, AvwiriG.O, Chad-Umoreh, Y. E. (2012) Spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria. J Environ Radioact; 109:64-70.
- Agbalagba, O.E. (2017). Assessment of excess lifetime cancer risk from gamma radiation levels in Effurun and Warri city of Delta state, Nigeria, *Journal of Taibah University for Science* 11, 367–380

Ahmed and El-Arabi (2005) Natural radioactivity in farm soil and phosphate fertilizer and its

environmental implication in Qena governorate, Upper Egypt, 84, 51-64

- Alharbi W.R (2013) Natural radioactivity and dose assessment for brands of chemical and organic fertilizers used in Saudi Arabia. Journal of Modern Physics ;4: 344-348.
- Amanjeet, Kumar, A., Kumar, S., Singh, J., Singh, P and Bajwa, B.S. (2017). Assessment of natural radioactivity levels and associated dose rates in soil samples from historical city Panipat, India, *Journal of Radiation Research and Applied Sciences* 10; 283-288
- Audu U.M, Ononugbo C.P, Avwiri G.O (2021) Radiometric evaluation of environmental media samples from selected crude oil spill sites in Delta State, Nigeria. Current Journal of Applied Science and Technology
- Avwiri G.O, Enyinna P.I, Agbalagba E.O. (2007) Terrestrial radiation around oil and gas facilities in Ughelli. Nigeria Journal of Applied Science. 7:1543- 1546.
- Avwiri, G.O and Esi, E.O. (2014). Evaluation of background ionization radiation level in some, selected dumpsites in Delta State, Nigeria, Advances in Physics Theories and Applications 35:2225-0638
- Avwiri, G.O. and Ononugbo, C.P. (2012). Natural Radioactivity levels in surface soil of Ogba/Egbema/Ndoni oil and gas fields. *Energy science and Technology*, 4(2):92-101.
- Avwiri G.O, Osimobi J.C, Agbalagba E.O (2017) Evaluation of radiation hazard indices and excess lifetime cancer risk due to natural samples and excess lifetime cancer risk around Delta Steel Company, Ovwian, Aladja, Delta State, Nigeria. International Journal of Scientific and Engineering Research;4(8):117–127.
- Awosika, F. O. (2008). Oil, environment and the Nigeria's Niger Delta: Issues and Dilemmas. Geneva: Ecocity World Submit.
- Chad-Umoren, Y. E and Briggs-Kamara, M. A (2010). Environmental Ionizing Radiation Distribution in Rivers State, Nigeria. Journal of Environmental Engineering and Landscape Management, vol. 18(2), 154–161
- Diab, H.M, Nouh, S. A., Hamdy, A. and El-fiki, S. A. (2008) Evaluation of Natural Radioactivity in a cultivated area of a Fertilizer Factory. Journal of Nuclear and Radiation Physics. (3):53-62

Eshiemomoh, A.O, Avwiri, G.O and Ononugbo, C.P (2021) Assessment of Ionizing Radiation

Exposure Levels and Associated Health Risk in Some Selected Solid Mineral Mining Sites Edo-North, Nigeria, *Current Journal of Applied Science and Technology*

- Ghoshal S. N (2008) *Nuclear Physics*,8thed. New Delhi: S. Chand & Company Ltd, Ram Nagar, 110 055.
- Girigisu S, Ibeanu IGE, Adeyemo DJ,Onoja RA, Bappah IA, Okoh S. Assessment of radiological levels in soils from Bagega artisanal gold mining exercises at Bagega Zamfara State, Nigeria. Archives of Applied Science Research. 2013;5(3):204-210
- International atomic energy agency (2004) Radiation, People and the Environment. Report no: IAEA/PIIA. 75/.4 Austria
- Kadafa, A. A. (2012). Environmental Impacts of Oil Exploration and Exploitation in the Niger Delta of Nigeria. Global Journal of Science Frontier Research Environment & Earth Sciences, 12(3), 19 – 28.
- Knoll, G. F (2010) Radiation detection and measurement, 4thed. New York: John Wiley & Sons
- Olanrewaju, A and Avwiri, O.G. (2017) Quantification of Activity Concentration and Radiation Hazard Indices in the Solid Mineral Exploration fields of Benue State, Nigeria. *Int. journal-research Gate*. <u>https://www.researchgate.net/publication/317429545</u>
- Ononugbo CP, Avwiri, G.O, Chad-Umoren, Y.E (2011) Impact of Gas Exploitation on the Environmental Radioactivity of Ogba/Egbema/NdoniArea, Nigeria. *Energy and Environment;* 22(8):1017-1028
- Ononugbo, C.P and Nte, F.U. (2017) Measurement of Outdoor Ambient Radiation and Evaluation of Radiological Risks of Coastal Communities in Ndokwa East, Delta State, Nigeria, *Advances in Research*,9(6): 1-11
- Ononugbo, C. P; Avwiri, G. O. and Chad-Umoren, Y. E. (2011): Impact of Gas Exploitation on the Environmental Radioactivity of Ogba/Egbema/Ndoni Area, Nigeria. Energy and Environment, 22(8):1017-1028
- Ovuomarie-Kevin S. I, Ononugbo C.P, Avwiri G.O (2018) Assessment of radiological health risks from gamma radiation levels in selected oil spill communities of Bayelsa State, Nigeria. Current Journal of Applied Science and Technology; 28(3):1-12. 31.

Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S. & Karahan, G. (2009).

Radionuclide concentration in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli, Turkey. Journal of environmental radioactivity, 100, 49-53

UNSCEAR (2000) Source and effects of ionizing radiation. United Nations. Scientific

Committee on the Effects of Atomic.

CGSJ