

GSJ: Volume 11, Issue 5, May 2023, Online: ISSN 2320-9186

www.globalscientificjournal.com

Assessing the Effectiveness of Accident Prevention Strategies in Minimizing Occurrences of Building Construction Site Accidents

Ajah Glory Onyiyechi^{1*}, Olowolayemo Oluwaseun Ebenezer¹, Williams Opeyemi Samuel¹, Awosusi Abiodun Racheal¹, Mohammed Mulikat Alake²

1: Department of Quantity Surveying, Rufus Giwa Polytechnic,

Faculty of Environmental Studies, Owo. NIGERIA.

(E-mail: olowoseuneben@gmail.com)

2: Department of Quantity Surveying, Osun State Polytechnic, Faculty of Environment Studies, Iree. NIGERIA.

Abstract

Building construction workers are prone to accidents because the construction industry is considered one of the most hazardous. It is important to note that Nigeria does not have any accurate accident data. Therefore, effect of implementing strategies of accident prevention method in minimizing occurrences of accident in five selected building construction site in Akure, Ondo state, Nigeria. This was with a view to implement strategies of accident prevention method in building construction site in the study area. Building construction workers, the general public, and future research will all benefit from the study. Eighty (80) valid questionnaires were administered to the respondents in selected construction sites in the study area, these include Contractor, Skilled labour, Unskilled labour, Professionals and Others with a retrieval of sixty-nine (69). Frequency and percentage were used to analyze the demographic information of the respondent while data on the effect of implementation strategies of accident prevention method in minimizing occurrences of accident in building construction site was analyzed using descriptive, mean score, and ranking. The study concluded that cost of operation rescue, increase compliance with dedication to safety, decrease time and money lost after an accident, improves safety and productivity, decrease time and money lost after an accident are the most significant effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site of which it's major effect is on time. This study recommended that the implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site should be focused of all the construction stakeholders as it has major effects on time of the project.

Keywords: construction, building construction sites, minimizing, occurrence, implementation, accident prevention method.

I. Introduction

An unanticipated event that occurs without prior notice is referred to as an accident. It could take place on or off-site. Workers in the construction industry are at risk of injury because the construction industry is regarded as one of the riskiest. Development industry stands apart from different businesses on account of fundamental arrangement of frameworks empowers public turn of events (Olarewaju and Abdul-Rashid, 2015) As per Smallwood and Haupt (2002), as they would see it said that development industry is the riskiest area of the economy contrasted with other financial areas because of the great number of losses supported during development projects everywhere. Accidents have serious financial and humanitarian repercussions for the construction industry, as is common knowledge. However, the construction industry is frequently associated with hazardous work environments (Misnan, 2009), and the construction sites are rife with accidents on a daily basis (Ehi, 2010). However, despite the fact that Nigeria is experiencing a commensurately strong growth in construction work, efforts to ensure an improvement in the safety performance of building construction sites have resulted in either little or no improvement. Accidents on construction sites frequently occur because not all building and construction industries adhere to safety standards. More development laborers experience medical affliction or winds up dead than other industry (European Office for Wellbeing and Wellbeing at Work, 2004). However, it is heartbreaking to learn that despite every effort to improve health and safety in the Nigerian construction industry, the number of accidents on construction sites, both unreported and reported, continues to rise. According to Ayininuola and Olalusi (2004), the majority of building failures are the result of health and safety standards and bylaws not being enforced or not being in place at all. It is appropriate to have the discernment of the way that when mishap occurs on the structure building site (BCS), it brings about hardware harm, loss of lives and appendages, upset work program, over consumption and loss of project workers' picture. this study is engaged o the execution of mishap anticipation the executives in building site. The Preventive measures with this impact will be that suitable insurances will be taken to guarantee that all work places are protected. As a result, the purpose of this paper is to investigate how accident prevention strategies reduce accidents on construction sites: a case study of the state of Ondo in Nigeria's southwest

II. Literature review

Effect of implementation strategies of accident prevention method in minimizing occurrences of accident in building construction site.

The significance of reconciliation of OSH programs in development projects Hämäläinen, Takala and Saarela (2005) express that the quantity of mishaps rates will raise simultaneously with the expansion in industrialization in nations, which will straightforwardly influence the personal satisfaction of development laborers. In addition, accidents are becoming more common in construction projects due to a lack of laws and regulations (Kheni, Gibb, and Dainty, 2010). This highlights the significance of incorporating occupational safety and health (OSH) plans and programs into construction projects in order to reduce, eliminate, or prevent occupational risks in construction activities (Hinze, 2000). According to Umeokafor, Isaac, Jones, and Umeadi (2014), unemployment has caused workers to disregard safety procedures and accept risky jobs. poor site management, harsh work operations, low workers' knowledge and skill levels, failure to use personal protective equipment (PPE), and poor workers' attitudes regarding safety are all factors that contribute to unsafe conditions on the job site. Some of the obstacles to the implementation

of accident prevention strategies on construction sites (Abdul and Muhd, 2008) are listed below. In building site worldwide specialists hope to have the option to work in a no problem at all climate for good efficiency yet mishap occurring nearby are on avoidable. Both the personnel's and the structure's safety are critical to the success of a construction project (Kanchana, 2015). The global trade union federation puts the number much higher at 108,000, with construction accounting for 30% of all work-related accidents. The International Labor Organization (ILO) estimates that at least 60,000 fatal accidents occur annually on construction sites worldwide. Special trade, civil engineering, residential building, and non-residential building are the four main components of the construction industry (Abdul-Lateef and Abdul-Aziz, 2015). In essence, a building construction site is a location where construction work is done, and it can also be referred to as a building site. The structure must be assembled and erected as part of this. This underlying material incorporates brick work, mud or log which could be utilized for encase. A structure is made up of many parts, including the beam, the frame structure, the still frame building, and many others.

III. Research methodology

The identification of suitable and potential respondents, the selection of the appropriate sampling frame, the manner in which fieldwork is carried out, and, finally, the manner in which the data collected is received, encoded, processed, and analyzed are just a few of the many factors that determine the process's success (Creswell, 2009; Yin, 2009). This study used data from both primary and secondary sources. Essential information was through a very much organized survey and individual perception made during appearance to the structure building webpage as well as meeting of diaries and sites for the optional information. Because of this, the study only included five construction sites in Akure, Ondo state, Nigeria. The building locales were chosen arbitrarily inside Akure in Ondo State. Respondents were identified and sample sizes were determined.

IV. Findings and discussion

Total number of eighty (80) copies of questionnaires were administered to Contractor, Skilled labour, Unskilled labour, professionals, and others in the study area. Retrieved were sixty -nine copies that were used for the analysis. This represents a response rate 86.25%.

Table one below is the number of questionnaires received from different building construction site that made up the population.

Number distributed	Number retrieved	Rate of return (%)
80	69	86.25

Source: Author (2023)

Table 2: showing the demographic characteristics of the respondent. The year of experience of the respondent varies from 1-20 years' respondents within 1- 5 years of experience were 39.1%,

while respondents between 5-10 years of experience had 33.3% of the respondent, respondents between 10-20 years were 20.3% and lastly 20 years and above experience were 7.2%.

Category	Frequency	Percentage%	
1 -5yrs	27	39.1	
5-10yrs	23	33.3	
10-20yrs	14	20.3	
20-above	5	7.2	
Total	69	100	

Table 2:	Years of	experience	in the const	ruction industry

Source: Author (2023)

Table 3 shows that out of 69 respondents, 23 of the respondents are ND holders representing 3.3%, 14 are HND holders representing 20.3%, 21 are BSC holders representing 30.4%, 3 are PGD holders representing 4.3%, 2 are MSC holder representing 2.9% and 6 are PHD holders representing 8.9%. The highest majority is the ND holders followed by the HND holders

Table3: Acader	mic qualificati	ion of respondents
----------------	-----------------	--------------------

Education background	Frequency	Percentage%
ND	23	33.3
HND	14	20.3
BSC	21	30.4
PGD	3	4.3
MSC	2	2.9
PHD	6	8.9
Total	69	100

Source: Author (2023)

Table 4 below it depicts that out of the total number of the respondents seven (7) are contractors and represents 10.1%, 27 skilled labours with 39.1% representation,19 of unskilled labour representing 27.5%, 15 professionals representing 21.7% and the other is 1 representing 1.4%. Majority of the respondents are skilled labour which has 39.1% which is then followed by the unskilled labour of 27.5%.

Category of Workers	Frequency	Percentage%
Contractor	7	10.1
Skilled Labour	27	39.1
Unskilled Labour	19	27.5
Professionals	15	21.7
Others	1	1.4
Total	69	100%

Table 4: Area of work specification

Source: Author (2023)

Table 5 below depicts that most of the respondents agreed that cost of operation rescue, optimize productivity and safety on construction sites protects the public, decrease time and money lost after an accident, increase compliance with a dedication to safety and high morale to work, safety reduces work-related accidents and it improves economic growth, accident is completely avoidable, increased motivation, improve employee performance, improves quality and productivity, reduced workers compensation claims and cost, no health defect in hearing, improves safety and productivity, no hazard will be recorded, increased productivity, commitment to the project, improve external image and brand, decreased employee premiums and no loss of human life are the effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site on cost.

	Ν	Minimum	Maximum	Mean	Ranks
Cost of operation rescue	69	1	5	4.59	1^{st}
Optimize productivity	69	3	5	4.54	2^{nd}
Safety on Construction Sites Protects the Public	69	2	5	4.54	2rd
Decrease Time and Money Lost After an Accident	69	2	5	4.52	3th
Increase Compliance with a Dedication to Safety	69	1	5	4.45	4 th
High morale to work	69	1	5	4.45	4^{th}
Safety Reduces Work- Related Accidents	69	2	5	4.41	5^{th}
It improves economic growth	69	1	5	4.41	5^{th}
Accident is completely avoidable	69	2	5	4.36	6^{th}
Increased motivation	69	2	5	4.33	7^{th}

Table 5: Effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site (Cost).

Improve employee performance	69	2	5	4.33	7^{th}
Improves quality and productivity	69	2	5	4.32	8 th
Reduced workers compensation claims and cost	69	1	5	4.30	9 th
No health defect in hearing	69	1	5	4.28	10^{th}
Improves safety and productivity	69	2	5	4.28	10^{th}
No hazard will be recorded	69	2	5	4.28	10^{th}
Increased productivity	69	1	5	4.28	10^{th}
Commitment to the project	69	2	5	4.25	11^{th}
Improve external image and brand	69	1	5	4.23	12^{th}
Decreased employee premiums	69	1	5	4.09	13^{th}
No loss of human life	69	1	5	4.01	14^{th}
Source: Author (2023)					

Table 6 below shows that most of the respondents agreed that increase compliance with a dedication to safety, decrease time and money lost after an accident, it improves economic growth, safety reduces work-related accidents and safety on construction sites protects the public, high morale to work, no hazard will be recorded, increased productivity, no health defect in hearing, improves safety and productivity, accident is completely avoidable, cost of operation rescue, commitment to the project, commitment to the project, improves quality and productivity, improve employee performance, reduced workers compensation claims and cost, increased motivation, optimize productivity, improve external image and brand, decreased employee premiums and no loss of human life are the effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site on time.

Table 6: Effect of implementing strategies of accident prevention method in minimizing the
occurrence of accident in building construction site (Time).

	Ν	Minimum	Maximum	Mean	Ranks
Increase Compliance with a Dedication to Safety	69	1	5	4.68	1^{st}
Decrease Time and Money Lost After an Accident	69	2	5	4.62	2 nd
It improves economic growth	69	2	5	4.54	3 rd
Safety Reduces Work- Related Accidents	69	1	5	4.52	4 th

Safety on Construction	69	2	5	4.52	4^{th}
Sites Protects the Public High morale to work	69	2	5	4.46	5^{th}
No hazard will be	69	2	5	4.43	6 th
recorded Increased productivity	69	2	5	4.36	7^{th}
No health defect in	69	2	5	4.35	8^{th}
hearing Improves safety and	07	-			-
productivity	69	2	5	4.33	9^{th}
Accident is completely avoidable	69	1	5	4.28	10^{th}
Cost of operation	69	1	5	4.28	10^{th}
rescue Commitment to the					
project	69	2	5	4.26	11^{th}
Improves quality and productivity	69	2	5	4.23	12^{th}
Improve employee performance	69	2	5	4.22	13^{th}
Reduced workers					
compensation claims	69	2	5	4.20	14^{th}
and cost Increased motivation	69	2	5	4.19	15^{th}
Optimize productivity	69	$\frac{2}{2}$	5	4.17	16 th
Improve external image and brand	69	2	5	4.13	17^{th}
Decreased employee premiums	69	1	5	4.09	18^{th}
No loss of human life	69	1	5	3.80	19^{th}
Sources Author (2022)					

Source: Author (2023)

Table7 below shows the effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site on quality; decrease time and money lost after an accident, increase compliance with a dedication to safety, commitment to the project and it improves economic growth, safety reduces work-related accidents, improves safety and productivity, accident is avoidable, no health defect in hearing, high morale to work, cost of operation rescue, safety on construction sites protects the public, no loss of human life, increased motivation, improves quality and productivity, no hazard will be recorded, increased productivity, improve employee performance, optimize productivity, reduced workers compensation claims and cost, decreased employee premiums and improve external image and brand.

	Ν	Minimum	Maximum	Mean	Ranks
Decrease Time and					
Money Lost After an	69	2	5	4.57	1^{st}
Accident					
Increase Compliance					
with a Dedication to	69	2	5	4.55	2^{nd}
Safety					
Commitment to the	69	2	5	4.51	3^{rd}
project	09	2	5	4.51	5
It improves economic	69	2	5	4.51	$3^{\rm rd}$
growth	09	2	5	4.51	5
Safety Reduces Work-	69	2	5	4.48	4^{th}
Related Accidents	09	2	5	4.40	4
Improves safety and	69	2	5	4.46	5^{th}
productivity	09	2	5	4.40	5
Accident is completely	69	2	5	4.36	6^{th}
avoidable	09	2	5	4.50	0
No health defect in	69	2	5	4.33	7^{th}
hearing	09	2	3	4.33	
High morale to work	69	2	5	4.28	8^{th}
Cost of operation	69	2	5	4.26	9 th
rescue	09	2	5	4.20	9
Safety on Construction	60	1	5	1.26	9 th
Sites Protects the Public	69	1	5	4.26	,
No loss of human life	69	1	5	4.25	10^{th}
Increased motivation	69	2	5	4.25	10^{th}
Improves quality and	60	2	5	4.23	11^{th}
productivity	69	Z	5	4.23	11
No hazard will be	(0)	2	5	4.17	12^{th}
recorded	69	Z	5	4.17	
Increased productivity	69	2	5	4.17	12^{th}
Improve employee	(0)	2	5	4 10	13^{th}
performance	69	2	5	4.10	15
Optimize productivity	69	2	5	4.07	14^{th}
Reduced workers					
compensation claims	69	2	5	4.06	15^{th}
and cost					
Decreased employee	<u>(</u>)	2	-	4.00	1 cth
premiums	69	2	5	4.00	16^{th}
Improve external image	<i>c</i> 0	2	-	2.00	1 – th
and brand	69	2	5	3.99	17^{th}

Table 7: effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site (Quality).

Source: Author (2023)

Table8 below showed the effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site on safety; improves safety

and productivity, commitment to the project, increased motivation, increased productivity, decrease time and money lost after an accident, safety on construction sites protects the public, increase compliance with a dedication to safety, cost of operation rescue and no loss of human life, improve employee performance, improve external image, no health defect in hearing, improves quality and productivity, no hazard will be recorded, safety reduces work-related accidents, optimize productivity, accident is completely avoidable, reduced workers compensation claims and cost, high morale to work, it improves economic growth and decreased employee premiums.

Safety	Ν	Minimum	Maximum	Mean	Ranks
Improves safety and	69	2	5	4.38	1^{st}
productivity	07	<i>L</i>	5	4.50	1
Commitment to the	69	2	5	4.36	2^{nd}
project					_
Increased motivation	68	2	5	4.31	3^{rd}_{th}
Increased productivity	69	2	5	4.30	4^{th}
Decrease Time and					th
Money Lost After an	69	1	5	4.29	5^{th}
Accident					
Safety on Construction	69	1	5	4.28	6^{th}
Sites Protects the Public	07	1	5	4.20	0
Increase Compliance					41-
with a Dedication to	69	1	5	4.26	7^{th}
Safety					
Cost of operation	69	2	5	4.26	$7^{\rm th}$
rescue					•
No loss of human life	69	2	5	4.26	7^{th}
Improve employee	69	2	5	4.23	8^{th}
performance	07	<i>L</i>	5	1.25	0
Improve external image	69	2	5	4.23	8^{th}
and brand	07		5	7.23	0
No health defect in	69	2	5	4.19	9^{th}
hearing	07	<i>L</i>	5	7.17	
Improves quality and	69	2	5	4.19	9^{th}
productivity	07	2	5	т.17	
No hazard will be	69	1	5	4.19	9^{th}
recorded	07	I	5	1.17)
Safety Reduces Work-	69	1	5	4.19	9^{th}
Related Accidents					-
Optimize productivity	69	2	5	4.17	10^{th}
Accident is completely	69	1	5	4.16	11^{th}
avoidable	07	1	5	т.10	11
Reduced workers					
compensation claims	69	1	5	4.16	11^{th}
and cost					
High morale to work	69	1	5	4.14	12^{th}

Table 8: effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site (Safety).

It improves economic growth	69	1	5	4.06	13 th
Decreased employee premiums	69	1	5	3.97	14^{th}
Source: Author (2023)					

The table below shows the effect of implementing strategies of accident prevention method in building construction site on client's satisfaction which falls into the following ranking, decrease time and money lost after an accident, it improves economic growth, safety reduces work-related accidents, safety on construction sites protects the public, high morale to work, no hazard will be recorded, increase compliance with a dedication to safety, commitment to the project and increased productivity, increased motivation, no health defect in hearing, accident is completely avoidable, improves safety and productivity, improve employee performance, improves quality and productivity, decreased employee premiums, cost of operation rescue, no loss of human life, improve external image and brand, optimize productivity and reduced workers compensation claims and cost.

	Ν	Minimum	Maximum	Mean	Ranks
Decrease Time and					
Money Lost After an	69	2	5	4.57	1^{st}
Accident					
It improves economic growth	69	1	5	4.43	2^{nd}
Safety Reduces Work- Related Accidents	69	2	5	4.42	3 rd
Safety on Construction Sites Protects the Public	69	2	5	4.36	4^{th}
High morale to work	69	2	5	4.33	5^{th}
No hazard will be recorded	69	1	5	4.32	6 th
Increase Compliance with a Dedication to Safety	69	2	5	4.26	7 th
Commitment to the project	69	2	5	4.26	7^{th}
Increased productivity	69	2	5	4.26	7^{th}
Increased motivation	69	2	5	4.25	8^{th}
No health defect in hearing	69	1	5	4.23	9 th
Accident is completely avoidable	69	2	5	4.22	10^{th}
Improves safety and productivity	69	1	5	4.16	11^{th}
Improve employee performance	69	1	6	4.16	11^{th}

 Table 9: effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site (Client's satisfaction).

Improves quality and productivity	69	1	5	4.14	12^{th}
Decreased employee premiums	69	2	5	4.14	12^{th}
Cost of operation rescue	69	1	5	4.07	13^{th}
No loss of human life	69	1	5	4.03	14^{th}
Improve external image and brand	69	1	6	4.03	14^{th}
Optimize productivity	69	1	5	3.94	15^{th}
Reduced workers compensation claims and cost	69	1	5	3.83	16^{th}
Source: Author (2023)					

Table 10 below shows the effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site on cost, time, quality, safety and client's satisfaction are; time, quality and cost, client's satisfaction, safety.

Table 10 Descriptive statistics of comparative effect of implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site on cost, time, quality, safety and client's satisfaction

	Ν	Minimu	Maximu	Mean	Ranks
		m	m		
Time	21	4	5	4.24	1 st
Quality	21	4	5	4.19	2^{nd}
Cost	21	4	5	4.19	2^{nd}
Client's satisfaction	21	4	5	4.05	3^{rd}
Safety	21	4	4	4.00	4^{th}

Source: Author 2023

V. Conclusion

This study concluded that cost of operation rescue, increase compliance with dedication to safety, decrease time and money lost after an accident, improves safety and productivity, decrease time and money lost after an accident are the most significant of the effect of implementing strategies of accident prevention method in minimizing the occurrence of accident prevention method in minimizing strategies of accident prevention method in building construction site, conclusively the effect of implementing strategies of accident prevention method in building construction site of accident in building construction site on cost, time, quality, safety and client's satisfaction has its major effect on time.

VI. Recommendation

This study recommended that the implementing strategies of accident prevention method in minimizing the occurrence of accident in building construction site should be focused of all the construction stakeholders as it has major effects on time of the project.

Reference

- Abdul Hamid, A.R., Abdul Majid, M.Z., & Singh, B. (2008). Causes of accidents at construction sites. Malaysian Journal of Civil Engineering, 20(2), 242-259.
- Abdul Rahim, Abdul Hamid (2008). Causes of accidents at construction sites (Vol. 2, No. 20, pp. 242-259).
- Agwu, M. O., & Olele, H. E. (2014). Fatalities in the Nigerian construction industry: A case of poor safety culture. British Journal of Economics, Management & Trade, 4(3), 431-452.
- Agwu, M.O. (2012). Total safety management: A strategy for improving organizational performance in selected construction companies in Nigeria. International Journal of Business and Social Science, 3(20), Special Issue, 210-217.
- Ayininola, G.M., & Olalusi, O.O. (2004). Assessment of building failure in Nigeria: Lagos and Ibadan case study. African Journal of Science and Technology (AJST), Science and Engineering Series, 5(1), 73-78.
- Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). Thousand Oaks, CA: Sage Publications.
- Ehi Iden (2010). The absence of occupational H&S laws in Nigeria.
- European Agency for Safety and Health at Work. (2004). Corporate social responsibility and safety and health at work. Research.
- Hämäläinen, P., Takala, J., & Saarela, K.J. (2005). Global estimates of occupational accidents. Safety Science, 44, 137-156.
- Hinze, J. (2000). Designing for the lifecycle safety of facilities. In Proceedings of the Designing for Safety and Health Conference, European Construction Institute, London, pp. 121-127.
- Kheni, N., Gibb, A., & Dainty, A. (2010). Health and safety management within small- and medium-sized enterprises (SMEs) in developing countries: Study of contextual influences. Journal of Construction Engineering & Management, 136(10), 1104-1115.
- Misnan, M.S. (2009). Models developing safety culture in physics construction in Malaysia (Doctoral thesis). Universiti Teknologi Malaysia.
- Olanrewaju, A. L., & Abdul-Aziz, A. R. (2015). Building maintenance processes, principles, procedures, practices and strategies. In Building Maintenance Processes and Practices (pp. 79-129). Springer Singapore.
- Umeokafor, N., Isaac, D., Jones, K., & Umeadi, B. (2014). Enforcement of occupational safety and health regulations in Nigeria: An exploration. European Scientific Journal.
- Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Thousand Oaks, CA: Sage Publications.