
1 

 

 בס"ד

Back to Galilean Transformation and Newtonian Physics; Refuting the 

Theory of Relativity 

Copyright © 2015 by Moshe N Eisenman 

Acknowledgments 
I would like to express my sincere gratitude to Nachum Bergos, Orrie Cohen, Yitzhak 

Kohn and Yaacov Mekler for their comments that made the article more easily 

readable.  In particular I would like to thank Moshe Yarden, CEO of the Medisim 

Company, for dedicating many hours of his precious time to review and improve this 

article. 

In addition, I would like to thank professor Moshe Einat of Ariel University and Harry 

Ricker and his physics Internet forum for their comments and criticism. Mr. Ricker's 

referral to publications by Branko Petrovic, whom I also thank very much, enabled 

me to derive the complete electromagnetic equations corresponding to Faraday's 

and Ampere's laws in Appendix A. 

Abstract 

This paper refutes the theory of relativity. Previous attempts by others were based 

on pointing at contradictions between corollaries of the theory of relativity and 

reality, often called paradoxes. The main point of this article is to indicate and 

correct the error that led scientists at the turn of the twentieth century to formulate 

the faulty theory of relativity. 

In one of his lectures the late Professor Itzhak Bar Itzhak Z”L (Technion, Israel 

Institute of Technology, Haifa Israel) compared physicists and engineers by means of 

an equation.  

Engineer = Physicist + common sense 

Wherefrom it follows that: 

 Physicist = Engineer - common sense 

As we shall demonstrate below, the theory of special relativity was born out of an 

error and some lack of common sense. 

Many attempts have been made to refute the theory of relativity. I assume that all of 

them have dealt with contradictions between corollaries of the theory of relativity 

and reality, often called “paradoxes”. The wrong rejection of two of these paradoxes, 

the twin paradox and the apparent instability of planetary trajectories due to 

gravitational acceleration delay (also termed “retardation”), based on pseudo-

scientific arguments led me to realize that the only practical way to refute the theory 
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of relativity is by displaying the error on which it is based. This error is associated 

with Maxwell’s equations. 

Maxwell’s equations are a brilliant formulation of the laws of electromagnetism. 

However, they were derived for static systems, i.e.; where there was no motion 

relative to the relevant coordinate system (RCS). At the turn of the twentieth century 

some scientists assumed that these equations pertain also to dynamic systems, 

wherefrom it follows that the speed of light is constant in all inertial coordinate 

systems. This, in turn, led to the Lorentz transformation and to Einstein’s theory of 

relativity. 

This article shows that Maxwell’s equations do not apply to dynamic systems where 

there is motion relative to the RCS. As a consequence of the correction of these 

equations it is proven below that the Galilean transformation and Newtonian laws of 

mechanics are universally valid, not just as low speed approximations. 

The theory of relativity was born out of the attempt to force an incorrect form of 

Maxwell’s equations on all electromagnetic phenomena. The formulation of the 

corrected Maxwell equations finally refutes the theory of relativity. 
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Introduction 

As an engineer I have always had a strange feeling about the theory of special 

relativity. It sounds very mysterious and sophisticated, but somehow it has never 

sounded right. During the summer of 2011, being unemployed and approaching 

retirement, I started researching those issues. 

While searching for the incentives that led to the theory of special relativity, i.e.: 

shortcomings of the classical theories of physics, I encountered the “magnet and 

coil” problem. Although the measured effect of a magnet on a coil depends only 

on the relative velocity between them - according to Maxwell’s equations the 

effect depends also on the state of an observer, e.g.: an observer stationary with 

respect to the magnet sees a different effect than that viewed by an observer 

stationary relative to the coil. 

As soon as I saw it I had the feeling that there must be a problem with Maxwell’s 

equations concerning some coordinate system transformation. And indeed, 

Maxwell’s equations were derived for static systems where there was no motion 

relative to the relevant coordinate system (RCS). Consequently these equations 

are incomplete, namely: some of their terms are missing. Their application to 

dynamic systems, where there is motion relative to the RCS, leads to the 

erroneous theory of special relativity. The assumption of the universal validity of 

these equations, i.e.: their applicability to dynamic systems, is false and it is very 

surprising that such an error has gone unnoticed for over a century. 

Many people whom I ask to review the article refer me to articles which present 

test results that supposedly “validate” the theory of relativity. It is important to 

note that a validity of a theory cannot be established solely by its predictions. 

Even if all the predictions of a theory conform to valid test results (in the case of 

the theory of relativity I would certainly not bet my head on it) it may still be 

invalid if there is an error in the process of its derivation. Unlike Newton’s second 

law of mechanics, which is expressed as a differential equation, Maxwell’s 

equations are derived from more basic laws. As has been indicated in the 
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previous paragraph – these derivations are faulty, yielding the theory of relativity 

invalid.  

The theory of relativity is refuted by each of the following steps: 

1. Two quotes from the literature are presented in chapter 1. The first quote 

states that Maxwell's equations are limited to static systems (systems at rest), 

i.e.: where there is no motion relative to the RCS. The second quote states 

that Maxwell's equations are universally valid, namely: that they pertain also 

to dynamic systems where there is motion relative to the RCS. The 

discrepancy between these two quotes is the basis for the faulty theory of 

relativity. 

2. The electromagnetic (EM) differential equations corresponding to Ampere, 

Faraday and charge conservation laws are derived in appendix A where it is 

demonstrated that Maxwell's equations are limited to static systems and that 

Ampere, Faraday and Gauss's laws require that the speed of propagation of 

electric and magnetic fields must be infinite (section A.5). The complete set of 

the EM (corrected Maxwell) equations is presented in chapter 1. It is shown 

that the notion of the speed of light being constant in all inertial coordinate 

systems stems from the wrong application of Maxwell's equations to dynamic 

systems. It is also pointed out that due to terms restored to the corrected 

Maxwell equations they do not equate under the Lorentz transformation 

rendering it, along with the theory of relativity which is based on this 

transformation, invalid.  

3. A solution to the corrected Maxwell equations indicates that these equations 

are invariant under the Galilean transformation. Consequently the time-rate, 

space and mass are invariant and that velocity vectors are additive, which 

means that the speed of light can be exceeded. 

We are thus faced with two possibilities: Either Ampere, Faraday, and Gauss's 

laws are valid or they are not. According to the first possibility all the corollaries of 

the theory of relativity are wrong. However, if some corollaries of this theory can 

be verified by valid experiments – then, according to the second possibility, the 
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above mentioned laws are invalid and must be corrected. In any case, the theory 

of relativity is refuted. 

It can be demonstrated that the “magnet and coil” problem is easily resolved by 

the application of the corrected Maxwell equations, as is done for the “Faraday 

paradox” in section A.8. 

 

 

Nomenclature 

B                       Magnetic induction vector 

c                        Speed of light 

D                       Electric excitation vector 

E                       Electric field strength vector 

H                      Magnetic excitation vector 

J                        Electric conduction current density vector 

k                        
λ
1

≡k  

r                               Position vector relative to a reference coordinate system; 

















≡

z

y

x

r  

 

RCS                    Relevant Coordinate System: The coordinate system with respect 

                           to which Maxwell’s equations are expressed 

 

t                         Time 
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u                               x component of V .    xVu ≡ . 

V                              Velocity vector relative to the RCS; 
















≡

z

y

x

V

V

V

V  

ρ                        Charge density 

ε                         Dielectric constant 

φ                         Magnetic flux 

λ                         Electromagnetic wavelength 

µ                         Magnetic permeability 

σ                         Electric conductivity 

ω                         Electromagnetic wave frequency 

ED ε=   and  BH µ=  
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Chapter 1.    Maxwell Equations, Common and Corrected 

                      Representations 

How can a theory be refuted? One obvious way of refuting a theory which 

predicts physical phenomena is by displaying contradictions between the theory’s 

predictions and reality. In the case of the theory of relativity there are many 

discrepancies between corollaries of the theory and reality. These are referred to 

as paradoxes. The problem is that these paradoxes have been wrongly dismissed 

by indoctrinated physicists on the basis of pseudo-scientific arguments.  

Furthermore, many and sometimes very expensive experiments have been 

performed to “prove” the validity of this theory, something we do not see for any 

other law of physics. The results of the experiments are often irrelevant because 

there is a logical problem with any outcome. Consequently, it seems that the only 

practical way to refute the theory of relativity is to point at the error on which it is 

based. This error is deeply rooted in the common representation of Maxwell’s 

equations. 

Before discussing the electromagnetic (EM) differential equations it is necessary 

to define the notions of static and dynamic systems. 

In the process of formulating the EM equations reference is made to one or 

several coordinate systems, which are not necessarily inertial. Out of all those 

coordinate systems there is one with respect to which the EM equations are 

expressed. This coordinate system is referred to as the “relevant coordinate 

system” (RCS). 

A static system, or a system at rest, is defined as a setup where there is no motion 

relative to the RCS. In other words, any surface or volume selected in the RCS and 

inspected at different times remains stationary, i.e.: it does not have any 

translational motion, it does not rotate and does not deform with respect to the 

RCS. 

A dynamic system, or a system that is not at rest, is defined as an arrangement 

where at least one point can be found which moves with respect to the RCS. 
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Since, as it turns out, the vector velocity field V  in the EM equations is at least 

once space-wise differentiable [see equations (1.1), (1.2) and (1.5)], it must be 

space-wise continuous. Consequently, a region can be found around the moving 

point that moves with respect to the RCS. This means that a surface A  and a 

closed volume Vol  can be found which move relative to the RCS. The surface and 

volume may have translational motion and they may be rotating and deforming 

relative to the RCS. 

When dealing with physical phenomena in vacuum, translation and rotation do 

have physical meaning. For example: Given a coordinate system that moves and 

rotates relative to the RCS, a surface and a volume which are stationary with 

respect to the moving coordinate system move and rotate relative to the RCS. 

Although a velocity vector field can be defined so that a surface and a volume will 

also deform – in vacuum the deformation does not have any physical meaning. 

Deformation has a meaning in relation to moving particles where the particles on 

a surface or inside a volume are monitored at different times. If the velocity 

vector field is defined as the velocity of the particles – the surface or volume 

which contains the particles may have translational motion, may be rotating and 

deforming. Examples of the most general dynamic systems are magneto-fluid 

dynamic systems such as the plasma flow in the fusion chamber of the Tokamak. 

Other examples are the astrophysical phenomena of supernovae, solar storms, 

etc. In these examples there exist surfaces and volumes which move, rotate and 

deform relative to a selected RCS. 

The EM equations should be derived for the most general case of dynamic 

systems. 

The common representation of Maxwell’s equations is valid only for static 

systems. This is obvious from the derivation of these equations in appendix A. 

However, in order to emphasize this fact here is a quote of the third paragraph of 

chapter 4 (page 18) in reference 1: 
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“We must form the time derivative of the first Eq. (1). We will here imagine the 

surface σ∆  to remain fixed, which obviously applies to media at rest, to which we 

shall confine ourselves initially.” 

This restriction, or initial confinement, to media at rest greatly facilitates the 

derivation of Maxwell’s equations in reference 1, because it enables the 

replacement of the total time derivatives in Faraday’s, Ampere’s and charge 

conservation laws [equations (A.1.1), (A.2.1) and (A.3.1)] with partial time 

derivatives and freely interchange the order of integration and differentiation. 

However, this restriction limits Maxwell’s equations to static systems only. The 

physicists at the turn of the twentieth century were unaware of this limitation. 

They assumed that Maxwell’s equations were universally valid (i.e.: applicable to 

any inertial coordinate system) and tried to apply them to dynamic systems which 

led to inconsistencies. But instead of realizing and correcting the error (by 

modifying Maxwell’s equations) they introduced the Lorentz transformation 

which was the foundation of the flawed theory of relativity. The following quote 

of the first paragraph of chapter 26 (page 212) in reference 1 confirms the above 

statements: 

“The path taken by Einstein in 1905 in the discovery of the special theory of 

relativity was steep and difficult. It led through the analysis of the concepts of time 

and space and some ingenious imaginary experiments. The path that we shall take 

is wide and effortless. It proceeds from the universal validity of the Maxwell 

equations and the tremendous accumulation of experimental material on which 

they are based. It ends almost inadvertently at the Lorentz transformation and all 

its relativistic consequences.” [Remark: the different font in the above two quotes 

appears in the original text of reference 1]. 

The basis for the erroneous theory of relativity is the discrepancy between the 

two above mentioned quotes: The first quote states that Maxwell’s equations are 

limited to static systems, while the second quote assumes that these equations 

are universally valid, i.e.: they apply also to dynamic systems. 

In this chapter the electromagnetic laws are presented as a set of eight partial 

differential equations. Only three of those equations, corresponding to Faraday’s, 

GSJ: Volume 6, Issue 7, July 2018 
ISSN 2320-9186 

GSJ© 2018 
www.globalscientificjournal.com 



10 

 

Ampere’s and charge conservation laws, contain time derivatives. We proceed 

with the derivation of the differential equations corresponding to these three 

laws in appendix A and the presentation of the complete set of differential 

equations governing electromagnetic phenomena. Maxwell’s equations are a 

reduced form of the general EM equations when the velocity vector 0=V  

everywhere, thus apply to static systems only. It is then demonstrated that the 

assumption of their universal validity (i.e.: their wrong application to dynamic 

systems) leads to the notion of the speed of propagation of electromagnetic 

waves being constant in all inertial coordinate systems, hence to the Lorentz 

transformation and Einstein’s erroneous theory of relativity. 

The complete set of the corrected electromagnetic differential equations is 

presented in equations (1.1) to (1.8). The equations corresponding to Ampere’s, 

Faraday’s and charge conservation laws, in their most general form (i.e.: 

applicable to dynamic systems), are derived in appendix A. Equations (A.1.11), 

(A.2.7) and (A.3.8) are rewritten as equations (1.1), (1.2) and (1.5), respectively. 

])()[()()( BVVBEBV
t

B
⋅∇−∇⋅+×∇−=∇⋅+

∂
∂

                 Faraday’s law     (1.1)  

])()[()()( DVVDHJDV
t

D
⋅∇−∇⋅+×∇=+∇⋅+

∂
∂

        Ampere’s law      (1.2) 

0=⋅∇ B                                                                       Gauss’s magnetic flux law     (1.3) 

ρ=⋅∇ D                                                                          Gauss’s electric flux law     (1.4) 

0)()( =⋅∇+⋅∇+∇⋅+
∂
∂

JVV
t

ρρ
ρ

                     Charge conservation law     (1.5) 

EJ σ=                                                                                                                            (1.6) 

ED ε=                                                                                                                            (1.7) 

HB µ=                                                                                                                           (1.8) 
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The common formulation of Maxwell’s equations is valid only for a stationary 

case, i.e.: where there is no motion relative to the RCS, namely: 

0=V                                                                                                                                                                   (1.9) 

Equations (1.1), (1.2) and (1.5) along with (1.9) yield the common Maxwell’s 

equations corresponding to Faraday’s, Ampere’s and charge conservation laws: 

E
t

B
×−∇=

∂
∂

                                                                                   Faraday’s law   (1.10)  

HJ
t

D
×∇=+

∂
∂

                                                                             Ampere’s law   (1.11) 

0=⋅∇+
∂
∂

J
t

ρ
                                                              Charge conservation law   (1.12) 

We proceed to solve the common Maxwell’s equations (1.10) to (1.12). Limiting 

ourselves to an isotropic and non-conducting medium (such as outer space or 

vacuum) we have: 

0;0;0 === Jσρ                                                                                               (1.13) 

;;;0;0 00 µµεε ===⋅∇=⋅∇ HE                                                       (1.14) 

So in this case (vacuum), substituting equations (1.8) and (1.7) into equations 

(1.10) and (1.11), respectively, Maxwell’s equations attain the following form: 

E
t

H
×−∇=

∂
∂

µ                                                                                                           (1.15) 

H
t

E
×∇=

∂
∂

ε                                                                                                              (1.16) 

Equations (1.15) and (1.16) are Maxwell’s equations for outer space (vacuum). 

From equation (1.15) and (1.16) we obtain: 
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t

H

t

E
E

t

H

∂
∂

×∇=
∂

∂
×∇−=

∂
∂

2

2

;
1

ε
µ

                                                           (1.17) 

It follows from equation (1.17): 

)(
1

2

2

E
t

E
×∇×∇−=

∂

∂
µ

ε                                                                                    (1.18) 

However: 

EEE
2)()( ∇−⋅∇∇=×∇×∇                                                                            (1.19) 

It follows from equations (1.18), (1.19) and (1.14): 

EcE
t

E 222

2

2 1
∇⋅=∇=

∂

∂
εµ

                                                                               (1.20) 

where c is the speed of light. 

For simplicity let’s assume that the electromagnetic wave is planar and moves in 

the x direction. Since the partial derivatives with respect to y and z vanish we 

have: 

2

2
2

2

2

x

E
c

t

E

∂

∂
⋅=

∂

∂
                                                                                                       (1.21) 

Equation (1.21) is the classical wave equation. The general solution to this 

equation is the following: 

)]([)]([),(
2211 ctxkfactxkfatxE +⋅+−⋅=                                             (1.22) 

where 
1

f  and 
2

f  are any  twice differentiable vector functions and 1a  and 2a  

are two constant numbers. Since we are dealing with propagating waves – 
1

f  

and 
2

f  should be complex exponential vector functions. Therefore: 
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)]([
2

)]([
1),( ctxkjctxkj

evevtxE
+− ⋅+⋅=                                                          (1.23) 

The solution (1.23) to equation (1.21) consists of an electromagnetic wave 

propagating in the positive direction of the x axis along with another wave in the 

opposite direction, both propagating at the nominal speed of light c . 
λ
1

=k , 

where λ  is the wavelength, and ω=kc is the frequency of the electromagnetic 

waves.  1v  and 2v  are constant complex vectors. 

This is the classic solution of Maxwell’s equation for a planar electromagnetic 

wave. As expected, the speed of propagation of the electromagnetic waves is the 

nominal speed of light c  since there is no motion relative to the RCS (due to the 

restriction in the derivation of the common form of Maxwell’s equations). 

What happens when a radiation source moves with respect to the RCS? It follows 

from the assumption of the universal validity of Maxwell’s equations (1.20) and 

(1.21) (namely: that they are valid in any inertial coordinate system) that the 

speed of propagation of any electromagnetic wave in all inertial coordinate 

systems is constant and equals to the nominal speed of light c  [solution (1.23) to 

equation (1.21)]. Thus, the speed of propagation of electromagnetic waves being 

constant in all inertial coordinate systems is not necessarily a measured 

observation. It is an assumption, a consequence of the assumed universal validity 

of the common Maxwell’s equations even for dynamic systems.  

Suppose that a radiation source moves at a speed u in the positive direction of 

the x axis of the RCS. As engineers (hopefully with some common sense), and in 

agreement with the Galilean transformation where velocity vectors are additive, 

we would expect the electric field vector, of the propagating planar 

electromagnetic wave parallel to the x axis, to have the following form with 

respect to the RCS: 

]})([{
2

]})([{
1),( tucxkjtucxkj

evevtxE
−++− ⋅+⋅=                                          (1.24) 
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Namely, we should have a wave propagating at a speed of )( uc +  in the direction 

of the positive x axis and another wave propagating at a speed of )( uc −  in the 

direction of the negative x axis. The electric field in equation (1.24) obviously does 

not comply with Maxwell’s equation (1.21).  

There are only three possibilities: Either equation (1.24) is wrong, or Maxwell’s 

equation (1.21) is wrong, or both equations are wrong. 

Lorentz assumed that equation (1.24) was wrong, which is equivalent to the 

assumption that the Galilean transformation does not apply, and went on to 

formulate his famous alternative transformation. 

We will show that Maxwell’s equation (1.21) is wrong since it is inadequate for 

dynamic systems. When the proper form of the Maxwell equations is applied – 

equation (1.24) is the right solution. This means that the Galilean transformation 

is valid (i.e.: the corrected Maxwell equations are invariant under the Galilean 

transformation). In addition, due to terms restored to the corrected Maxwell 

equations - they do not equate under the Lorentz transformation rendering this 

transformation, along with the theory of relativity which is based on it, invalid. 

It is proven in the next chapter that when the corrected set of Maxwell equations 

is applied - the Galilean transformation is universally valid wherefrom it follows 

that Newton’s laws of mechanics are universally valid and not just low speed 

approximations. 
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Chapter 2:    Solution of the Corrected Maxwell Equations 

As noted in the previous chapter Maxwell’s equations (1.10) to (1.12), along with 

their derivatives (1.20) and (1.21), were formulated for static systems, namely: no 

motion relative to the RCS. Their wrong application to dynamic systems led to the 

Lorentz transformation and Einstein’s theory of relativity. 

In this chapter a solution to the complete and corrected set of Maxwell equations 

[(1.1) to (1.8)] is presented. This solution demonstrates that the Galilean 

transformation and Newtonian physics are universally valid.  

We proceed with the application of the corrected Maxwell equations to a planar 

wave in vacuum where all coordinate systems are inertial. It follows from the 

assumption that all coordinate systems, including the RCS, are inertial that the 

velocity vector V  in equations (1.1) and (1.2) is constant. Equations (1.1) and (1.2) 

become: 

)()( EBV
t

B
×∇−=∇⋅+

∂
∂

                            Faraday’s law                                    (2.1)  

HDV
t

D
×∇=∇⋅+

∂
∂

)(                                    Ampere’s law                                   (2.2) 

It follows from equations (1.7) and (1.8): 

µ
)(

)(
E

HV
t

H ×∇−
=∇⋅+

∂
∂

                         Faraday’s law                                    (2.3)  

ε
H

EV
t

E ×∇
=∇⋅+

∂
∂

)(                                    Ampere’s law                                   (2.4) 

It should be emphasized that there is a very big difference between the 

restoration of the missing terms to the corrected Maxwell equations [middle 

terms in equations (2.1) to (2.4)] and the introduction of the Lorentz 

transformation. The Lorentz transformation was introduced to achieve a certain 

goal: avoiding inconsistencies which result from the wrong assumption that 
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Maxwell's equations are universally valid. In contrast, the restoration of the 

missing terms to the corrected Maxwell equations is not done as a step in 

creating a new theory. It is a necessary step that follows from the correct 

derivation in appendix A of the differential equations corresponding to Faraday’s 

and Ampere’s laws. The omission of these terms has been a serious mistake.  

Equations (2.3) and (2.4) can be rewritten as follows: 

µ
)( E

Dt

HD ×∇−
=                                                Faraday’s law                                  (2.5)  

ε
H

Dt

ED ×∇
=                                                         Ampere’s law                                 (2.6) 

Where  

)( ∇⋅+
∂
∂

== V
tdt

d

Dt

D
                                                                                                                          (2.7) 

is the total derivative, sometimes termed the convective derivative. As 

engineering students we often encountered the notion of the total derivative, 

especially in fluid dynamics. We were fortunate to have Professor David Pnueli 

Z”L as our instructor, an excellent teacher and a bright light in the darkness of the 

last two years in college. 

Differentiating equation (2.6) with respect to time (note that V  is constant!): 

εε
Dt

HD

Dt

HD

Dt

ED
×∇

=

×∇

=

)(

2

2

                                                                                  (2.8) 

Substituting equation (2.5) into (2.8): 

)(
)( 2

2

2

Ec
E

Dt

ED
×∇×∇⋅−=

×∇×∇
−=

εµ
                                                                             (2.9) 

From equation (2.7): 
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EV
tDt

ED 2

2

2

)]([ ∇⋅+
∂
∂

=                                                                                                                   (2.10) 

Using equation (1.14) [ 0)( =⋅∇ E ] 

EEEE
22)()( ∇−=∇−⋅∇∇=×∇×∇                                                            (2.11) 

Substituting equations (2.10) and (2.11) into (2.9): 

EcEV
t

222)]([ ∇⋅=∇⋅+
∂
∂

                                                                                                          (2.12) 

We assume again that the electromagnetic wave is planar and propagating along 

the x axis, in which case the derivatives with respect to y and z vanish: 

x

E
uEV

u

V
∂
∂

=∇⋅
















= )(;

0

0                                                                                                         (2.13) 

2

2
2

2

2

2
2 2)]([

x

E
u

tx

E
u

t

E
EV

t ∂

∂
+

∂∂
∂

+
∂

∂
=∇⋅+

∂
∂

                                                                  (2.14) 

2

2
222

x

E
cEc

∂

∂
=∇⋅                                                                                                                                (2.15) 

Substituting equations (2.14) and (2.15) into equation (2.12) we obtain: 

2

2
2

2

2
2

2

2

2

2
x

E
c

x

E
u

tx

E
u

t

E

∂

∂
=

∂

∂
+

∂∂
∂

+
∂

∂
                                                                   (2.16) 

Rearranging equation (2.16) yields: 

2

2
22

2

2

2

)(2
x

E
uc

tx

E
u

t

E

∂

∂
−=

∂∂
∂

+
∂

∂
                                                                          (2.17) 
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The factor )1(]1[)( 22
2

222 β−=





−=− c

c

u
cuc  at the right hand side of equation 

(2.17) is reminiscent of the factor involved in time, length and mass changes in 

the theory of special relativity. However, the theory of special relativity is faulty 

due to wrongly concluding that time-rate is contracted by the factor 
2

1 β− , in 

addition to the omission of the middle term in equation (2.17). 

We proceed to solve equation (2.17) by adding the term 
tx

E
c

∂∂
∂2

ξ  to both sides of 

the equation: 

 ][])2([
22

x

E

c

uc

t

E

x
c

x

E
cu

t

E

t ∂
∂−

+
∂
∂

∂
∂

=
∂
∂

++
∂
∂

∂
∂

ξ
ξξ                                       (2.18) 

In order to create a common factor on both sides of equation (2.18) we require 

that: 

c

uc
cu

ξ
ξ

22

2
−

=+                                                                                                       (2.19) 

The solution of equation (2.19) for ξ  leads to the following quadratic equation: 

0]1[2

2
2 =






−−+

c

u

c

u
ξξ                                                                                       (2.20) 

The solution of equation (2.20) is: 

11

22

2,1 ±−=





−+






±−=

c

u

c

u

c

u

c

u
ξ                                                                               (2.21) 

Substituting either one of the values 2,1ξ  into equation (2.18) yields the same 

result: 
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0])(][)([ =
∂
∂

++
∂
∂

∂
∂

−−
∂
∂

E
x

uc
tx

uc
t

                                                               (2.22) 

The general solution to the partial differential equation (2.22) is the following: 

]})([{]})([{),(
2211 tucxkfatucxkfatxE −+⋅++−⋅=                      (2.23) 

where 
1

f  and 
2

f  are any  twice differentiable vector functions while 1a  and 2a  

are two constant numbers. Since we are dealing with propagating waves -  
1

f  

and 
2

f  should be complex exponential vector functions. Therefore: 

]})([{
2

]})([{
1),( tucxkjtucxkj

evevtxE
−++− ⋅+⋅=                                          (2.24) 

λ
1

=k , where λ  is the wavelength, 
f

uck ω=+ )( is the frequency of the 

forward propagating electromagnetic wave and buck ω=− )(  is the frequency 

of the backward propagating electromagnetic wave, as viewed by an observer 

stationary with respect to the RCS.  1v  and 2v  are constant complex vectors. The 

above mentioned variation of the electromagnetic wave frequency is the 

manifestation of the Doppler Effect. 

Equation (2.24) represents two waves: one wave propagating forward at a speed 

of )( uc +  in the direction of the positive x axis and another wave propagating 

backward at a speed of )( uc −  in the direction of the negative x axis, both with 

respect to the RCS. Equation (2.24) is identical to equation (1.24), the solution 

which we should have arrived at by common sense. 

The significance of equation (2.24) is that the Galilean transformation is valid. The 

Lorentz transformation and Einstein’s theory of special relativity are faulty and we 

may safely and comfortably return to the Galilean transformation and Newtonian 

mechanics. 

The “magnet and coil” problem is obviously resolved by the application of the 

corrected Maxwell equations, as well as the “Faraday paradox” in section A.8. 
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Appendix A: Derivation of the electromagnetic equations 

                        corresponding to Faraday’s, Ampere’s and 

                        charge conservation laws 

This appendix presents, among other things, the derivation of the complete 

(corrected) Maxwell equations which contain time derivatives, namely: Faraday's, 

Ampere's and the charge conservation laws. These derivations are based on 

chapters 3 and 4 of reference 1 which present Maxwell’s equations in integral 

form and differential form, respectively. 

The following definition is needed for the subsequent derivations:  

An arbitrary surface A  with a closed boundary s  is selected. A pointer on s  

indicating a sense of travel is provided, and the direction of the normal to the 

surface A  (the direction of an elemental area vector dA) is defined as positive 

which forms a right handed screw with the s  pointer. 

A detailed explanation of the following terms: the velocity vector field V , the 

surface A  and the closed volume Vol , is presented in the fifth paragraph of 

chapter 1 while discussing the notions of static and dynamic systems. 

 

A.1  Faraday's Law  

Faraday's law in integral form is given in equation (A.1.1). 

∫∫ ⋅−=⋅
sA

dsEdAB
dt

d
                                                                                               (A.1.1) 

It follows from Stokes’ theorem: 

dAEdAB
dt

d

AA

⋅×∇−=⋅ ∫∫ )(                                                                                    (A.1.2) 
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We proceed to evaluate the term ∫ ⋅
A

dAB
dt

d
 in equation (A.1.2). A derivation of 

this expression is presented in reference 2, volume 2 page 346. 

t

dAtBdAttB

dAB
dt

d tAttA

t
A ∆

⋅−⋅∆+

=⋅
∫∫

∫
∆+

→∆

)()(

0

)()(

lim  

The above equation can be rewritten as follows: 

t

dAtBdAtBdAtBdAttB

dAB
dt

d tAttAttAttA

t
A ∆

⋅−⋅+⋅−⋅∆+

=⋅
∫∫∫∫

∫
∆+∆+∆+

→∆

)()()()(

0

)()()()(

lim

 

Hence: 

t

dAtBdAtB

dA
t

tBttB
dAB

dt

d tAttA

t
A

t
A ∆

⋅−⋅

+⋅
∆

−∆+
=⋅

∫∫
∫∫

∆+

→∆→∆

)()(

00

)()(

lim
)]()([

lim  

Therefore: 

t

dAtBdAtB

dA
t

B
dAB

dt

d tAttA

t
AA ∆

⋅−⋅

+⋅
∂
∂

=⋅
∫∫

∫∫
∆+

→∆

)()(

0

)()(

lim                              (A.1.3) 

To evaluate the last term in equation (A.1.3) we need some visualization, see 

figure 1. Imagine the surface )(tA  as the bottom of a box and )( ttA ∆+  as the 

top surface of that box. Each point on )(tA  is connected to a corresponding point 

on )( ttA ∆+  by a vector tV∆ . The velocity vector V  may vary space-wise (in 

addition to time-wise variation) so that the top surface )( ttA ∆+  is in general 

rotated and deformed relative to )(tA . In figure 1 some of the vectors tV∆  

connecting the circumference of )(tA  to that of )( ttA ∆+  are drawn, thus 

constructing the side envelope of the above mentioned “box”. We now perform 

the following integral over the entire outer surface of the box. 
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∫∫∫∫ ∆×⋅+⋅−⋅=⋅
∆+ stAttABox

tVdstBdAtBdAtBdAtB )()()()()(
)()(

                       (A.1.4) 

The three terms at the right hand side of equation (A.1.4) correspond to the 

integrals over the top of the box, the bottom of the box and the side envelope, 

respectively. Note that the term tVds ∆×  [in the line integral of equation (A.1.4)] 

is an elemental area vector dA  of the side envelope of the box.  According to 

Gauss’s theorem: 

∫∫∫ ⋅∆⋅∇=⋅∇=⋅
)(

)()()()(
tAVolBox

dAVtBVoldBdAtB                                         (A.1.5) 

Vol  is the volume of the box and dAVtVold ⋅∆=)(  is an elemental volume of 

that “box”. It follows from equations (A.1.4) and (A.1.5): 

∫∫∫∫ ∆×⋅−⋅∆⋅∇=⋅−⋅
∆+ stAtAttA

tVdstBdAVttBdAtBdAtB )()()]([)()(
)()()(

    (A.1.6) 

Substitution of equation (A.1.6) into (A.1.3) and realizing that 

dsBVVdsB ⋅×=×⋅ )()( , yields: 
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dsBVdAVBdA
t

B
dAB

dt

d

sAAA

⋅×−⋅⋅∇+⋅
∂
∂

=⋅ ∫∫∫∫ )()(                                       (A.1.7) 

From equations (A.1.7) and (A.1.2) we obtain: 

dAEdsBVdAVBdA
t

B

AsAA

⋅×∇−=⋅×−⋅⋅∇+⋅
∂
∂

∫∫∫∫ )()()(                             (A.1.8) 

But according to Stoke’s theorem: 

∫∫ ⋅××∇=⋅×
As

dABVdsBV )]([)(  

Substitution of the previous equation into equation (A.1.8) yields: 

0)]()()([ =⋅×∇+××∇−⋅∇+
∂
∂

∫
A

dAEBVVB
t

B
                                            (A.1.9) 

Since equation (A.1.9) is valid for any elemental area A : 

)()()( EBVVB
t

B
×∇−=××∇−⋅∇+

∂
∂

                                                          (A.1.10)                                

Using the vector identity 

BVVVBBBV )()()( ∇⋅+⋅∇−∇⋅+⋅∇≡××∇    

equation (A.1.10) may be rewritten as follows: 

])()[()()( BVVBEBV
t

B
⋅∇−∇⋅+×∇−=∇⋅+

∂
∂

                                                    (A.1.11) 

Since 0=⋅∇ B , according to Gauss’s magnetic flux law [equation (1.3)], an 

alternative form of the differential equation corresponding to Faraday’s law is 

obtained from equation (A.1.10). 

)()( EBV
t

B
×∇−=××∇−

∂
∂

                                                                              (A.1.12) 

Equations (A.1.11) and (A.1.12) are two equivalent most general forms of the 

corrected Maxwell equation corresponding to Faraday’s law. If the velocity vector 
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V  does not vary space-wise, in particular when V  is constant, the last two terms 

in equation (A.1.11) vanish and the corrected Maxwell equation corresponding to 

Faraday’s law assumes the following form: 

)()( EBV
t

B
×∇−=∇⋅+

∂
∂

                                                                                    (A.1.13) 

 

A.2  Ampere's Law 

Ampere's law in integral form is presented in equation (A.2.1). 

∫ ∫∫ ⋅=⋅+⋅
A sA

dsHdAJdAD
dt

d
                                                                                   (A.2.1) 

It follows from Stokes’ theorem: 

∫ ∫∫ ⋅×∇=⋅+⋅
A AA

dAHdAJdAD
dt

d
)(                                                                        (A.2.2) 

From equation (A.1.7) we obtain, by replacing B by D : 

dsDVdAVDdA
t

D
dAD

dt

d

sAAA

⋅×−⋅⋅∇+⋅
∂
∂

=⋅ ∫∫∫∫ )()(                                    (A.2.3) 

From equations (A.2.2) and (A.2.3) it follows: 

∫ ∫∫∫∫ ⋅×∇=⋅+⋅×−⋅⋅∇+⋅
∂
∂

A AsAA

dAHdAJdsDVdAVDdA
t

D
)()()(            (A.2.4) 

But according to Stoke’s theorem: 

∫∫ ⋅××∇=⋅×
As

dADVdsDV )]([)(  

Substitution of the previous equation into equation (A.2.4) yields: 

0)]()()([ =⋅×∇−+××∇−⋅∇+
∂
∂

∫
A

dAHJDVVD
t

D
                                (A.2.5)                                                
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Since equation (A.2.5) is valid for any elemental area A : 

)()()( HJDVVD
t

D
×∇=+××∇−⋅∇+

∂
∂

                                                     (A.2.6) 

Using the vector identity 

DVVVDDDV )()()( ∇⋅+⋅∇−∇⋅+⋅∇≡××∇    

equation (A.2.6) may be rewritten as follows: 

])()[()()( DVVDHJDV
t

D
⋅∇−∇⋅+×∇=+∇⋅+

∂
∂

                                            (A.2.7) 

Since ρ=⋅∇ D , according to Gauss’s electric flux law [equation (1.4)], an 

alternative form of the differential equation corresponding to Faraday’s law is 

obtained from equation (A.2.6). 

 )()( HJVDV
t

D
×∇=++××∇−

∂
∂

ρ                                                              (A.2.8)         

Equation (A.2.7) and (A.2.8) are two equivalent most general forms of the 

corrected Maxwell equation corresponding to Ampere’s law. If the velocity vector 

V  does not vary space-wise, in particular when V  is constant, the last two terms 

in equation (A.2.7) vanish and the corrected Maxwell equation corresponding to 

Ampere’s law assumes the following form: 

)()( HJDV
t

D
×∇=+∇⋅+

∂
∂

                                                                               (A.2.9) 

 

A.3  Charge Conservation Law 

The charge conservation law states that for any control volume, whether 

stationary or moving, the rate of change of total charge plus the charge leaving by 

conduction currents (through the surface enclosing the control volume) equals 

zero. It is assumed that no charge is created, i.e.: no nuclear reactions. 

An arbitrary volume Vol  is selected which is enclosed in a surface A . 
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0)( =⋅+ ∫∫
AVol

dAJVold
dt

d
ρ                                                                                    (A.3.1) 

We first compute the left term in equation (A.3.1) applying a method similar to 

the one employed in section A.1 dealing with Faraday's law.  

])()()()(

)()()()([
1

lim

])()()()([
1

lim)(

)()(

)()(
0

)()(
0

∫∫

∫∫

∫∫∫

−

+−∆+
∆

=−∆+
∆

=

∆+

∆+∆+→∆

∆+→∆

tVolttVol

ttVolttVol
t

tVolttVol
t

Vol

VoldtVoldt

VoldtVoldtt
t

VoldtVoldtt
t

Vold
dt

d

ρρ

ρρ

ρρρ

        (A.3.2) 

It follows from equation (A.3.2): 

∫

∫∫∫

∂
∂

+−
∆

=
∆+→∆

Vol

tVolttVol
t

Vol

Vold
t

VoldtVoldt
t

Vold
dt

d

)(

])()()()([
1

lim)(
)()(

0

ρ

ρρρ

              (A.3.3) 

The limit at the right hand side of equation (A.3.3) is the rate of charge flowing 

out of the control volume through the surface A . Note that it is not a conduction 

current, but rather a “convection” current. 

∫∫∫ ∂
∂

+⋅=
VolAVol

Vold
t

dAVVold
dt

d
)()(

ρ
ρρ                                                        (A.3.4) 

Substitution of equation (A.3.4) into equation (A.3.1) yield: 

0)( =⋅+⋅+
∂
∂

∫∫∫
AAVol

dAJdAVVold
t

ρ
ρ

                                                            (A.3.5) 

Applying Gauss's theorem to equation (A.3.5) we obtain: 

0)(])([ =⋅∇+⋅∇+
∂
∂

∫
Vol

VoldJV
t

ρ
ρ

                                                                (A.3.6) 
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Since equation (A.3.6) is valid for any volume Vol  - the integrand must vanish. 

Therefore: 

0)( =⋅∇+⋅∇+
∂
∂

JV
t

ρ
ρ

                                                                                       (A.3.7) 

Equation (A.3.7) is the corrected Maxwell equation corresponding to the charge 

conservation law.  

Using the identity )()()( VVV ⋅∇+∇⋅≡⋅∇ ρρρ  equation (A.3.7) may be 

rewritten as follows: 

0)()( =⋅∇+⋅∇+∇⋅+
∂
∂

JVV
t

ρρ
ρ

                                                                   (A.3.8) 

 

A.4  Summary. The Lorentz Field and a Similar Magnetic Field 

To summarize, we write down again the corrected Maxwell equations 

corresponding to Faraday’s, Ampere’s and charge conservation laws. 

From equations (A.1.11), (A.1.12), (A.2.7) and (A.3.8): 

])()[()()( BVVBEBV
t

B
⋅∇−∇⋅+×∇−=∇⋅+

∂
∂

      Faraday’s law           (A.4.1) 

)()( EBV
t

B
×∇−=××∇−

∂
∂

                         Equivalent Faraday’s law          (A.4.2) 

])()[()()( DVVDHJDV
t

D
⋅∇−∇⋅+×∇=+∇⋅+

∂
∂

 Ampere's law            (A.4.3) 

)()( HJVDV
t

D
×∇=++××∇−

∂
∂

ρ           Equivalent Ampere’s law        (A.4.4) 

0)()( =⋅∇+⋅∇+∇⋅+
∂
∂

JVV
t

ρρ
ρ

              Charge conservation law         (A.4.5) 

The total time derivative of any vector field W  may be expanded as follows: 
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WV
t

W
V

r

W

t

W

dt

rd

r

W

t

W

dt

trtWd
)(

)](,[
∇⋅+

∂
∂

=⋅
∂
∂

+
∂

∂
=⋅

∂
∂

+
∂

∂
=                   (A.4.6) 

Equation (A.4.6) is valid for scalar fields as well. 

Applying equation (A.4.6) allows rewriting equations (A.4.1), (A.4.3) and (A.4.5): 

])()[()( BVVBE
dt

Bd
⋅∇−∇⋅+×∇−=                             Faraday’s law         (A.4.7) 

])()[()( DVVDHJ
dt

Dd
⋅∇−∇⋅+×∇=+                       Ampere's law          (A.4.8) 

0)( =⋅∇+⋅∇+ JV
dt

d
ρ

ρ
                                   Charge conservation law        (A.4.9)         

When the velocity vector V  does not vary space-wise, in particular when V  is 

constant, equations (A.4.7) to (A.4.9) become: 

)()( EBV
t

B

dt

Bd
×∇−=∇⋅+

∂
∂

=                                        Faraday’s law        (A.4.10) 

)()( HJDV
t

D
J

dt

Dd
×∇=+∇⋅+

∂
∂

=+                            Ampere's law       (A.4.11) 

0)( =⋅∇+∇⋅+
∂
∂

=⋅∇+ JV
t

J
dt

d
ρ

ρρ
           Charge conservation law     (A.4.12) 

In the very special case where 0=V , which means that there is no motion 

relative to the RCS (in other words, the system is static and the volume Vol  and 

surface A  are at rest), equations (A.4.10) to (A.4.12) become: 

)( E
t

B
×∇−=

∂
∂

                                                                          Faraday’s law     (A.4.13) 

)( HJ
t

D
×∇=+

∂
∂

                                                                    Ampere's law       (A.4.14) 

0=⋅∇+
∂
∂

J
t

ρ
                                                        Charge conservation law     (A.4.15) 
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The last three equations are the common formulations of Ampere’s, Faraday’s 

and charge conservation laws in Maxwell’s equations. This is a very important 

point that should be emphasized: The common Maxwell’s equations are valid only 

for systems at rest (i.e.: static systems, 0=V ). The application of these equations 

to dynamic systems, where 0≠V , (often termed “the universal validity of 

Maxwell’s equations”) is the basis for the erroneous theory of relativity. 

From the equivalent Faraday’s law, equation (A.4.2), in steady-state conditions 

(where the partial time derivatives vanish) we obtain: 

EBV ×∇=××∇ )(                                                                                               (A.4.16)  

Since 0)( =∇×∇ φ  for any scalar field φ , we have from equation (A.4.16): 

φ∇−×= BVE                                                                                                        (A.4.17) 

The term BV ×  in equation (A.4.17) is the “Lorentz field”, which yields the 

Lorentz force when multiplied by an electric charge. This field is relevant to many 

electromagnetic problems, one of which being the motion of charged particles in 

magnetic fields. The separate introduction of this field was necessary due to the 

fact that some electromagnetic phenomena could not be explained based solely 

on Maxwell’s equations. It follows from equation (A.4.17) that the Lorentz field 

BVE L ×=  is an immediate consequence of the corrected Maxwell equations, 

as a result of restoring the terms that are missing in the common representation 

of Maxwell’s equations. 

Similarly, when applying the equivalent Ampere’s law, equation (A.4.4), in 

vacuum ( 0=ρ  and 0=J ) we obtain in steady-state conditions: 

φ∇−×−= )( DVH                                                                                                (A.4.18) 

where φ  is again any scalar field. The contribution of the term )( DV ×−  to the 

magnetic excitation vector H  in equation (A.4.18) is similar to the contribution of 

the Lorentz field BVE L ×=  to the electric field E   in equation (A.4.17). 
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A.5  Speed of Propagation of Electric and Magnetic Fields 

In this section we will prove that the physical laws on which Maxwell's equations 

are based imply that electric and magnetic fields propagate at an infinite speed. In 

other words, if the speeds of propagation of electric and magnetic fields are finite 

– the following laws are inconsistent, i.e., they are self-contradictory. 

The following four equations are expressions of Ampere’s law, Faraday’s law, 

Gauss’s electricity flux law and Gauss’s magnetic flux law, respectively, in integral 

form. 

∫ ∫∫ ⋅=⋅+⋅
A sA

dsHdAJdAD
dt

d
                                                           Ampere’s law      (A.5.1) 

∫∫ ⋅−=⋅
sA

dsEdAB
dt

d
                                                                Faraday’s law       (A.5.2) 

QdAD
A

π4=⋅∫                                                                     Gauss’s electricity flux law      (A.5.3) 

0=⋅∫
A

dAB                                                                               Gauss’s magnetic flux law     (A.5.4) 

Equations (A.5.1) and (A.5.2) are identical to equations (A.2.1) and (A.1.1), 

respectively. The definitions of the surface A  and the closed boundary s  are 

presented in the two paragraphs preceding equation (A.1.1). Q is the total electric 

charge within the closed surface A in equation (A.5.3). 

The laws in equations (A.5.1) to (A.5.4) are universal and valid at all times, not just 

at steady state conditions. In the following paragraphs it is shown that these laws 

clearly imply an infinite propagation speed of electric and magnetic fields, 

contrary to a corollary of the theory of relativity that nothing can propagate at a 

speed greater than the speed of light.  

Ampere's law, presented in equation (A.5.1), states that a current i  flowing in a 

long straight wire causes the immediate appearance of a magnetic excitation 

vector H  on any circle located axi-symmetrically around that wire. This vector is 

tangent to the circle and its magnitude is )2/( riH π= , r  being the radius of the 

circle. As this is true for any finite radius r , the speed of propagation of the 
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magnetic excitation vector H  must be infinite. Since the magnetic induction field 

vector HB µ=  - its speed of propagation is infinite as well. 

A similar argument can be used for Faraday's law in equation (A.5.2). If a magnetic 

flux ∫ ⋅=
A

dABφ  is time varying in a coil – an electric field vector E  appears 

instantaneously on any circle located axi-symmetrically around that coil. This 

vector is tangent to the circle and its magnitude is )2/()/( rdtdE πφ= , where r  

is the radius of the circle. As this is true for any finite radius r  - the speed of 

propagation of the electric field vector E  must be infinite. Likewise for the 

electric excitation vector ED ε= . 

The following paragraphs expand on the proofs presented in the former two 

paragraphs. 

         

Ampere's law is presented in equation (A.5.1). Figure 2 consists of two concentric 

circles connected by two adjacent lines. A long straight conductor is located at the 
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center of the two circles and is perpendicular to the page. At 0=t  ( t  stands for 

time) a current i  starts flowing in the wire at which time the integral on the left 

hand side of equation (A.5.1) changes from 0  to i . If the speed of propagation of 

the magnetic excitation vector H  is finite – the line integral on the right side of 

equation (A.5.1) will change from 0  to i  at 1tt =  on the inner circle and at 2tt =  

on the outer circle, where 12 tt > . At any time 21 ttt <<  the line integral 

∫ ⋅
s

dsH  over the two circles, including the two adjacent straight lines, will equal 

i  while the total current flowing through the area between the two circles is 0. 

This is a clear violation of Ampere's law. The above mentioned violation is a 

corollary of the assumption that the speed of propagation is finite. Consequently, 

this assumption is proven wrong and the speed of propagation of the Magnetic 

excitation vector H  must be infinite.  

         

Faraday's law states that the integrals on both sides of equation (A.5.2) are equal 

for all surfaces A  with a common boundary s . Figure 3 is a cross section of a 
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spherical surface and a circular plane (represented in the figure by the vertical line 

DU). The center of the spherical surface is o. The intersection between the 

spherical surface and the circular plane is a circle. This circle is the common 

boundary of the spherical surface and the circular plane. The horizontal line 

represents a coil that touches the circular plane at its center P. At 0=t  a DC 

voltage is applied to the coil which causes the left hand side of equation (A.5.2) 

for the circular plane to change immediately from 0 to some nonzero value (since 

the coil touches the circular plane).  

If the speed of propagation of the magnetic induction field vector B  is finite – it 

will take a time span 03 >t  for all the lines of the vector field B  to cross the 

spherical surface. For any time 30 tt <<  the left hand side term of equation 

(A.5.2) for the spherical surface will not equal that of the circular surface, which 

means that the value of the line integral on the right side of that equation is not 

unique. This is a violation of Faraday's law. The above mentioned violation is a 

corollary of the assumption that the speed of propagation is finite. Consequently, 

this assumption is proven wrong and the speed of propagation of the magnetic 

induction field vector B  must be infinite. 

Concerning Gauss’s electricity flux law in equation (A.5.3) - figure 4 presents a 

cross section of a sphere. This sphere is located in the upper atmosphere with a 

nitrogen atom at its center o. At 0=t  a cosmic ray hits the nucleus of the 

nitrogen atom and converts one of its protons to a neutron thus creating a 

carbon-14 atom. The number of electrons of this atom exceeds the number of 

protons by one, thus creating a charged particle at the center of the sphere. 

If the speed of propagation of the electric excitation vector D  is finite – the time 

it takes it to intersect the sphere in figure 4 is 04 >t . For any time  40 tt<<  the 

integral at the left hand side of equation (A.5.2) equals 0 while the right hand side 

value of the same equation is eπ4 , where e is the charge of an electron. This is a 

clear violation of Gauss’s electricity flux law. The above mentioned violation is a 

corollary of the assumption that the speed of propagation is finite. Consequently, 
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this assumption is proven wrong and the speed of propagation of the electric 

excitation vector D  must be infinite. 

 

Concerning Gauss’s magnetic flux law in equation (A.5.4) - figure 5 presents a 

sphere being "illuminated" by a uniform magnetic induction vector field B from 

right to left. The "illuminating" electromagnet is turned on at 0=t .  

If the propagation speed of the magnetic induction vector field B is finite – then 

at a certain time 5tt =  the front of this vector field will arrive at the center of the 

sphere. At that instant the integral at the left hand side of equation (A.5.4) will 

obviously not equal 0, a clear violation of Gauss’s magnetic flux law. The above 

mentioned violation is a corollary of the assumption that the speed of 

propagation is finite. Consequently, this assumption is proven wrong and the 

propagation speed of the magnetic induction vector field B must be infinite. 
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The last argument (concerning Gauss’s magnetic flux law and figure 5) and the 

second before last (Faraday's law and figure 3) were seemingly disproved by 

professor Moshe Einat, in the name of professor Vladimir Bratman, both of the 

Ariel University, Ariel Israel. They pointed out that magnetic fields always consist 

of closed lines, and that during their propagation these lines inflate like a balloon. 

Therefore, the field lines never possess open ends - thus yielding the two above 

mentioned arguments invalid. However, this contention can also be rejected as 

follows: We place a round axisymmetric magnet rod in vacuum where there are 

neither conduction nor displacement currents. We then turn the magnet rod 

around its center point by 180 degrees thus swapping the location of its poles. 

The final magnetic field lines coincide with the initial lines while their direction is 

reversed. If the propagation speed of the magnetic field is finite – there exist 

three regions: The final region, the intermediate region (which corresponds to the 

time interval during which the magnet is rotated) and the initial region. The first 

two regions spread at the speed of light into the initial region. 

We first prove that the vector E  vanishes in the intermediate region. The 

differential equation that determines the electric field in that region is equation 
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(1.20), namely: EctE
2222 / ∇⋅=∂∂ . Since the vector E  vanishes in the initial 

and final regions - 0=E  is a solution to the above differential equation. Since the 

solution to the EM equations is unique (as is proven in section A.7) – the electric 

vector field E  vanishes in the intermediate region, along with ED ε= .    

We freeze the picture of the magnetic field at a certain time and select a closed 

line consisting of four segments: Two of them are located at the final and initial 

regions along magnetic field lines and being connected by the other two 

segments which are always normal to field lines. Since the magnetic fields on the 

first two above mentioned segments point in opposite directions - the line 

integrals over them have the same sign and add up in absolute value.  The line 

integrals over the other two segments vanish since they are orthogonal to the 

field lines. Therefore, the integral of the magnetic field along the above defined 

closed contour does not equal zero in spite the fact that 0=J  (vacuum) and 

0=D  (as was proven in the previous paragraph), clearly violating Ampere’s law 

in equation (A.5.1). The above mentioned violation is a corollary of the 

assumption that the speed of propagation is finite. Consequently, this assumption 

is proven wrong and the propagation speed of the magnetic field must be infinite. 

Maxwell’s equations, as well as the corrected Maxwell equations, are based on 

the integral laws in equations (A.5.1) to (A.5.4). Arriving at a conclusion that any 

speed cannot exceed the speed of light, on the basis of the above four integral 

laws which imply an infinite speed of propagation of electric and magnetic fields, 

does not make sense. If it is ever proven that the speed of light cannot be 

exceeded, then the above mentioned four laws will have to be modified. As a 

matter of fact – through a simple laboratory experiment it can be checked 

whether Faraday’s law in equation (A.5.2) is correct, including the aspect of the 

infinite speed of propagation. However, it should be carefully planned since it 

involves ultra-high frequency electric signals. 

 

A.6  The Correct Version of Ampere's Law 

Several forms or Ampere's law can be found in the literature. One of them is 

equation (A.5.1) which is presented here as equation (A.6.1). 
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∫ ∫∫ ⋅=⋅+⋅
A sA

dsHdAJdAD
dt

d
                                                                                   (A.6.1) 

Two more versions Ampere's law are the following: 

∫∫ ⋅=⋅+
sA

dsHdAJ
dt

Dd
)(                                                                                       (A.6.2) 

∫∫ ⋅=⋅+
∂
∂

sA

dsHdAJ
t

D
)(                                                                                        (A.6.3) 

The last two equations are based on the premise that 
dt

Dd
 is the "displacement 

current" which is added to the conduction current J  to obtain the total current. 

Ampere's law as expressed in equation (A.6.3) is obviously wrong since it is 

limited to static cases only. Therefore, we have to determine whether equation 

(A.6.1) is the correct form of Ampere's law or equation (A.6.2). 

Figure 6 is a cross section of a spherical surface A  intersected by a circular plane 

(represented in the figure by the vertical line DU). The center of the spherical 

surface is o at which point a charge Q  is located. The intersection between the 

spherical surface and the circular plane is a circle s  which is the boundary of the 

spherical surface A . The point P is the center of the circular plane.  

We now move the point P away from o until the circular boundary s  converges to 

a point. The integral on the right hand side of equations (A.6.1) to (A.6.3) 

converges to zero since the range of integration vanishes. Thus, in this particular 

case equation (A.6.1) becomes: 

0=⋅+⋅ ∫∫
AA

dAJdAD
dt

d
                                                                                         (A.6.4) 

Similarly, equation (A.6.2) turns into: 

0)( =⋅+∫
A

dAJ
dt

Dd
                                                                                                  (A.6.5) 
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We make two further assumptions. The first is that the whole setup is located in 

vacuum, where the conductivity is zero, thus the conduction current J  vanishes. 

Therefore we are left with a closed sphere and a charge 0>Q  at its center. The 

second assumption is that the radius r  of the sphere is shrinking at rate of 

v
dt

dr
−= .  

In this case Ampere's law in equation (A.6.4) should satisfy: 

0=⋅∫
A

dAD
dt

d
                                                                                                           (A.6.6) 

And according equation (A.6.5) Ampere's law should be: 

0=⋅∫
A

dA
dt

Dd
                                                                                                             (A.6.7) 
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Due to symmetry – the electric excitation vector D  is normal to the spherical 

surface at all points and its magnitude D  equals: 

24 r

Q
DD

π
==                                                                                                           (A.6.8) 

It follows from equation (A.6.8): 

33 2
))(

2
(

r

Qv
v

r

Q

dt

dr

r

D

dt

dD

ππ
=−−=

∂
∂

=                                                                   (A.6.9) 

We compute the integral ∫ ⋅
A

dA
dt

Dd
 in equation (A.6.7). Again, due to symmetry: 

0
2

4
2

4
2

3

2 ≠===⋅∫
r

Qv
r

r

Qv
r

dt

dD
dA

dt

Dd

A

π
π

π                                                (A.6.10) 

Equation (A.6.10) clearly contradicts the requirement of equation (A.6.7), which 

means that equation (A.6.2) is not a correct version of Ampere's law. 

We compute the integral ∫ ⋅
A

dAD
dt

d
 in equation (A.6.6). In view of equation 

(A.6.8) and making use of symmetry again: 

0)()4(
2 ==⋅=⋅∫ Q

dt

d
rD

dt

d
dAD

dt

d

A

π                                                            (A.6.11) 

The requirement of equation (A.6.6) is fulfilled; hence equation (A.6.1) is the 

correct form of Ampere's law. 

 

A.7  Existence and Uniqueness of Solutions to the EM Equations  

A necessary condition for the corrected Maxwell equations to be a well-defined 

mathematical problem (in other words: a requirement that these equations have 

a unique solution) is the equality between the number of independent equations 

and the number of variables. If the number of variables exceeds the number of 
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independent equations – the solution is not unique. If the number of independent 

equations exceeds the number of variables – there is no solution.  

From equations (1.1) to (1.8) we can determine the number of variables and 

equations. 

The variables are the following: B , D , E , H , J  and ρ . We have five vector 

variables and one scalar variable. Each vector variable consists of three 

components; therefore the total number of scalar variables is 16. 

Equations (1.1) to (1.8) consist of five vector equations and three scalar 

equations. Each vector equation consists of three scalar equations; hence the 

total number of scalar equations is 18. Since the number of independent scalar 

equations should equal the number of scalar variables – two of the 18 equations 

should be dependent on the other equations. 

We first prove that Gauss’s magnetic flux law [its integral form in equation (A.5.4), 

0=⋅∫
A

dAB ] depends on Faraday's law [equation (A.1.1) ∫∫ ⋅−=⋅
sA

dsEdAB
dt

d
]. 

We select any volume Vol  surrounded by a closed surface A . Since the surface 

A  is closed – all of its boundaries s  converge to a point causing the right hand 

side line integral in equation (A.1.1) above to vanish. Therefore: 

0=⋅∫
A

dAB
dt

d
                                                                                                            (A.7.1) 

It follows from equation (A.7.1) that if we divide the space into arbitrary volumes 

Vol  with outer envelope surfaces A  and these volumes move along according to 

the velocity vector field V  - the integral ∫ ⋅
A

dAB  over the outer envelope 

surfaces A  of each of these volumes remains unchanged. Gauss’s magnetic flux 

law in equation (A.5.4), 0=⋅∫
A

dAB , serves as an initial condition to equation  

(A.7.1) stating that the initial value of these surface integrals cannot be selected 

arbitrarily. Their initial value must be 0, and since their value remains unchanged 

they must equal 0 at all times. We thus obtain that at all times: 
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0=⋅∫
A

dAB                                                                                                                  (A.7.2) 

Therefore, Gauss’s magnetic flux law in equation (A.7.2) is not an independent 

equation. It is compatible with Faraday's law for closed surfaces [equation (A.7.1)] 

and serves as an initial condition to any closed surface integral ∫ ⋅
A

dAB . Since the 

time derivative of this integral vanishes [equation (A.7.1)] – its value equals 0 at 

all times. This dependence is valid in integral form [equation (A.5.4) on (A.1.1)] as 

well as in differential form [equation (1.3) on (1.1)]. 

 

We now prove that the charge conservation law in equation (1.5) is dependent on 

Ampere's law in equation (1.2) and Gauss's electricity flux law in equation (1.4). 

We do it by proving that equation (A.3.1), which is the integral form of the charge 

conservation law 0)( =⋅+ ∫∫
AVol

dAJVold
dt

d
ρ , is dependent on equation (A.6.1), 

∫ ∫∫ ⋅=⋅+⋅
A sA

dsHdAJdAD
dt

d
 which is the integral form of Ampere's law, and 

Gauss's electricity flux law in differential form ρ=⋅∇ D , equation (1.4). 

We refer again to Figure 6, in the particular case where the point P is far enough 

from the center o of the spherical surface so that the circular area converges to a 

point [see the two paragraphs preceding equation (A.6.4)]. In this particular case 

the integral form of Ampere's law is presented in equation (A.7.3): 

0=⋅+⋅ ∫∫
AA

dAJdAD
dt

d
                                                                                         (A.7.3) 

But according to Gauss's theorem: 

∫∫ ⋅∇=⋅
VolA

VoldDdAD )()(                                                                                     (A.7.4) 

Substituting equation (A.7.4) into equation (A.7.3): 
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0)()( =⋅+⋅∇ ∫∫
AVol

dAJVoldD
dt

d
                                                                         (A.7.5) 

According to Gauss's electricity flux law in differential form, equation (1.4): 

ρ=⋅∇ D                                                                                                                     (A.7.6) 

Substitution of equation (A.7.6) into equation (A.7.5) yields: 

0)( =⋅+ ∫∫
AVol

dAJVold
dt

d
ρ                                                                                    (A.7.7) 

Equation (A.7.7) is identical to the charge conservation law in equation (A.3.1), 

and is thus dependent on Ampere's law and Gauss's electricity flux law. This 

dependence is valid in differential form as well, namely: equation (1.5) is 

dependent on Ampere's law in equation (1.2) and Gauss's electricity flux law in 

equation (1.4). 

We started out with 16 scalar variables and 18 scalar equations. Since two scalar 

equations are dependent on other equations – the number of independent 

equations equals 16. Therefore, the number of independent equations equals the 

number of variables and the necessary condition for the corrected Maxwell 

equations to be a well-defined mathematical problem is met. Consequently, for 

any particular problem a unique solution might exist which depends on the 

boundary and initial conditions. 

It is important to note that had we applied equation (A.6.2) for Ampere's law – 

then, in the most general case where the velocity vector field varies space-wise, 

the charge conservation law (A.7.7) would not be dependent on the other 

equations. Consequently we would be stuck with 16 variables and 17 

independent equations, where there would be no solution. This is another proof 

that equation (A.6.1), rather than equation (A.6.2), is the correct form of 

Ampere's law. 
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A.8  The Faraday Paradox 

The Faraday paradox is resolved by reference to the corrected Maxwell equations. 

The significance of this section goes far beyond the resolution of the Faraday 

paradox. It is the basis for the resolution of many (most probably all) other 

paradoxes associated with Maxwell’s equations. These paradoxes stem from the 

incompleteness of the common Maxwell’s equations, i.e.: terms that they are 

missing. When the missing terms are restored to the corrected Maxwell equations 

– these paradoxes do not arise at the outset. 

The common way of resolving the Faraday paradox in the literature is the 

application of the “Lorentz Force”. So why is it still considered a paradox? The 

problem is that the Faraday paradox cannot be resolved based only on Maxwell’s 

equations (which should be the universal EM laws) but must rely on the Lorentz 

force which was introduced separately from Maxwell’s equations. 

However, as is shown in section A.4, the fact that the Lorentz force is not 

predicted by Maxwell’s equations is due to the incompleteness of these 

equations. When applying the corrected Maxwell equations, where the missing 

terms are restored, the Lorentz force is a direct consequence of the corrected 

equations as shown by equation (A.4.17), and the Faraday paradox does not arise 

to begin with. 

Conclusion 

The soundness of this article can be checked through the answer to the following 

question: "Are Maxwell's equations incomplete?", namely: are some terms 

missing from these equations? If the answer is "no" – this article is pointless. 

However, if the answer is "yes" – the theory of relativity collapses, as shown in 

the logical flow-chart of figure 7. Since the article demonstrates beyond any 

doubt that Maxwell's equations are incomplete – the theory of relativity is 

definitely refuted. 
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The theory of relativity was not readily accepted because it has contradicted 

common sense. But after more than a century of exposure to it the scientific 

community is absolutely certain about its unquestionable validity. However, we 

must go back to the good old Galilean transformation and Newtonian mechanics 

since this article clearly demonstrates that the theory of special relativity is based 

on incorrect notions, namely: forcing physical phenomena to comply with a 

wrong form of Maxwell’s electromagnetic differential equations. Formulating the 

corrected Maxwell equations and solving them for planar EM waves in vacuum 

confirms (assuming that the integral laws which are the basis for Maxwell's 

equations are correct) that the Galilean transformation and Newtonian mechanics 

are valid, not only as low speed approximations but as exact laws. The corrected 

Maxwell equations might pave the way to the formulation of the long sought 

unified theory of mechanics and electromagnetism. 

The theory of relativity is inconsistent (see flow-chart) which has led to many 

paradoxes and a large number of futile and costly experiments to “prove” its 

validity. [Nobody has found it necessary to prove Newton’s laws or the laws of 

thermodynamics]. 

But the greatest damage of the theory of relativity may be related to the lack of 

progress in important engineering projects. The unavailability of commercial 

fusion energy, after many decades of intense efforts, is most probably due to the 

application of Maxwell’s equations which are an inadequate form of the EM laws. 

Definitions for the following flowchart: 

Current Laws: The current version of the Faraday, Ampere and Gauss electric and magnetic laws. 

Current Equations: The EM (Maxwell’s) equations based on the Current Laws and the Lorentz 

                                   transformation (i.e.: the current relativistic EM equations). 

Corrected Laws: A corrected version of the Current Laws so that the speed of propagation of electric 

                              and magnetic fields does not exceed the speed of light (if they are ever formulated). 

Corrected Equations:  The EM equations based on the Corrected Laws (and, possibly, on the Lorentz  

                                        transformation). 

 

 

 

GSJ: Volume 6, Issue 7, July 2018 
ISSN 2320-9186 

GSJ© 2018 
www.globalscientificjournal.com 



45 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Figure 7. Theory of relativity logical validity check 
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