
GSJ: VOLUME 6, ISSUE 7, July 2018   1175 

GSJ© 2018 
www.globalscientificjournal.com 

 

GSJ: Volume 6, Issue 7, July 2018, Online: ISSN 2320-9186 
www.globalscientificjournal.com 

 

A STUDY ON  BIGDATA MANAGEMENT IN AN APACHE 

ENVIRONMENT 
1. Prof.M.Suneetha, Research Scholar, Computer Science & Eng, 

Rayalaseema University, Kurnool, A.P(Inida). 

                     2.    Dr. VSK Reddy,PhD,(KGP), Principal, MRCET, Hyderabad,A.P(India) 

 

Abstract

MapReduce is a processing technique and 

programming model done in lateral and 

scattered manner is the core component of 

BigData. It is an associated implementation 

for processing and generating large data 

sets. MapReduce is used to perform the task 

of filtering, aggregation and to maintain the 

efficient storage structure.  The proposed 

method will process the huge volume of  

data in parallel as small chunks in 

distributed clusters.  

Keywords: Hive, Hadoop, BigData, 

MapReduce, HDFS,Partition. 

Introduction 

BigData as the name suggests deals with the 

large amount of data. Big data has evolved 

from various stages starting from primitive 

and structured data to complex relational 

data and now very complex and unstructured 

data. Data sets grow rapidly.  Data is most 

important  as it helps organizations as well 

as persons to take out information and use it 

to make various decisions. To manage  and  

retrieve Data it should be  stocked  in 

database so that  easily manageable. Using 

Database Management System all  the 

operations of data handling and maintenance 

are   much   monotonous task in growing 

data environment. One of the best solution is 

partitioning .   Partitioning provides user-

friendliness, maintenance and impulsive 

query performance to the database users.   

MapReduce is associated implementation 

for processing and generating large data 

sets.  

Architecture 

In Hadoop Cluster MapReduce is mainly 

used in parallel processing to manage  huge 

data  To provide parallelism, Distribution of 

Data, and fault tolerance this has designed 

by Google.  MapReduce  handles the data in 

the form of  Key value pairs.  This pair is 



GSJ: VOLUME 6, ISSUE 7, July 2018   1176 

GSJ© 2018 
www.globalscientificjournal.com 

nothing but a mapping element between two 

data items which are linked.   In the Key 

value pair , the key (Q) acts as an identifier 

for the value (A).  So the key value pair 

(QA) is a pair in which Q is a node.  

To process huge amount of data Mapreduce 

role is  a major one. The Mapreduce follow 

different and the output is stored in Hadoop 

Distributed File Structure with replications.  

Job Tracker reduces jobs and it plays a main 

role in scheduling and tracking of jobs. Task 

Tracker responsibility is to map and reduce 

tasks.  

Hadoop MapReduce Architecture 

 

 

 

 

 

Fig 1. Hadoop MapReduce Architecture 

The architechture of Mapreduce consists of 

two stages of processing one is Map stage 

and the other one is reduce stage.  The 

Intermediate process stage is in between the 

map stage and reduce stage.  The shuffle and 

sorting operations of the output data will be 

processed by the intermediate and then the 

data will store in the local file system of 

Apache environment.    

 

Mapper Phase 

In the mapper phase the input will split into 

two components.  They are  Key and Value 

pairs (QA). During the processing stage the 

key is writable and comparable the value is 

during the processing stage only writable.   

If input is given to Apache environment 

letus say Hadoop system then the Job 

tracker assigns tasks to task tracker.  tasks to 

task tracker. The input data can be split into 

several splits.  In general the input splits are 

the logical splits. The Record reader 

converts these input splits into the pairs of 

Key Value(QA). For different applications 

the input format may vary.  The mini 

Reducer is a Combiner. If the output of the 

mapper is large then it requires high network 

bandwidth.  For the better performance and 

to solve the bandwidth problem place the 

reduced code into mapper as combiner.  

Hash partition is used here by default.  

Partitioning  aka bucketing plays an 

important role in dealing with huge data. 

Partitioning can be customized on any data 

on different conditions and different basis. 

Partitioning will split data into many folders 

with the help of reducers at the end of 

mapreduce phase.  For query purpose 

partitioning is an efficient method.  Based 

on the requirement of the Business  the 

partition code can be designed.  

Intermediate Process 

The mapper output the data undergoes 

shuffle and sorting in intermediate process. 

The intermediate data is going to get stored 

in the local file system without having any 

replications in Hadoop nodes. The  



GSJ: VOLUME 6, ISSUE 7, July 2018   1177 

GSJ© 2018 
www.globalscientificjournal.com 

intermediate data after  logical computations 

will be generated. Hadoop uses a Round-

Robin algorithm to write the intermediate 

data to the local disk.  

Reducer Phase 

Shuffled and sorted data is going to pass a 

input to the reducer. In reducer  phase, all 

incoming data is  combine and same actual 

key value pairs are going to write into hdfs 

system. Record writer writes data from 

reducer to hdfs. The reducer is not 

mandatory for searching and mapping 

purpose. 

     Reducer logic is mainly used to start the 

operations on mapper data which is sorted 

and finally it gives the reducer outputs like 

part-r-0001etc. Options are provided to  the 

set the number of reducers for each job that 

the user wanted to run. In the configuration 

file mapred-site.xml, we have to set some 

properties which will enable to set the 

number of reducers for the particular task. 

     Speculative Execution plays an vital role 

during job processing. If two or more 

mappers are working on the same data and if 

one mapper is running slowly then the Job 

tracker assigns tasks to the next mapper to 

run the program fast. The execution will be 

on FIFO (First In First Out). 

 

 

 

 

MapReduce word count Example 

 

Fig.2: MapReduce word count example 

 

Suppose the text file having the data like as 

shown in Input part in the above figure. 

Assume that, it is the input data for the MR 

task. We have to find out the word count at 

end of MR Job. The internal data flow can 

be shown in the above example diagram. 

The line splits in splitting phase and gives a 

key value pair to input by record reader. 

Here, three mappers are running parallel and 

each mapper task is to  going to generate 

output for each input row that comes as 

input to it. After mapper phase, the data is 

going to shuffle and sort. All the grouping 

will be done here and  value is passed as a 

input to Reducer phase. The reducers then 

finally combine each key-value pair and 

pass those values to HDFS via record writer. 

 

 

 

 



GSJ: VOLUME 6, ISSUE 7, July 2018   1178 

GSJ© 2018 
www.globalscientificjournal.com 

MapReduce Algorithm 

 

Generally MapReduce paradigm is based 

on sending map-reduce programs to 

computers where the actual data resides. 

 During a MapReduce job, Hadoop 

sends Map and Reduce tasks to 

appropriate servers in the cluster. 

 The framework manages all the 

details of data-passing like issuing 

tasks, verifying task completion, 

and copying data around the cluster 

between the nodes. 

 Most of the computing takes place 

on the nodes with data on local 

disks that reduces the network 

traffic. 

 After completing a given task, the 

cluster collects and reduces the data 

to form an appropriate result, and 

sends it back to the Hadoop server. 

 

Inputs and Outputs  

 

The MapReduce framework operates on 

key-value pairs, that is, the framework 

views the input to the job as a set of key-

value pairs and produces a set of key-value 

pair as the output of the job, conceivably of 

different types. 

The key and value classes have to be 

serializable by the framework and hence, it 

is required to implement the Writable 

interface. Additionally, the key classes 

have to implement the Writable 

Comparable interface to facilitate sorting 

by the framework. 

Both the input and output format of a 

MapReduce job are in the form of key-

value pairs – 

(Input) <Q1, A1> -> map -> <Q2, A2>-> 

reduce -> <Q3, A3> (Output). 

 Input Output 

Map <Q1, A1> list (<k2, v2>) 

Reduce <Q2, list(A2)> list (<k3, v3>) 

 

Big Data management Implementation 

Many leading enterprises are using analytics 

to gain competitive advantage. They are 

investing in big data analytics and smartly 

outperforming their competitors. If your 

organization doesn't have BIG data analytics 

strategies in place, you are missing the BIG 

opportunity.  

MapReduce is a framework that is used for 

writing applications to process huge 

volumes of data on large clusters of 

commodity hardware in a reliable manner. 

This chapter takes you through the operation 

of MapReduce in Hadoop framework using 

Java. 

 

 

 

http://www.bluent.ca/big-data-analytics-insight-toronto.html


GSJ: VOLUME 6, ISSUE 7, July 2018   1179 

GSJ© 2018 
www.globalscientificjournal.com 

MapReduce Implementation 

 

The table includes the monthly electrical 

consumption and the annual average for 

five consecutive years.  

We need to write applications to process 

the input data in the given table to find the 

year of maximum usage, the year of 

minimum usage, and so on. This task is 

easy for programmers with finite amount of 

records, as they will simply write the logic 

to produce the required output, and pass the 

data to the written application. 

Let us now raise the scale of the input data. 

Assume we have to analyze the electrical 

consumption of all the large-scale 

industries of a particular state. When we 

write applications to process such bulk 

data, 

 They will take a lot of time to 

execute. 

 There will be heavy network traffic 

when we move data from the source 

to the network server. 

To solve these problems, we have the 

MapReduce framework. 

 

 

 

 

 

 

Conclusion 

There are two approaches considered by the 

MapReduce according to the Hadoop 

distributed file system research that focuses 

on handling small data files. Those two are 

completion time on hadoop input cluster 

and the usage of memory. By the 

consideration of these two approaches, there 

is advanced in the algorithm proposed. 

Future work is in progress.  Need to survey 

on this topic more. 

Acknowledgement 

This is a simply study and survey paper   to 

know more about my  research concepts.  

 

 

 

 

 

 

 

 

 

 

 

 

 



GSJ: VOLUME 6, ISSUE 7, July 2018   1180 

GSJ© 2018 
www.globalscientificjournal.com 

REFERENCES 

 

1. Bittencourt, L.F. and Madeira, E.R.M.  “A 

Performance-Oriented Adaptive Scheduler 

for Dependent Tasks on Grids,” 

Concurrency and Computation: Practice and 

Experience. 

 

2. Caron, E. Chis, A. Desprez, F.  And Su, A.  

“Design of Plug-in Schedulers for a 

GRIDRPC Environment,” Future 

Generation Computer Systems, vol. 24, no. 

1, pp. 46-57. 

 

3. Dinda, P.A.  And O’Hallaron, D.R. “Host 

Load Prediction Using Linear Models,” 

Cluster Computing, vol. 3, no. 4, pp. 265-

280. 

 

4. Dinda, P.A.  “Design, Implementation, and 

Performance of an Extensible Toolkit for 

Resource Prediction in Distributed 

Systems,” IEEE Trans. Parallel and 

Distributed Systems, vol. 17, no. 2, b pp. 

160-173. 

 

5. Eddy Caron, Andreea Chis, Frederic 

Desprez, Alan Su (November 2011) “Plug-

in Steering of Computational Grids,” Int’l J. 

High Performance Computing Applications, 

vol. 14. no. 4, pp. 357-366. 

 

6. Waheed et al., “An Infrastructure for 

Monitoring and Management in 

Computational Grids,” Proc. Fifth Int’l 

Workshop Languages, Compilers and Run-

Time Systems for Scalable Computers, vol. 

1915, pp. 235-245. 

7. Wolf, F. and Mohr, B. “Hardware-Counter 

Based Automatic Performance Analysis of 

Parallel Programs,” Proc. Conf. Parallel 

Computing (ParCo ’03), pp. 753-760. 

8. Massie, M.L.  Chun, B.N.  And Culler, D.E.  

“The Ganglia Distributed Monitoring 

System: Design, Implementation, and 

Experience,” Parallel Computing, vol. 30, 

no. 7, pp. 817-840. 

9. Peter Dinda, A. and David R. O’Halloran 

(July 2012) “AN Extensible Toolkit for 

Resource Prediction in Distributed   

Systems” School of Computer Science 

Carnegie Mellon University Pittsburgh, PA, 

15213. 

10. Sam Verboven, Peter Hellinckx, Frans 

Arickx and Jan Broeckhove (2011) 

“Runtime Prediction based Grid Scheduling 

of Parameter Sweep Jobs” University of 

Antwerp Antwerp, Belgium. 

 


