

GSJ: Volume 8, Issue 6, June 2020, Online: ISSN 2320-9186

www.globalscientificjournal.com
An Implementation of Enhanced Multi-tenancy Database Design in IoT

System

Magy Ali ElBanhawy1, Walaa Saber2 and Fathy Amer3
1Electrical Engineering Dept., Faculty of Engineering, Port Said University, Port Said, Egypt.
2Electrical Engineering Dept., Faculty of Engineering, Port Said University, Port Said, Egypt.

3Computer Sciences Dept., Faculty of Computer and Information Science, 6 October University, Cairo, Egypt.

Abstract -- Since the Internet of Things (IoT) has become
more and more important, additional designs should be
proposed daily to adapt the specificities introduced by this
systems of the physical world (Sensors and Actuators) and
the public networks (The Internet). Some of these solutions
use a Cloud Computing and Multi-tenancy structures as
Multi-tenancy increases resource and utilization as well as
sharing the same database instance to multiple tenants.
Multi-tenancy, which lets multiple tenants share a single
application instance securely, is a key enabler for building
such a middleware. However, merging the multi-tenancy
structure with IoT systems becomes more and more
challenging due to the different data types of IoT and the
multi-tenancy design should adapt to tenants workloads
and fit their special requirements and the fact that the
multi-tenant database is shared between multiple tenants.
Therefore, this paper presents An Implementation of
Enhanced Multi-tenancy Database Design in IoT System
which should allow the IoT system to store its data in a
multi-tenant environment with less cost and better
performance based on the Enhanced Elastic Extension
Tables (E3T) and Native XML Database (NXD). The
presented implementation achieves high scalability and
increases performance for tenants who need those
requirements to intermediate with a simple IoT system.
Keywords -- IoT, Multi-tenant Database, E3T, Cloud
Computing, SaaS, NXD-Schema.

1. INTRODUCTION

The definition of the Internet of Things (IoT) has evolved
due to the convergence of multiple technologies, machine
learning and embedded systems in [1] and [2]. It is
considered is a system of interrelated computing devices,
mechanical and digital machines, objects, that are presented
with specific identifiers and the possibility for transferring
data over a network. Due to increase of user’s requests to
millions of online users application in a small period of

time, organizations often spend large amounts of their time,
resources and money managing and supporting information
stored in their on- premises databases, to ensure that the
correct information is available when it is required. Cloud
computing is a paradigm for allowing suitable, on- demand
network access to a shared pool of configurable computing
resources (networks, servers, storage, applications, and
services, e.g.) that can be rapidly provisioned and emitted
with minimal management effort or service provider
interaction [3]. SaaS offers a single configurable software
and computing environment for multiple tenants [4]. The
remainder of this paper is structured as follows. Section 2
reviews the related work for multi-tenancy main approaches,
section 3 describes the An Implementation of Enhanced
Multi-tenancy Database Design in IoT System, and section 4
concludes this paper and descries the future work.

2. Related Work

Many designs have been attempting to establish a robust
multi-tenancy schemas as in [5] , [6] , [7] , [8] and [9] ,
however each one of the following technique has it’s
limitation, Therefore the need of stable schema is required.
This section presents several of multi- tenant database
algorithm techniques, including Private Tables, Extension
Tables, Universal Table, Pivot Tables, Chunk Table, Chunk
Folding, and XML Table.

 Private Tables’ technique as in [5] and [10] The
Private Tables technique permits tenants to establish their
own tables, which can be expanded and changed. Using this
multi-tenant private tables technique can be transformed
from one tenant to another by renaming tables each one a
unique table name, and metadata without using extra

GSJ: Volume 8, Issue 6, June 2020
ISSN 2320-9186 368

GSJ© 2020
www.globalscientificjournal.com

http://www.globalscientificjournal.com/
http://www.globalscientificjournal.com/

columns like ‘tenant_id’ to distinguish and isolate the
tenants’ data.

The extension tables appeared after The Private
Tables, These extended tables are separated tables joined
with the base tables by adding tenants’ metadata columns
like ‘tenant_id’ to construct source tables. This technique
based on the Decomposed Storage Model described in [6] ,
[11], that splitting up n-columns table into n 2-column
tables joined using surrogate values. All tenants can access
the base tables and some extension tables. This method
allow tenants to enlarge there number of tables with
complexity cost.

The Universal Table (Spare Columns) as defined

in [5] , [7] and [12] a sparse dataset consists of a large
number of columns which allow tenants to store their
columns directly without any other tables. The Universal
Table is a table that contains extra columns of the base
application schema columns. These columns name must be
uniquely identified. The basic columns in the universal table
are 'tenant_id' and 'table_id' with some general columns
such as ‘first_name’ and ‘last_name’. These metadata
columns must have a VARCHAR data type to ensure that
different data values can be stored in these columns.

In Pivot Tables technique in [13] , [7] , [6]

and [8] this technique maps the schema into common
structure in the database, in which each record is store with
its meta data of as the following 'tenant_id' , 'table_id' ,
'col_id' and 'row_id'. The rows in the Pivot Table contain
four columns, including tenant, table, column, and row that
identify which row in the logical source table refers to.
Tenant column 'tenant_id' refers to the particular tenant.
Table column 'table_id' refers to the particular table.
Column 'col_id' refers to the particular column. Tenant row
'row_id' refers to the particular row. As well as a single
data type column will contain all other rows data of the
same data type. For example, the Pivot Tables can have two
pivot tables, the first table ‘pivot_int’ to store data which
has INTEGER values, and the second table ‘pivot_str’ to
store data that has STRING values. The NULL values in
this approach will be minimized.

The Chunk Table is another public structure

technique that is comparable to Pivot Table. Except, it
contains a group of data columns with a mix of data types
that replacing the column ‘col’ in the Pivot Table with
‘chunk’ column in the Chunk Table.

Chunk Folding (CF) is derived from the Chunk

Table technique and the Extension Tables as presented in
[8] , [4] [14] and [9]. This schema vertically divided virtual

tables into chunks. Each group has a ‘chunk_id’ where a
chunk of columns is partitioned into a group of column.
This approach works by containing the most commonly
used parts of the schema into base tables.

Chunk Table‟ technique and Chunk Folding‟
technique were having the capability to limit the number of
tables, but on the other hand increase the query complexity,
due to the joining operation.

The XML Table database extension technique is a
mixture of relational database systems and Extensible
Markup Language (XML) in [15],[2] and [16]. This is
accomplished by either providing an XML data type or by
adding the XML document into the database as Large
Object (Character or Binary). That has a minimum time in
the insertion and retrieval queries, but at the expense of the
overall performance. XML database extension technique
facilitating the creation of database tables, columns, views,
variables and parameters, and isolating the application from
relational data model. All the previous techniques preform
all tenants’ requirements as the original database relational
schema cannot be changed, and XML table is performed by
several relational database products techniques.

In summary, although all the previous technique
had introduced an algorithm to establish a multi-tenant
database design, each one of the previous techniques had its
own limitation as explained in Table 1.

No. Multi-tenancy
Database Design Limitation

1 Private Tables

This Technique would be
suitable only when small
number of tenants are using
it.

2 The extension
tables

The main inability of this
technique lies in the way the
actual dividing is performed
as it leaves them in naturally
occurring groups.

3 The Universal
Table

This Technique low
limitation is its performance
due to the high number of
NULL values it may contain
as a result of merging all
tenants columns in one table.

GSJ: Volume 8, Issue 6, June 2020
ISSN 2320-9186 369

GSJ© 2020
www.globalscientificjournal.com

4 Pivot Tables

The first limitation is the
overhead existing of the
meta-data. The second one is
the complexity of the
recreation of the tables as n-
column logical table requires
(n x 1) aligning joins.

5 The Chunk Table
The only limitation of this
technique is the complexity
of the query.

6 Chunk Folding

This technique limitation is
different from all other as its
performance is acceptable
but, the common schema
must be well-known in
advance and this consider a
huge draw in databases
systems.

7 The XML Table

This technique reduces the
overall performance using
XML files due to it consume
large space of the RAM
memory, as all XML file is
loaded in the RAM.

Table 1.Limitations of Multi-tenancy Databases Techniques

3. Introducing The Enhanced Elastic
Extension Tables for Multi-tenancy

Databases to IoT System

The Previous proposed of the Enhanced Elastic
Extension Tables (E3T) database schema is a more
advanced way of designing and creating a multi-tenant
database that is used in order to minimize the workload
in cloud data storage architecture. This paper proposes
is based on a multi-tenant database architecture of the
(E3T) to integrate, create, and preform tenants’ queries.
This contribution consists of applying the (E3T)
database design for enabling tenants' applications to
manipulate data efficiently by using the Native XML
Database (NXD) as multi-tenant storage. And, applying
this database structure to the internet of things (IOT) as
presented in [17], [18] ,[19] and [21]. These objectives

motivate us to propose An Implementation of Enhanced
Multi-tenancy Database Design in IoT System.

3. Introducing The Enhanced Elastic
Extension Tables for Multi-tenancy

Databases to IoT System

The Previous proposed of the Enhanced Elastic
Extension Tables (E3T) database schema is a more
advanced way of designing and creating a multi-tenant
database that is used in order to minimize the workload
in cloud data storage architecture. This paper proposes
is based on a multi-tenant database architecture of the
(E3T) to integrate, create, and preform tenants’ queries.
This contribution consists of applying the (E3T)
database design for enabling tenants' applications to
manipulate data efficiently by using the Native XML
Database (NXD) as multi-tenant storage. And, applying
this database structure to the internet of things (IOT) as
presented in [17], [18] ,[19] and [21]. These objectives
motivate us to propose An Implementation of Enhanced
Multi-tenancy Database Design in IoT System.

3.1. Enhanced Elastic Extension Tables (E3T)

The (E3T) is the most recent way of designing and
structuring a multi-tenant database as shown in [4], [7], [9],
[20] and [21]. This design consists of three partitions of
tables. The first class is Enhanced Common Tenant Tables
(ECTT), the second partition is Enhanced Virtual Extension
Tables (EVET) and the third partition is E3T, which consists
of eleven tables that are used to construct EVETs. Any
requirements could be extended tenants’ existing business
database. Which will allow tenants to establish their virtual
database structures from scratch by creating: (I) Virtual
database tables’ structures with virtual columns include
virtual rows. (II) Virtual database relationship structure
between the virtual tables. (III) Other database facilities
such as adding primary key, foreign key, triggers, index
column and routines. The E3T tables are the sensible tables
that grant tenant the virtual database structure and its
facilities which consist of eleven tables that are used to
establish tenant’s EVETs shown in Figure 1 and Table 2.

No. Table Name Table Features

GSJ: Volume 8, Issue 6, June 2020
ISSN 2320-9186 370

GSJ© 2020
www.globalscientificjournal.com

1 “db_table” The first E3T table that permits
tenants to create logical tables

2 “table_column”
This E3T table is the second
table that permits tenants to
create logical columns.

3 “table_row”

This E3T table used for storing
values like INT, FLOAT,
DATE, VARCHAR,
BOOLEAN, and other data
types and large data values in
other two tables.

4 “table_row_blob
”

This E3T table for storing the
BLOB values for virtual
columns with BLOB data type.

5 “table_row_clob
”

This E3T table is for storing all
CLOB values for virtual
columns with CLOB data type.

6 “table_relations
hip”

This E3T table permits tenants
to create virtual relationship
with the virtual columns.

7 “table_index”
This E3T table is used to add
and create indexes for the
virtual columns.

8 “table_primary_
key_column”

This E3T table permits tenants
to create virtual primary key for
the virtual columns.

9 “table_trigger” This E3T table permits tenants
to grant triggers.

10 “table_procedur
e”

This E3T table permits tenants
to use procedures when it is
essential to have a repetitive
task.

11 “table_routine” This E3T table permits tenants
to preform routines.

Table 2. The E3T eleven tables

Figure 1. Enhanced Elastic Extension Tables
3.2. Using Native XML with the E3T Database

GSJ: Volume 8, Issue 6, June 2020
ISSN 2320-9186 371

GSJ© 2020
www.globalscientificjournal.com

The XML database design limitation was consuming large
space of the RAM memory, as all XML file is loaded in the
RAM. The Native XML databases (NXD) provide the
support multi-tenancy architecture reduces this
consummation of RAM because it divided the database into
partitions as in [15] , [9] ,[17] and [22] which are generally
classified as native and relational. When NXD data is
preformed into relational databases, NXD execute queries
need to be transformed to SQL queries in the relational data.
Using NXD will provide the multi-tenancy databases to be
relational with the virtual tables to each tenant as well as
will increase the overall performance.

3.3. Applying E3T database to the internet of things

(IoT)

The Internet of Things (IoT) is posing new challenges and
perspectives for data management techniques. For storing
small data types values such as (INT, FLOAT, DATE,
TIMESTAMP, TIME, CHAR, VARCHAR, BOOLEAN
and so on) the E3T table “table_row” table that is used for
storing theses values. Since to store multimedia files is
required of large size so, the blob (Binary Large Object)
data type could be used in [6], [10], [23], [25]. Then the E3T
table “table_row_blob” is used. For other data types such as
images that required medium data size values the E3T table
“table_row_clob” can be the suitable data type for it [25]. If
a user intends to trigger an action that activates when a
specific event occurs for the specific event, according to
E3T table “table_trigger” can be used to accomplish this
case [17] , [2] and [19]. Case a user intends to perform a
procedure as a result of specific data, in this case the
“table_procedure” which used when it is essential to have a
repetitive task that requires checking, looping and multiple
statements do it with a single call to a procedure that's
stored on the server with a return output values that can be
stored to start many another actions [24] , [23] and [1] . The
last case scenario is that when user attend to create routine
which mainly used to gather parameters and compute values
following by single return value which preventing the need
to keep reissuing the individual statements. For this finally
case the E3T table “table_routine” may be used as
presented in [24] and [25].

4. Conclusion

In this paper, we introduced An Implementation of
Enhanced Multi-tenancy Database Design in IoT
System. The E3T allows tenants to perform their own
elastic relational database schema. The E3T can be
implemented in the IoT systems as it provide the
tenants with the essential needs for a simple IoT.

5. Future work
In the future publications will focus on reduce data to fulfill
multi-tenant business needs and cost in the storage section
as shown in the previous section. The E3T will be focused
on how to ensure that proper security of these tenants’ data.
By applying layers of security with the multi-tenant security
methods, tenant data will be secured from any unauthorized
access, miss data retrieval and SQL injection attacks. And
Also in the future work The E3T will introduce the concept
of NoSQL as One of the biggest challenges is the amount of
data; more specifically, the system's difficulties in accepting
and processing a large amount of data in as little time as
possible and this NoSQL data storage aims to be very fast
and always available.

References
[1] M. U. Kalay, “Database System Suggestions for the

Internet of Things (Iot) Systems,” Mugla J. Sci.
Technol., no. October, pp. 46–52, 2018.

[2] M. G. Kibria, S. Ali, M. A. Jarwar, and I. Chong,
“A framework to support data interoperability in
web objects based IoT environments,” Int. Conf. Inf.
Commun. Technol. Converg. ICT Converg. Technol.
Lead. Fourth Ind. Revolution, ICTC 2017, vol.
2017-Decem, pp. 29–31, 2017.

[3] R. Hope and B. Ca, “DATABASE HIGH
AVAILABILITY AS A SERVICE FOR CLOUD
COMPUTING,” pp. 1–10, 2016.

[4] S. Singhal, S. Maheshwari, and M. Meena, Mapping
Database Layer for the SaaS-Based Multi-tenant
Application, vol. 707. 2019.

[5] H. Yaish, M. Goyal, and G. Feuerlicht, “A Proxy
Service for Multi-tenant Elastic Extension Tables,”
Springer-Verlag Berlin Heidelb., vol. 2, pp. 1–33,
2015.

[6] S. Fang and Q. Tong, “A Comparison of Multi-
Tenant Data Storage Solutions for Software-as-a-
Service,” ICCSE 2011 - 6th Int. Conf. Comput. Sci.
Educ. Final Progr. Proc., pp. 95–98, 2011.

[7] H. Yaish and M. Goyal, “Multi-tenant database
access control,” Proc. - 16th IEEE Int. Conf.
Comput. Sci. Eng. CSE 2013, pp. 870–877, 2013.

[8] Y. D. and Z. X. Li heng, “Survey on Multi-Tenant
Data Architecture for SaaS,” IJCSI Int. J. Comput.
Sci. Issues, vol. 9, no. 6, pp. 198–204, 2012.

[9] H. Yaish, M. Goyal, and G. Feuerlicht, “Evaluating

GSJ: Volume 8, Issue 6, June 2020
ISSN 2320-9186 372

GSJ© 2020
www.globalscientificjournal.com

the performance of multi-tenant Elastic Extension
Tables,” Procedia Comput. Sci., vol. 29, pp. 614–
626, 2014.

[10] B. Alam, M. N. Doja, M. Alam, and S. Mongia, “5-
Layered Architecture of Cloud Database
Management System,” AASRI Procedia, vol. 5, pp.
194–199, 2013.

[11] H. Yaish, M. Goyal, and G. Feuerlicht, “An Elastic
Multi-tenant Database Schema For Software as a
Service,” Proc. - IEEE 9th Int. Conf. Dependable,
Auton. Secur. Comput. DASC 2011, pp. 737–743,
2011.

[12] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J.
Rittinger, “Multi-tenant Databases for Software as a
Service: Schema-Mapping Techniques,” Proc. ACM
SIGMOD Int. Conf. Manag. Data, pp. 1195–1206,
2008.

[13] H. Yaish and M. Goyal, “A Multi-tenant Database
Architecture Design for Software Applications,”
2013 IEEE 16th Int. Conf. Comput. Sci. Eng., pp.
933–940, 2013.

[14] O. Schiller, B. Schiller, A. Brodt, and B. Mitschang,
“Native support of multi-tenancy in RDBMS for
software as a service,” Proc. 14th Int. Conf.
Extending Database Technol. - EDBT/ICDT ’11, p.
117, 2011.

[15] S. Balamurugan and A. Ayyasamy, “Performance
Evaluation of Native XML Database and XML
Enabled Database,” Int. J. Adv. Res. Comput. Sci.
Softw. Eng., vol. 7, no. 5, pp. 182–191, 2017.

[16] M. N. A. Khan, A. Shahid, and S. Shafqat,
“Implementing a storage pattern in the OR mapping
framework,” Int. J. Grid Distrib. Comput., vol. 6,
no. 5, pp. 29–38, 2013.

[17] S. Wu, “A Method for Building Shared Massive
Heterogeneous IoT Data Environment,” Proc. -
2018 5th Int. Conf. Inf. Sci. Control Eng. ICISCE
2018, pp. 40–45, 2019.

[18] N. Dalčeković, S. Vukmirović, S. Stoja, and N.
Milošević, “Enabling the IoT paradigm through
multi-tenancy supported by scalable data acquisition
layer,” Ann. des Telecommun. Telecommun., vol.
72, no. 1–2, pp. 71–78, 2017.

[19] P. T. A. Mai, J. K. Nurminen, and M. Di Francesco,
“Cloud databases for internet-of-things data,” Proc.
- 2014 IEEE Int. Conf. Internet Things, iThings
2014, 2014 IEEE Int. Conf. Green Comput.
Commun. GreenCom 2014 2014 IEEE Int. Conf.
Cyber-Physical-Social Comput. CPS 20, no.
iThings, pp. 117–124, 2014.

[20] H. Yaish, M. Goyal, and G. Feuerlicht, “Proxy
service for multi-tenant database access,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 8127
LNCS, pp. 100–117, 2013.

[21] H. Yaish, M. Goyal, and G. Feuerlicht, “Elastic
Extension Tables for Multi-tenant Cloud
Applications,” 2016.

[22] J. Ni, G. Li, L. Wang, J. Feng, J. Zhang, and L. Li,
“Adaptive Database Schema Design for Multi-
Tenant Data Management,” IEEE Trans. Knowl.
Data Eng., pp. 1–1, 2013.

[23] I. Fosic and K. Šolic, “Graph database approach for
data storing, presentation and manipulation,” 2019
42nd Int. Conv. Inf. Commun. Technol. Electron.
Microelectron. MIPRO 2019 - Proc., pp. 1548–
1552, 2019.

[24] J. A. Stankovic, “Research directions for the
internet of things,” IEEE Internet Things J., vol. 1,
no. 1, pp. 3–9, 2014.

[25] S. Cherrier, Z. Movahedi, and Y. M. Ghamri-
Doudane, “Multi-tenancy in decentralised IoT,”
IEEE World Forum Internet Things, WF-IoT 2015 -
Proc., no. October, pp. 256–261, 2015.

GSJ: Volume 8, Issue 6, June 2020
ISSN 2320-9186 373

GSJ© 2020
www.globalscientificjournal.com

