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ABSTRACT 

It takes both time and resources to gather sizable autonomous vehicle dataset for stochastic 

gradient modeling. The capabilities of stochastic gradient descent (SGD) algorithm and pipeline 

in machine learning have been investigated in a number of researches. Several techniques used 

smaller samples of sensor data, which may have been adequate but wasn't always the best for 

employing ML pipelining classifier. The pipeline uses SGD ML classifier with an applicable 

parameterization to categorize training data samples in order to improve classification and fault 

detection accuracy. This study employed pipeline sensor data fusion architecture with stochastic 

gradient descent to address potential sensor signal failure types in autonomous vehicles. The 

suggested architecture uses a SGD classifier for sensor signal diagnosis, detection, and isolation 

in order to overcome the challenges in the environment of an autonomous vehicle. We are 

integrating our knowledge in stochastic modeling to create a reliable ML pipeline framework that 

categorizes various sorts of car sensor signal faults.  The pipeline model was designed to validate 

input and output data of each stage, preventing sensor faults from emerging and boosting the 

pipeline model's dependability. We concentrated on defining a thorough fault isolation system 

model that handles a variety of fault types (normal, hard over, drift and spike). The model strength 

lies in its ability to unearth hidden patterns and establish a connection between car features with 

their historical sensor signal data. The SGD produced 95.27% while pipeline recorded 99.43% 

accuracy rate as the best. The pipeline framework enhanced the efficiency and reliability of the 

model development process while reducing the likelihood of faults and promoting high standards. 
 

1.1 INTRODUNCTION 

Autonomous vehicles, which are often known as self-driven cars, have driving capabilities that 

range from level 0 to level 5 and requiring minimal or no human interaction to operate (Jeong et 

al., 2019). Simple performance issues or security concerns could have significant impact because 

of their intelligence, leading to unanticipated failure with significant financial losses and casualties 

if not identified in time (Liu et al., 2021). Modern cities and streets have become home to 

autonomous vehicles since they utilize cutting-edge technologies including machine learning (ML) 
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algorithms and control systems. These techniques rely mainly on data gathered from numerous 

sensors. The importance of sensor fault surveillance and detection is highlighted by the possibility 

that vehicle sensor failure and the resulting error propagation could be detrimental to the 

dependability and safety of autonomous cars. The ultimate goal of a sensor health monitoring 

system is to anticipate sensor reliability and performance and make decisions in response to that 

prediction, rather than only detecting, isolating, and identifying faulty sensor signals (Fahim & 

Sillitti 2019). A suitable fault diagnostic method for autonomous vehicles with sophisticated 

electrical architecture is required. This strategy includes faulty sensor signal detection, which 

identifies systemic faults. Fault isolation identifies which sensor is defective, fault identification 

explains why the sensor malfunctioned, and sensor health prediction depicts the sensors' present 

and potential future states. 

1.2 Types of signal faults in autonomous vehicles 

The three categories of sensor signal failures proposed by Al-Zeyadi et al. (2020) are sensor fault, 

actuator fault, and process fault. The manufacturing facilities and post-sale services in the 

automotive sector both heavily utilize AI/ML technical advancements. The fault detecting system 

is one of the services provided by the automotive industry. Continuous and intermittent failures 

are two of the different types of sensor device fault patterns that Balaban et al. (2009) found. 

Continuous faults are ones that remain in the system, as opposed to intermittent faults, which 

happen only intermittently. Intermittent faults are categorized by Jan et al. (2017) as drift, hard-

over erratic, and spike sensor faults. When a signal steadily deviates (linearly) from its true value, 

a drift fault occurs.  When a sensor recovers a value that is outside of its measurable range and 

rises quickly to saturation, a hard-over fault happens. A sensor's data becomes significantly noisier, 

which causes an unpredictable fault. Over time, the amplitude of the signal variance can grow 

around the correct value. When the signal value briefly increases, spike faults happen.  When the 

most recent cycle value of x(t) depending on the time provided, it is known as a delay time fault. 

According to Shen et al., (2020), a single DL approach might not be sufficient to detect and isolate 

vehicle sensor signal faults detection and isolation requirements. Min et al. (2023) identified spike, 

continuous, gradual drift, bias, and miss sensor signal faults types in autonomous vehicles. Many 

methods relied on smaller amounts of sensor data, which although sometimes sufficient for ML 

pipelining classifier with specific requirements and this is not always the ideal option. The 

collection of a significant autonomous vehicle dataset for stochastic gradient modeling requires 

both time and resources. However, little research has been done on their relative efficacy in regard 

to various heterogeneity dataset types. The pipeline employs an SGD ML classifier with the 

appropriate parameterization to categorize training data samples and increase classification and 

fault detection accuracy. 

The aim is to build an efficient autonomous vehicle fault Detection and Isolation Model using 

stochastic gradient descent. The SGD and pipeline classifiers were used with the proper 

parameterization to help categorize training data samples. This improved classification and fault 

detection accuracy. We focused in developing a comprehensive fault isolation system model that 

can manage several failure types (hard over, drift, and spike) and defined a thorough fault isolation 

system model capable of handling variety of fault types (normal, hard over, drift and spike). The 

model strength lies in its ability to unearth hidden patterns and establish a connection between car 

features with their historical sensor signal data. 
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The paper is organized as follows: Section 1 provided an introduction; Section 2 offers a brief 

assessment of prior approaches related to the topic and the gap in studying the proposed model; 

Section 3 introduces the model's materials and methods; Section 4 covers the results and a thorough 

discussion of the results; and Section 5 provides the paper's conclusion. 

 2.0 LITERATURE REVIEW  

Realpe, et al., (2015) employed a SVM architecture to diagnose and detect faulty signals in vehicle 

sensors using a suitable dataset. They verified that the suggested design was able to recognize both 

soft and hard errors from a specific sensor. Wang et al. (2022) adopted a sparse SGD optimal 

approach in order to boost the batch gradient updating methods. The network parameter was 

modified with the SGD parameters after the batch gradients were grouped using a distributed 

density-based clustering. Bello-Salau et al. (2020) presented a novel method for swiftly 

distinguishing potholes and bumps from noisy data recorded by an accelerometer. Their method 

works by filtering erratic readings obtained from an accelerometer fitted on the car. A wavelet 

transformation-based filter was used to separate the signals into several sizes.  The suggested 

method detects and classifies road flaws with a high level of precision, accuracy, and a low 

occurrence of false alarms. Kim et al. (2015) offered a gateway structure based on the controller 

area network (CAN) for in-vehicle networks (IVNs). Security, multiple routing configuration, 

dynamic routing update, network management (NM), diagnostic routing, and parallel 

reprogramming are among the model functionalities made available by the gateway framework. 

Pradhan and Gupta (2017) proposed a failure detection technique for rolling element bearings and 

uses time-domain vibration signal analysis. They measured the severity of the defect using a fault 

scalar indicator whose value was extracted from the time domain signal by the increasing size. 

Davishi et al. (2022) used an MLPNN machine learning structures capable of recognizing and 

recreating normal sensor signal behavior in order to replace the faulty signals in the system. The 

purpose of this model's construction was to identify and isolate car sensor signal faults. Further 

investigation was required to utilize RNNs, CNNs, and reinforcement learning architectures with 

interpretable or XAI algorithms in order to improve explanations and gain trust from users. 

Ciaburro (2022) employed several ML models such as SVM, CNN, RNN and deep generative 

algorithm to detect popularly known sensor failure fault types in production and maintenance 

process. They first offered the background research needed to grasp the procedure, after which 

they examined a number of representative works that had produced the best outcomes for detecting 

faults in the industrial machine.  Obodoeze et al. (2018), proposed ML technologies with effective 

digital fault tracking functionality to identify vehicle fault types. They suggested using computer 

programs for recording defects and enable users to transmit the report back to the expert through 

email or SMS for quick response. The suggested method systematically uncovered different fault 

types while minimizing the requirements for human work. It was useful in lowering the cost of 

vehicle maintenance and troubleshooting. Marzat et al. (2012) presented a sliding mode of 

observers and control model-based sensor failure detection and isolation technique. It was nearly 

impossible to accurately obtain some of the vehicle parameters given that the vehicle has a highly 

linked and complex nonlinear system and that the developed vehicle model was subjected to 

several situations of uncertainty. They recommended that, the challenge of signal isolation and 

detection could potentially be improved by using a handful of non-model-based strategies. Yurii 
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et al. (2017) used an efficient model-based fault isolation and detection technique was used by and 

it primarily depends on linear system modeling. These strategies could not produce the desired 

results for nonlinear systems. Nevertheless, due to their temporal complexity, model-based 

techniques actually possess a higher accuracy. Similar model-based strategies are still commonly 

used to deal with real technological problems. Chamseddine and Noura (2008) proposed vehicle 

fault detection and isolation system in order to identify sensor failures in automotive systems. They 

needed extra sensors, including displacement sensors, to replace the conventional sensor 

arrangements. Shen, et al. (2020) used a parity-check approach to identify issues with car sensor 

signals. Their model's low detection accuracy was caused by miss categorization errors, subpar 

interfaces and unpredictability. Glowacz (2018) developed an inventive method for identifying 

vehicle sensor faults using KNN-based model for car fault classification and recognition. The fault 

detection system that used acoustics had low operating costs and a high degree of dependability. 

These associated study results provided significant understandings into the area of diagnosing and 

isolating vehicles sensor signal faults. This model was created to only take into account one kind 

of fault at a time, ignoring other kinds of sensor faults. Gauerhof et al. (2018) produced angles of 

steering as responses using a CNN provided with a dataset of live camera photographs. The 

aforementioned learning framework brings up new issues which have to be addressed in relation 

to the produced results' dependability, safety, and interpretation by humans. The suggested 

hierarchical pipeline systems include strategies for independent localization, understanding, 

planning, and control. The data collected from unprocessed sensors is transferred along the 

software pipelines of a self-driving vehicle for recognizing objects and localization, after which it 

gets passed on for control and strategic planning. 

 

3.0 MATHERIALS AND METHODS 

This session discusses the potential of the suggested approach to identify and classify various 

sensor and communication failure types, as well as the assessment results of the SGD and pipeline 

classifier on the data from the test. The proposed SGD architecture has been refined to help 

determine the issues of pipeline approach, fault detection, and classification. The models and 

decisions made in order to implement the suggested architecture are examined below: 

Datasets: The dataset used in this program is collected from the IEEE Data Port, which is accessed 

through the UCI Machine Learning Repository website at "https://ieee-

dataport.org/documents/gps-data-collected-xinda-autonomous-vehicle-changan-university". It 

contains attributes like UID, ID, sensor signal value, brake hydraulic pressure, temperature, 

velocity, target, and others. The suggested collection offers a substantial dataset for training 

models, with around 2000 testing and 8000 training sets making up 10,000 dataset. The sensor 

signal faults in this 10-feature sets are divided into five target classes (Normal, hard over, drift and 

spike faults).  

SGD optimization approaches have a non-deterministic process of learning. Such ML methods 

have a high degree of generalizability due to their random initialization of parameters for loss 

reduction. This property renders SGD predictions non-deterministic. Since ML is non-

deterministic, the results are rather unclear for inputs that fall under the same set of target classes. 

GSJ: Volume 11, Issue 8, August 2023 
ISSN 2320-9186 1205

GSJ© 2023 
www.globalscientificjournal.com



The proposed SGD and pipeline implementation for detecting sensor signal faults in autonomous 

vehicles is described below. 

 

 

 

 

 

 

 

 

 

 

Three basic abstractions make up the architecture: (a) localization; (b) environment and 

perception; (c) planning and control. The pipeline's localization and perception components 

provide input data to the planning and control block. Each of the smaller blocks represents the 

hierarchical structure of the data inputs/outputs for the task of driving. 

Sensor: The key providers of data on the external and internal states of autonomous vehicles are 

the vehicle sensors (VS). The vehicle sensor conveys input data to the components responsible for 

localization, environment perception, and self-perception. The aforementioned blocks then process 

data to produce the output requirements for the corresponding planning and control block 

structures. 

Localization block: maintains a current version of the original data by using the most recent 

information from the environment and perception block and the information from the localization 

sensor. The localization incorporates data from the lower levels to locate lanes, which are indicated 

by the upward-facing arrows. It assisted in building the architecture with updated features collected 

from the environment and perception block. The downward-pointing arrows illustrate how data 

acquired at higher levels can be utilized to connect the traits picked up at lower levels in a 

meaningful way. 

(a). Road level: is the highest level among the localization blocks, which maintains and updates 

information on lane frameworks, topological structure, and other aspects of roads. 

(b). Lane-level: creates the classification data for individual lanes that can be derived from the 

perception and environment blocks. Data concerning vehicle sensor signal specifics are 

dynamically updated in the localization and mapping of lane details at the lane level.  

(c). Feature level: The dynamically tracked signals and supplementary data are maintained and 

updated by the precise feature data regarding localization and perception. 
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Figure 1: Study strategy for autonomous vehicle pipeline 
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Environment and well perceptron: The core of the suggested autonomous vehicle pipeline 

design is the environment and one's own perception. It interfaces with each of the localization and 

planning components periodically with the goal of observing and updating localization block 

details. This generates sensor signal data for the planning block. 

(a). Feature extraction: component analyzes the unprocessed environmental sensor signal data to 

recognize features, such as traffic signals, lanes on the road, and so on. The context modeling 

component, which is positioned above the feature extraction sub-block, receives the output from 

the corresponding block. Additionally, it supplies signals to the stabilization block of the planning 

and control unit and the nearby feature level of the localization block. The features of the perceived 

data about the environment are being updated using this output. 

(b). Context modeling: The Planning and Control block's Guidance sub-block accepts the result 

of the context modeling. The localization and provision block details are updated using the context 

modeling’s result. 

(c). Road level: The localization block is generated and updated using the most recent data 

utilizing the sensor signal data obtained from the previous sub-blocks of the environmental and 

self-perception block. The navigation sub-block of the planning and control block makes 

additional use of the output produced road level as input. 

Planning and control block: The final process in the ML pipeline, planning and control, can be 

seen as a vital component of the step behind it. The following list clearly identifies the many 

hierarchical levels of driving tasks: 

(a). Navigation: The planning and control block's navigation level is where the communication 

component is fed and kept up to date. The navigational component (NC) relies on SGD 

optimization approaches and sends sensor signal like data to various blocks. 

(b). Guidance: The Environment and Self-Perception block generates routing and environment 

information that is used by the Guidance sub-block in order to create mission-ready systems. The 

environment is updated and enhanced with more information in order to create a special 

circumstance for the vehicle sensor fault types on the availability of a trained algorithm. The 

aforementioned actions resulted in a number of different potential target sets required for the 

training of the SGD algorithm. 

(c). Stabilisation: The data is generated in line with the trajectory for a particular operation 

specified by this block based on the available algorithms. The process monitoring revealed the 

deviation from the SGD pipeline model. The system controls and transmits this data as result to 

the actuators. 

Communication: is the very last block in the ML pipeline, which interfaces with every other block 

and external communication architecture like human. This is often at the highest level of the 

human-involved planning and control block.  The information from the communication can help 

improve the autonomous vehicles' accuracy. 

The SGD model: An optimization strategy was adopted in choosing the mean value and assumed 

to follow a specific data distribution in order to carry out clustering on gradient descent. This is 
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helpful in preventing the task of initial aggregating by simple averaging and removal of noisy 

gradients. We computed the new values of the parameters as shown in equations 1 and 2 below 

after randomly shuffling the dataset and choosing the k needed samples. 

W=w-y × grad(f(w))            1 

Substituting the value of y= 
𝛶

𝑘
∑𝑘=1   into equation1 will results into equation 2  

W=w-
𝛶

𝑘
∑ grad(f(w))  𝑘=1            2 

Where k>0,  grad(f(w)) >0 and this is fairly small for the pace of learning 

The SGD model was developed to update variables only when all “n” training examples had been 

completed in order to enhance the number of updates per period. 

Minimizing the overall cost of SGD is a simple task. Given that the data used for training the SGD 

is finite, the distribution of dP(z) will be discrete and can be represented as follows: 

 dP(z) = ∑
1

𝑁
𝛿(𝑥 − 𝑥𝑖)𝑁

𝑖=1     

C(w) = 
1

𝑁
∑ 𝐽(𝑥𝑖 − 𝑤)𝑁

𝑖=1            3 

Each of the iteration in SGD algorithm that we are using will include adding the sums of the N 

samples 𝑥𝑖. 

Wt+1 = wt - ϵt
1

𝑁
∑ 𝛻𝑤𝐽(𝑥𝑖 , 𝑤𝑡)𝑁

𝑖=1            4 

We are using positive scaler as the gain ϵt. Each training cycle of the SGD demands a taxing 

computation of the average represented as 𝛻𝑤𝐽(𝑥, 𝑤) over the complete training set, which is 

necessary for the task of learning in equation 4 because we need sizeable data to provide precise 

information concerning the real phenomena. 

The SGD approximates the gradient descent as opposed in computing the gradient for the entire 

data samples at each step, the algorithm only does so for one observation chosen at random. 

We are introducing a linear function that we need to minimize the error rate in the loss function as 

given in equation 

L(w, b) = 𝑚𝑖𝑛𝑤,𝑏 +  ∑ (𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏)2𝑛
𝑖=1        5 

The gradient for our loss function(L)  is been calculated with respect to the weights(w) and 

intercept(b). To compute the gradient the equation 6 is used. 

𝜕𝐿

𝜕𝑊
 =∑ (−2𝑥𝑖)(𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏)𝑛

𝑖=1          6 

𝜕𝐿

𝜕𝑏
 =∑ (−2)(𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏)𝑛

𝑖=1          7 

We keep changing the weights and intercept values after calculating the gradient to arrive at 

equation 8 

𝑤𝑖+1 =  𝑤𝑖 − 𝑟 (
𝜕𝐿

𝜕𝑤
) 𝑤𝑖         8 
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𝑏𝑖+1 =  𝑏𝑖 − 𝑟 (
𝜕𝐿

𝜕𝑤
) 𝑏𝑖          9 

Machine learning gradient descent uses derivatives and optimization techniques to solve 

optimization issues, such as determining whether to increase or decrease the weights. 

We used the stochastic gradient descent algorithm with dataset(D), which included n training 

samples with features  𝑋𝑗
[𝑖]

 and targets or class labels 𝑦[𝑖]. 

Where D =(𝑋[1], 𝑦[1]), (𝑋[2], 𝑦[2]), . . . , (𝑋[𝑛], 𝑦[𝑛])) 𝜖(ℝ𝑚 × {0,1})𝑛   10 

Metrics of Evaluation 

It is necessary to use a standardized evaluation tools in order to compare the various results. There 

are various ways of visualizing correct and incorrect predictions for problems involving multi-

classification task like the proposed system. Standard valuation tools like prediction accuracy, 

RMSE, confusion matrix, classification report and ROC curves are employed to evaluate the 

performance of SGD and pipeline classifier. The Classification accuracy is the ratio of correctly 

classified data points to the total number of points in the dataset. 

The error rate can be measured with the general equation given by:- 

Error rate =
TP+TN

TP+FP+TN+FN
                                    11 

The sensitivity or also called the True Positive Rate(TPR) is given by: 

TPR =
TP

TP+FN
           12 

The False Positive Rate(FPR) or also called Fall-Out is gievn by: 

FPR =
FP

FP+TN
           13 

 

Accuracy=
Total number of correct classification

Overall number of classes
  = 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
             14             

Where TN represents true negative, FP is false positive, TP is true positive and FN is false negative 

cases. 

Algorithm 1: proposed Stochastic gradient descent(SGD) classifier 

Step Processes involved 

1 Input: Training_Dataset(T)  

2 Output: Class of testing items 

3 Initialize weights(w)= 0𝑚−1, 𝑏 = 0 

4 For iteration t ϵ [1, . . . , T]: 

        (a). Draw samples randomly  with replacement: (𝑋[𝑖], 𝑦[𝑖]) ϵ D 

        (b). Compute model predictions ỳ[𝑖] => ℎ(𝑋[𝐼]) 

        (c). Compute the loss value 𝐿[𝑖] => 𝐿(ỳ[𝑖], 𝑦[𝑖] 

        (d).  Compute gradients  

       (e).Update model parameters 

5 Return 
 

4.0 RESULTS AND DISCUSSION 
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The proposed model results are presented and discussed using the relevant SGD and ML Pipeline 

tools. The concept and its application have been improved in order to generate better and more 

accurate outcomes. We used standard ML and suitable diagnostic tools to display and discuss 

results of experiments. 

 

Figure 2: classes of vehicle sensor faults 

Figure 2 depicts the classes of sensor fault types with values plotted on top bars to represent the 

uneven no_fault, drift, spiking, and hard over fault types in the target dataset. There are 9635 target 

classes which include: 9634 no faulty cases, 109 drift faults, 78 spike faults, and 197 hard over sensor fault 

types. Every other sensor fault case in the target set is surpassed by the no fault cases. The spike fault type 

occurs when a signal gradually deviates (linearly) from its actual value, hard-over fault occurs whenever a 

sensor recovers a value that is outside of its measurable range and rapidly increases to saturation and Spike 

faults occur when there are brief increases in the signal value. The signal's density of sudden increase faults 

can increase over time. 

 

Figure 3: Autonomous vehicle sensor signal 

Figure 3 depicts the chart of autonomous signal time plot demonstrating the significant rise of 

noise in the sensor data over time. The size of the signal variance also rises around the true value. 

There is a spike/rise in noisy data(signal) between 0 and 2000 seconds that falls below 20 and less 

above 30. There is a sharp signal spike that is detected over 140 just before 2000, 
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Figure 4: stochastic gradient desenct confusion matrix 

Figure 4 shows the confusion matrix, which displays a table structure of the various SGD predicted 

results to aid the multi-classification task. Cell values above and below the main diagonal or off-

diagonal elements shows the incorrectly predicted values and correctly predicted values that are 

equal to the actual or true values. According to the confusion matrix, hard over fault types had 

30+7= 37 incorrectly predicted faults with no correct predictions. While spike fault provided 

21+1= 22 incorrectly predicted values with zero true positive class prediction, drift fault recorded 

zero correct predictions with 48 incorrect misclassifications. 

 

Figure 5: SGD Pipeline confusion matrix 

Figure 5 depicts the SGD pipeline confusion matrix of 4 × 4 which is employed to assess how well 

a multiclassification report its performs, with 4 overall target classes. This is done to contrast the 

actual target values having 4-mutually exclusive possible outcomes of what the pipeline model 

predicted. The No_fault type recorded 2889 correctly predicted cases with 4 incorrectly classified 

classes. The hard over fault produced 35 correct predictions with 1+1=2 incorrectly classified data 

classes, the drift fault produced 41 correct predictions with 5+1+1=7 incorrect data classes, and 

the spike fault type produced 25 correct predictions with 7 incorrectly classified data classes. The 

pipeline confusion matrix is a type of table that aids in understanding how well a classification 

methodology works on a set of experimental data for which the true values are known. 

Table 1: SGD classification report 

 Precision recall F1-score support 

No Fault 0.97 1.00 0.98 2893 
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Hard_Over_fault 0.00 0.00 0.00 37 

Drift_fault 0.00 0.00 0.00 48 

Spike_fault 0.14 0.05 0.07 22 

     

accuracy   0.96 3000 

Macro avg 0.28 0.26 0.26 3000 

Weight avg 0.93 0.96 0.95 3000 
 

Table 1 depicts the SGD algorithm's classification report, including its precession, recall, and f1-

score classification features. The Precision recorded 0.97 for cases of no fault, 0.00 for each type 

of fault: hard_over, drift, and 0.14 for all other fault categories. Recall produced values of 1.00, 

0.00 for cases where there was no fault, 0.00 for each type of fault (spike, drift), and 0.05 for hard 

over fault signal. While the f1-score was 0.98 in cases where there was certainly no fault, it was 

0.00 for spike and drift faults and 0.07 for hard over faults. The recall accuracy score was 1.00, 

which was the highest in circumstances where there was No_fault 

 

 

Table 2: SGD Pipeline classification report 

 Precision recall F1-score Support 

No Fault 1.00 1.00 1.00 2893 

Har_Over_fault 0.97 0.95 0.96 37 

Drift_fault 0.77 0.85 0.81 48 

Spike_fault 0.88 0.68 0.77 22 

     

accuracy   0.99 3000 

Macro avg 0.91 0.87 0.88 3000 

Weight avg 0,99 0.99 0.99 3000 
 

Table 2 contains metrics for precession, recall, and f1-score accuracy for cases with no faults (NF), 

hard over faults (HOF), drift faults (DF), and spike faults (SF) in the SGD pipeline classification 

report. The classes NF (1.00), HOF (0.97), DF (0.77), and SF (0.88) were registered in terms of 

precision. Recall gave rise to the classes NF (1.00), HOF (0.95), DF (0.85), and SF (0.68), whereas 

the f1-score resulting in the classes NF (1.00), HOF (0.96), DF (0.81), and SF (0.77). The 

measurements for accuracy, recall, and f1-score Precision, recall, and f1-score values from 

No_fault were each 1.00. 
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Figure 6: Validation curve 

The learning curve of Catboot pipelining is shown in Figure 6 as a function of a number of training 

points, together with the training and validation score.  Figure 6 illustrates the value of validation. 

The cross validation and training curve are increased by adding additional pipeline steps, while the 

training score is decreased from 5.0 to 20.0.  The training and validation set as shown is low and 

the optimum tradeoff occurs when we choose d to be around 3 or 20.  

 
Figure 7: Stochastic pipeline learning curve 

Figure 7 is the learning curve of Catboost pipeline model and it is shown that d=14 is the high-

variance point of estimator which over-fits training data. The training score exceeds the validation 

score by a wide margin. The cross validation score will rise as more training set samples are added, 

but the training score will fall along various folds. 
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Figure 8: ROC plot of SGD with pipelining 

Figure 8 depicts the ROC curve of SGD and pipeline classifier, which illustrates how well the 

suggested models work. It is one of the most crucial performance metrics used to assess the 

effectiveness of any classification algorithm. The pipeline model outperformed SGD with an AUC 

value that was closest to 1 (0.6608). The model with the AUC value (0.6106) closest to zero was 

the SGD model. The ROC plot made it very evident that the SGD’s ROC curve is farther from 1 

and located towards the upper left corner of the y-axis than the pipe line model. 

Table 4: Detected and isolated fault types 

S/N UID Sensor_Types .    .     Sensor_value Fault_Type 

1 4 LIDAR .    .     31.594618 Drift_fault 

2 5 LIDAR .    .     26.382582 Hard_Over_Fault 

3 8 LIDAR .    .     26.382582  Hard_Over_Fault 

4 9 LIDAR .    .     31.594618 Drift_fault 

5 15 LIDAR .    .     26.382582  Hard_Over_Fault 

.  .  . .  .  . .    .    . .    .     .    .    . .    .    . 

9576 9577 LIDAR .    .     22.333044 Hard_Over_Fault 

9613 9614 LIDAR .    .     28.698278 Drift_fault 

9758 9759 LIDAR .    .     27.443794 Hard_Over_Fault 

0764 9765 LIDAR .    .     21.851212 Drift_fault 

9974 9975 LIDAR .    .     31.111763 Drift_fault 
 

Table 4 shows the fault types (drift, hard_over, spike) for detected and isolated sensor signals 

which include attributes such as UID, Sensor_type, sensor value, fault categories, and more. 
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Figure 9: The SGD pipeline precision/recall tradeoff 

Figure 9 provides an unambiguous representation of the pipeline model's performance given that 

if we choose the value of 65% and below, the recall is essentially measured to be more than zero, 

which is a suitable scenario for our proposed pipeline model. A recall value of almost 0% is not a 

good enough situation for our approach, and it was not evident in our plot. 

 

Figure 10: Performance accuracy 

Figure 10 depicts the overall success of the proposed SGD and pipeline pipelining technique. The 

SGD had the lowest prediction accuracy and pipeline (99.43%). The SGD pipelines perform 

exceptionally well, with performance metrics increasing from 95.27% to 99.43% due to the added 

pipeline knowledge, 

5.0 CONCLUSION 

The SGD model performed quite well when utilized in conjunction with the pipelining concept to 

detect various forms of sensor signal faults in autonomous vehicles. This can serve as a baseline 

for other specialists and will help in the detection and isolation of any preselected sensor failure 

types in order to assure safety. The implementation process was made easier by a programming 

language called Python. It offers several deployable stochastic gradient learning libraries and 

classes that are accessed by just a few lines of code and have been optimized for speed. This will 

be helpful to autonomous vehicle manufacturers in accurately diagnosing different sorts of sensor 

problems by sorting through noisy signals and identifying relevant information. Its success in 

identifying sensor signal faults associated with autonomous vehicles has drawn attention to the 

importance of putting forth the suggested approach into practice. 

FURTHER STUDIES 

This system was trained using exist dataset, something that may become out-dated in the future, 

but it can also be used for future testing in order to pass new test cases. Future work could take 

this paper to a relatively high level in order to enhance the system's changes. The proposed SGD 

fault detection system can be enhanced with genetic algorithm and other deep learning frame works 

to help identify, locate and isolate semsor fault types with user feedback mechanism. 
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