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ABSTRACT 
Background: 

This paper considers two Bayesian models (Negative binomial and Multinomial) for diagnostics test evaluation. Prior data 
on HCV, HBsAg and HIV screened using RAPID test and ELIZA test obtained were fitted into the models and posterior 
data obtained using Monte Carlo Markov Chain (MCMC). The Bayesian approach is taken because of its efficient use of 
prior information, and the analysis is executed with a Bayesian software package OpenBUGS.  
 

Objective: 

In this paper, we will discuss how the two bayesian models will be fitted in order to come up with the most fitted model 
for diagnostic test evaluation among them. 

Result: 

The Negative binomial DIC value of 6.868 indicates that Negative binomial Bayesian model is more fitted to Bayesian 
diagnostics test evaluation over multinomial Bayesian model with DIC value of 8.08. 

Keywords: Bayesian model, Negative binomial, Multinomial, MCMC, OpenBUGS, Prior, Posterior, DIC.  

1.  Introduction 

The use of Bayesian inference in diagnostic test accuracy has recently increased, diagnostic-test 

evaluation is particularly suited to the Bayesian framework because prior scientific information about the 

sensitivities and specificities of the tests and prior information about the prevalence of the sampled populations 

can be incorporated [1]. A review article by [2] described many frequentist and Bayesian diagnostic-test modeling 
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strategies. Different statistical distribution models have been used at different times by researchers in evaluating 

diagnostic test. [3] Described multinomial and beta models by maximum likelihood estimate. While, [4] present 

the computational aspects involved in the used of models described by [3].   

   The Negative binomial distribution is suitable to diagnostic test because it described count data, in recent 

years, several researchers have used bayesian inference for the negative binomial distribution [5]. However, none 

of these have obtained diagnostic test sensitivity and specificity. 

Prior information about model parameters is essential for obtaining solutions to accuracy-estimation 

problems when there are more parameters than degrees of freedom provided by the data [4]. This occurs in the 

simplest case (one test in one population) and when there are two correlated tests used in one or more 

populations as in our case. In contrast, models for data based on two or more independent tests and two or more 

sampled populations are identifiable (i.e. have sufficient information to estimate all parameters of interest). The 

parameters estimated are Se, Sp, and the prevalence, p. Denote by y the number of reactors (test positive) out of 

the n sampled patients. The probability of a sample testing positive is given by = 𝑃𝑃(𝑇𝑇+) = 𝜋𝜋𝑆𝑆𝑒𝑒 + (1 − 𝜋𝜋)�1 − 𝑆𝑆𝑝𝑝�. 

Under bayesian perspective, we let y denote the observations, 𝜋𝜋  and 𝜋𝜋(𝑦𝑦) the prior and posterior 

probabilities. Then the prior and posterior distribution can be define by (1 − 𝜋𝜋) and [1 − 𝜋𝜋(𝑦𝑦)]. The prior and 

posterior odds is define by p = 𝜋𝜋(1 − 𝜋𝜋)-1 and p(y) = 𝜋𝜋[1 − 𝜋𝜋(𝑦𝑦)]-1.  Many problems in medicine involve well 

known standard problem of the test for independence in a 2 x 2 contingency table. We used OpenBUGS Bayesian 

statistical package for the analysis. Sampling from posterior distribution can, in many cases, be accomplished by 

using OpenBUGS. In OpenBUGS, the likelihood and prior distributions are specified by the user. While, the 

posterior distributions are sampled automatically.   

2.  Negative Binomial Distribution Test Evaluation 

The probability density function of the (discrete) negative binomial distribution (NBD) is given by 

  𝑝𝑝(𝑦𝑦|𝑟𝑟, 𝑝𝑝) = �Γ(𝑟𝑟+𝑦𝑦)𝑝𝑝𝑟𝑟(1−𝑝𝑝)𝑦𝑦

Γ(𝑟𝑟)Γ(𝑦𝑦+1)
�
𝑦𝑦≥0

𝑦𝑦<0
                                                                             2.1 
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Where the notation y | r, p means “y given r and p” with r and p being parameters of the density function and y 

being the outcome variable. r is the number of events until the experiments is stopped and p is the probability of 

success in each event. Since NBD is a discrete distribution we have, 

  ∑ 𝑝𝑝(𝑦𝑦|𝑟𝑟, 𝑝𝑝) =  ∑ Γ(𝑟𝑟+𝑦𝑦)𝑝𝑝𝑟𝑟(1−𝑝𝑝)

Γ(𝑟𝑟)Γ(𝑦𝑦+1)
∞
𝑦𝑦=0

∞
𝑦𝑦=0                                                                 2.2 

The log-likelihood function of the considered density function is given by 

𝑙𝑙(𝑟𝑟, 𝑝𝑝|𝑥𝑥) = ln[𝑝𝑝(𝑟𝑟, 𝑝𝑝|𝑦𝑦)] 

= ln[𝑝𝑝(𝑦𝑦|𝑟𝑟, 𝑝𝑝)] 

= ln[Γ(r + y)𝑝𝑝𝑟𝑟(1 − 𝑝𝑝)𝑦𝑦 ] − ln[Γ(𝑟𝑟)Γ(𝑦𝑦 + 1)]                                       2.3 

Considering the value of the parameters r, p given the vector of observed data y1, y2...yN 

 𝑙𝑙(𝑟𝑟, 𝑝𝑝|𝑥𝑥𝑖𝑖 , … ,𝑁𝑁) =  ∑ 𝑙𝑙(𝑟𝑟, 𝑝𝑝|𝑥𝑥)𝑁𝑁
𝑖𝑖=1  

=  ∑ 𝑙𝑙(𝑟𝑟, 𝑝𝑝|𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=0 ∑ ln⁡[Γ(𝑟𝑟 + 𝑥𝑥𝑖𝑖) + 𝑥𝑥𝑖𝑖 ln(1 − 𝑝𝑝) − ln⁡(Γ(𝑥𝑥𝑖𝑖 + 1)]𝑁𝑁

𝑖𝑖=1                                          2.4 

Then, the vectors (y11, y12, y21, and y22) can be given as, 

𝑦𝑦11 =  𝜋𝜋(1 − 𝜋𝜋)𝑆𝑆𝑒𝑒1 + �1 − 𝑆𝑆𝑝𝑝1��1 − 𝑆𝑆𝑝𝑝2�                                                 2.5 

𝑦𝑦12 =  𝜋𝜋�1 − 𝑆𝑆𝑝𝑝1� + (1 − 𝑆𝑆𝑒𝑒1)𝑆𝑆𝑒𝑒1                                                                 2.6 

                     𝑦𝑦21 =  𝜋𝜋(1 − 𝜋𝜋)𝑆𝑆𝑒𝑒2 + �1 − 𝑆𝑆𝑝𝑝1��1 − 𝑆𝑆𝑝𝑝2�                                                   2.7 

                     𝑦𝑦22 =  𝜋𝜋(1 − 𝑆𝑆𝑝𝑝2) + (1 − 𝑆𝑆𝑒𝑒2)𝑆𝑆𝑒𝑒2                                                                    2.8 

𝑆𝑆𝑒𝑒1~𝑁𝑁𝑁𝑁𝑁𝑁(𝜋𝜋1, 𝜋𝜋2)  𝑎𝑎𝑎𝑎𝑎𝑎  𝑆𝑆𝑒𝑒2~𝑁𝑁𝑁𝑁𝑁𝑁(𝜋𝜋1, 𝜋𝜋2)                                                    2.9 

    𝑆𝑆𝑝𝑝1~𝑁𝑁𝑁𝑁𝑁𝑁(𝜋𝜋1, 𝜋𝜋2)  𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑝𝑝2~𝑁𝑁𝑁𝑁𝑁𝑁(𝜋𝜋1, 𝜋𝜋2)                                                   2.10 
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3.  Multinomial Distribution Test Evaluation 

The multinomial model described by [3] and computational aspect presented by [4] provides a solution diagnostic 

test evaluation.   

Let 𝑦𝑦1 = �𝑦𝑦112, 𝑦𝑦122, 𝑦𝑦212, 𝑦𝑦222�  denote the analogous data sampled from population. The data y1 and y2 are 

assumed to have independent multinomial sampling distributions: 

𝑦𝑦𝑘𝑘~𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚𝑖𝑖𝑎𝑎𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑙𝑙 �𝑎𝑎𝑘𝑘, �𝑝𝑝11𝑘𝑘, 𝑝𝑝12𝑘𝑘, 𝑝𝑝21𝑘𝑘, 𝑝𝑝22𝑘𝑘�� , 𝑘𝑘 = 1,2  Where the multinomial cell probabilities for population k 

are given by 

                                    𝑝𝑝11𝑘𝑘 = 𝜋𝜋𝑘𝑘𝑆𝑆𝑒𝑒1𝑆𝑆𝑒𝑒2 + (1 − 𝜋𝜋𝑘𝑘)�1 − 𝑆𝑆𝑝𝑝1
��1 − 𝑆𝑆𝑝𝑝2

��1 − 𝑆𝑆𝑝𝑝2�                          3.1 

                                   𝑝𝑝12𝑘𝑘 = 𝜋𝜋𝑘𝑘𝑆𝑆𝑒𝑒1�1 − 𝑆𝑆𝑒𝑒2� + (1 − 𝜋𝜋𝑘𝑘)�1 − 𝑆𝑆𝑝𝑝1
�𝑆𝑆𝑝𝑝2                                              3.2 

 𝑝𝑝21𝑘𝑘 = 𝜋𝜋𝑘𝑘(1 − 𝑆𝑆𝑒𝑒1
)𝑆𝑆𝑒𝑒2 + (1 − 𝜋𝜋𝑘𝑘)𝑆𝑆𝑝𝑝1

�1 − 𝑆𝑆𝑝𝑝2
�                                                 3.3 

                                  𝑝𝑝22𝑘𝑘 = 𝜋𝜋𝑘𝑘(1 − 𝑆𝑆𝑒𝑒1
)�1 − 𝑆𝑆𝑒𝑒2� + (1 − 𝜋𝜋𝑘𝑘)𝑆𝑆𝑝𝑝1

𝑆𝑆𝑝𝑝2                                                3.4 

To allow for zero-infection prevalence, 𝜋𝜋1 and 𝜋𝜋2 are mixture of point mass at zero and a continuous beta 

distribution so that 𝜋𝜋𝑘𝑘 = 𝜋𝜋𝑘𝑘∗  with probability 𝜏𝜏𝑘𝑘and 𝜋𝜋𝑘𝑘 = 0 with probability1 − 𝜏𝜏𝑘𝑘. Uncertainty about the values of 

𝜋𝜋1
∗  and 𝜋𝜋2

∗  and the two sensitivities and two specificities is modeled using independent beta prior distributions. 

 

4. Model Discrimination 

There are several information criteria available to determine the best model Bayesian framework. All of them are 

likelihood based; the deviance information criterion (DIC) is a hierarchical modeling generalization of the Akaike 

information criterion (AIC) [6]. It is particularly useful in Bayesian model selection problems where the posterior 

distributions of the models have been obtained by Markov chain Monte Carlo (MCMC) simulation. DIC is 
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an asymptotic approximation as the sample size becomes large, like AIC. It is only valid when the posterior 

distribution is approximately multivariate normal. 

Deviance information criterion        𝑁𝑁(𝜃𝜃) = −2 log�𝑝𝑝(𝑦𝑦 𝜃𝜃⁄ )� + 𝐶𝐶      4.1 

Where y are the data, θ are the unknown parameters of the model and 𝑝𝑝(y/θ) is the likelihood function. C is a 

constant that cancels out in all calculations that compare different models and which therefore does not need to 

be known. 

DIC is described by [7] as; 

𝑃𝑃𝑁𝑁 = 𝑁𝑁 (𝜃𝜃)������� − 𝑁𝑁(�̅�𝜃)                                                                                             4.2 

Where �̅�𝜃 is the expectation of θ. 

5. Result and Discussion 

The models (Negative binomial and multinomial) were set as a posterior distribution. While, the beta distribution 

as a prior distribution. The models were fitted using the 200 blood samples data screened for HCV, HBsAg and HIV 

obtained from Abubakar Tafawa Balewa University Teaching Hospital Bauchi, Nigeria blood bank as prior data. The 

sample were screened using RAPID test and ELIZA test. The data was stimulated 10,000 to obtained posterior data. 

Sensitivity, specificity, mean, standard deviation, median and 95% credible interval were obtained for both the 

negative binomial model and multinomial model. 

Table 1. Negative binomial distribution 

Parameter µ σ Median 95% Credible Interval 

Sensitivity 0.3134 0.2523 0.254 0.005357 0.8881 

Specificity 0.07184 0.011 0.05922 2.649E-4 0.09067 

Theta[1] 0.5003 0.08768 0.4984 0.3299 0.668 

Theta[2] 0.497 0.8934 0.496 0.3225 0.6668 

Theta[3] 0.5104 0.08277 0.506 0.3537 0.6715 

Theta[4] 0.7486 0.1122 0.7512 0.5444 0.9545 
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The table 1 above reports the OpenBUGS output for negative binomial distribution after 10,000 simulations. The 

specificity 0.07184 shows how accurate a negative test can be dictate which is similar to [8] findings, with 0.05922 

median, also 0.3134 sensitivity mean  and 0.2523 standard deviation  shows how positive test are diagnose 

accurately. The 95% credible intervals of theta [1] - [4] range 03225 – 0.9545.  

Table 2.  Multinomial distribution 

Parameter µ σ Median 95% Credible Interval 

Sensitivity 0.5061 0.3397 0.5233 0.003991 0.997 

Specificity 0.744 0.2105 0.790 0.3024 0.9979 

Theta[1] 17.25 6.685 16.59 6.821 32.22 

Theta[2] 27.29 8.676 27.08 10.95 44.52 

Theta[3] 42.04 8.850 42.02 24.85 59.55 

Theta[4] 57.60 9.023 57.73 40.27 74.78 

 

A casual look at table 2 above reports the analysis which was executed with 10,000 observations generated from 

the posterior distribution of the multinomial parameters, the sensitivity mean 0.5061 is as close as median 0.5233. 

Also, the specificity have almost the same median 0.790 as mean 0.744. Theta [1] – [4] mean range (17.25, 57.60), 

the median also, show the same pattern as the mean (6.821, 57.73) implying that the posterior distribution is 

symmetric about the means.  

5.1  Best Model selection  

When the goal is to pick a model with the best out of sample predictive power then selection can be made on the 

basis of the deviance information criterion (DIC) [6]. DIC is a combined measure of goodness fit and model 

complexity [7]. The model with the smallest DIC is estimated to be the model that would best predict a replicate 

dataset of the same structure as that currently observed.  

Table 3. Deviance information criterion   

Model Dbar Dhat pD DIC 

Negative binomial  5.884 4.901 0.9831 6.867 

Multinomial  8.08 36.02 0.2374 8.08 
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The Table 3 above summarizes the complexity of the two fitted models. Negative binomial, DIC = 6.867. While, 

multinomial model have DIC = 8.08.  

6. Conclusion 

This paper considered two Bayesian diagnostic test model. The study concluded that, all two bayesian model 

approaches can be used to determine the accuracy of diagnostic test. The negative binomial model is considered 

the most preferred model between the two models for diagnostic test evaluation, because the values of the DIC 

corresponding to the two models represented in table 3 above are 6.867 and 8.08 respectively. Therefore, of the 

models under consideration, negative binomial exhibits the best predictive accuracy for diagnostic accuracy test 

with DIC = 6.867.   
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