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Abstract: Computer experiments involve a large numbers of variables, but only a few of them 

have no negligible influence on the response. As is recognized by several authors, the choice of 

the design points for computer experiments should fulfill at lest two requirements – space-filling 

and non-collapsing. Unfortunately, randomly generated Latin Hypercube Designs (LHDs) almost 

always show poor space-filling properties. On the other hand, maximin distance designs have 

very well space-filling properties but often show poor projection properties under the Euclidean 

or the Rectangular distance. To overcome this shortcoming, Morris et al. have suggested to 

search for maximin LHDs when looking for “optimal” designs. It is shown that the Iterated Local 

search(ILS) approach not only able to obtain good LHDs in the sense of space-filling property 

but the correlations among the factors are acceptable i.e. multi-collinearity is not high. Anyway 

from the point of view of computational complexity the problem is open. When numbers of factors 

as well as number of experimental points are large, the heuristic approaches also require a 

couple of hours or even more to find out a simulated optimal design. So time complexity is an 

important issue for a good algorithm. Specially for the need of real time solution, the time 

complexity of the ILS approaches is analyzed. The inner most view as well as the effect of the 

parameters of the algorithms have been observed and have been analyzed. 
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1. INTRODUCTION 

In general usage, complexity tends to be used to characterize something with many parts in 

intricate arrangement. Complexity Theory is concerned with the study of the intrinsic complexity 

of computational tasks. Its ``final'' goals include the determination of the complexity of any well-

defined task. Additional ``final'' goals include obtaining an understanding of the relations 

between various computational phenomena (e.g., relating one fact regarding computational 

complexity to another). Indeed, we may say that the former type of goals is concerned with 

absolute answers regarding specific computational phenomena, whereas the latter type is 

concerned with questions regarding the relation between computational phenomena. 

Interestingly, the current success of Complexity Theory in coping with the latter type of goals has 

been more significant. In fact, the failure to resolve questions of the ``absolute'' type, led to the 

flourishing of methods for coping with questions of the “relative” type. 

In general, Computational complexity theory is a branch of the theory of computation in 

theoretical computer science and mathematics that focuses on classifying computational 

problems according to their inherent difficulty, and relating those classes to each other. A 

computational problem is understood to be a task that is in principle amenable to being solved by 

a computer, which is equivalent to stating that the problem may be solved by mechanical 

application of mathematical steps. 

Anyway there are two type of complexity regarding time and space. Time complexity is 

concerned with the analysis of the elapsed time of an algorithm; whereas, how much memory 

required is discussed in space complexity. 

1.1. Some Definitions: 

Some of these concept and respective are offered below: 

(i) Time Complexity:  A measure of the amount of time required to execute an algorithms is 

called time complexity. Later time complexity is discussed elaborately. 

(ii)  Space Complexity:  The (space) complexity of a program (for a given input) is the 

number of elementary objects that this programs needs to store during its execution. This number 

is computed with respect to the size n of the input data. We thus make the assumption that each 

elementary object needs the same amount of space. 

(iii)      Turing Machine:  Turing machines provide a model of digital computational which is 

more primitive, hence harder to ‘program” than random access machines. However, their 

primitiveness becomes an advantage when they are manipulated for the purpose of proving 

theorical results. 
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A Turing machine is a hypothetical device that manipulates symbols on a strip of tape according 

to a table of rules. Despite its simplicity, a Turing machine can be adapted to simulate the logic of 

any computer algorithm, and is particularly useful in explaining the functions of a CPU inside a 

computer. 

1.2 Time Complexity: Time Complexity comparisons are more interesting than space 

complexity. The programming language chosen to implement the algorithm should not affect in 

time complexity analysis. There are some other factors that should not affect in time complexity 

are-: the quality of the compiler, the speed of the computer on which the algorithm is to be 

executed. 

The objectives of the time complexity analysis are to determine the feasibility of an algorithm by 

estimating an upper bound on the amount of work performed. Objectives of the time complexity 

analysis are also to compare different algorithms before deciding on which one to implement. 

Time complexity analysis is based on the amount of work done by the algorithm. It expresses the 

relationship between the size of the input and the run time for the algorithm. Time complexity is 

usually expressed as proportionality, rather than an exact function. 

To simplify analysis, we sometimes ignore work that takes a constant amount of time, 

independent of the problem input size. When comparing two algorithms that perform the same 

task, we often just concentrate on the differences between algorithms. 

For time Complexity, simplified analysis can be based on: 

(i) Number of arithmetic operations performed 

(ii) Number of comparisons made 

(iii) Number of times through a critical loop 

(iv) Number of array elements accessed, etc. 

1.3. Constant Time Complexity: 

Algorithms whose solutions are independent of the size of the problem’s inputs are said to have 

constant complexity. It is denoted as 1(O). 

Example: 

Suppose that exponentiation is carried out using multiplications. Two ways to evaluate the 

polynomial 

P(x) = 4x4 + 7x3 - 2x2 + 3x1 + 6 

In Brute force method: 

P(x) = 6x*3x*x*2-x*x*x*7 x *x*x*x*4 +++  

In Horner’s method: 
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P(x) = 6x*3)x*2)-x*7)x*(((4 +++  

1.4 Measuring Time Complexity: 

The worst-case time complexity of an algorithm is expressed as a function  T : N → N 

Where T(n) is the maximum number of “steps” in any execution of the algorithm on inputs of 

“size” n. Intuitively, the amount of time an algorithm takes depends on how large is the input on 

which the algorithm must operate: Sorting large lists takes longer than sorting short lists; 

multiplying huge matrices takes longer than multiplying small ones. The dependence of the time 

needed to the size of the input is not necessarily linear: sorting twice the number of elements 

takes quite a bit more than just twice as much time; searching (using binary search) through a 

sorted list twice as long, takes a lot less than twice as much time. The time complexity function 

expresses that dependence. Note that an algorithm might take different amounts of time on inputs 

of the same size. We have defined the worst-case time complexity, which means that we count 

the maximum number of steps that any input of a particular size could take. For example, if the 

time complexity of an algorithm is 3n2, it means that on inputs of size n the algorithm requires up 

to 3n2 steps. To make this precise, we must clarify what we mean by “input size” and “step”. 

 

(i)  Input Size: We can define the size of an input in a general way as the number of bits required 

to store the input. This definition is general but it is sometimes inconvenient because it is too 

low-level. More usefully we define the size of the input in a way that is problem-dependent. For 

example, when we are dealing with sorting algorithms, it may be more convenient to use the 

number of elements we want to sort as the measure of the input size. This measure ignores the 

size of the individual elements that are to be sorted. 

Sometimes there may be several reasonable choices for the size of input. For instance, if we are 

dealing with algorithms for multiplying square matrices, we may express the input size as the 

dimension of the matrix (i.e., the number of columns or rows), or we may express the input size 

as the number of entries in the matrix. In this case the two measures are related to each other (the 

latter is the square of the former). One conclusion from this discussion is that in order to properly 

interpret the function that describes the time complexity of an algorithm we must be clear about 

how exactly we measure the size of inputs[Nicolas, (2007)]. 

(ii)  Step: A step of the algorithm can be defined precisely if we fix a particular machine on 

which the algorithm is to be run. For instance, if we are using a machine with a Pentium 

processor, we might define a step to be one Pentium instruction. This is not the only reasonable 

choice: different instructions take different amounts of time, so a more refined definition might 
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be that a step is one cycle of the processor’s clock. In general, however, we want to analyze the 

time complexity of an algorithm without restricting ourselves to some particular machine. We 

can do this by adopting a more flexible notion of what constitutes a step. In general, we will 

consider a step to be anything that we can reasonably expect a computer to do in a fixed amount 

of time. Typical examples are performing an arithmetic operation, comparing two numbers, or 

assigning a value to a variable. 

1.5 Big-O Notation: 

Big O notation (with a capital letter O, not a zero), also called Landau's symbol, is a symbolism 

used in complexity theory, computer science, and mathematics to describe the 

asymptotic behavior of functions. Basically, it tells us how fast a function grows or declines. 

Landau's symbol comes from the name of the German number theoretician Edmund Landau who 

proposed the notation. The letter O is used because the rate of growth of a function is also called 

its order. 

For example, when analyzing some algorithm, one might find that the time (or the number of 

steps) it takes to complete a problem of size n is given by T(n) = 4n2 -2n +2. If we ignore 

constants (which makes sense because those depend on the particular hardware the program is 

run on) and slower growing terms, we could say "T(n) grows at the order of n2 and write: T(n) = 

O(n2). 

1.6. Iterated Local Search 

The Latin hypercube design is a popular choice of experimental design when computer 

simulation is used to study a physical process. A number of methods have been proposed 

[Lournce et al.(2002), Martin and Otto(1996) for extending the uniform sampling to higher 

dimensions. 

The importance of high performance algorithms for tackling difficult optimization problems 

cannot be understated, and in many cases the only available methods are metaheuristics. The 

word metaheuristics contains all heuristics methods that show evidence of achieving good quality 

solutions for the problem of interest within an acceptable time. Metaheuristic techniques have 

become more and more competitive. When designing a metaheuristic, it is preferable that it be 

simple, both conceptually and in practice. Naturally, it also must be effective, and if possible, 

general purpose. The main advantage of this approach is the ease of implementation and the 

quickness. 

As metaheuristics have become more and more sophisticated, this ideal case has been pushed 

aside in the quest for greater performance. As a consequence, problem-specific knowledge (in 
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addition to that built into the heuristic being guided) must now be incorporated into 

metaheuristics in order to reach the state of the art level. Unfortunately, this makes the boundary 

between heuristics and metaheuristics fuzzy, and we run the risk of loosing both simplicity and 

generality. 

Here a well known metaheuristics approaches, namely general Iterated Local Search (ILS)has 

been discussed. Iterated Local Search is a metaheuristic designed to embed 

another, problem specific, local search as if it were a black box. This allows Iterated Local Search 

to keep a more general structure than other metaheuristics currently in practice. 

The essence of metaheuristic - the iterated local search - can be given in a nut-shell: one 

iteratively builds a sequence of solutions generated by the embedded heuristic, leading to far 

better solutions than if one were to use repeated random trials of that heuristic. This simple idea 

[Baxter (1981)] has a long history, and its rediscovery by many authors has lead to many 

different names for iterated local search like iterated descent [Baum (1986a), Baum (1986b)], 

large-step Markov chains [Martin et al. (1991)], iterated Lin-Kernighan [Johnson (1990)], 

chained local optimization [Martin and Otto (1996)], or combinations of these [Applegate et al. 

(1999)]. There are two main points that make an algorithm an iterated local search: (i) there must 

be a single chain that is being followed (this then excludes population-based algorithms); (ii) the 

search for better solutions occurs in a reduced space defined by the output of a black box 

heuristic. In practice, local search has been the most frequently used embedded heuristic, but in 

fact any optimizer can be used, be-it deterministic or not. 

The purpose of this review is to give a detailed description of iterated local search and to show 

where it stands in terms of performance. So far, in spite of its conceptual simplicity, it has lead to 

a number of state-of-the art results without the use of too much problem-specific knowledge; 

perhaps this is because iterated local search is very malleable, many implementation choices 

being left to the developer. In what follows we will give a formal description of ILS and 

comment on its main components. 

Procedure Iterated Local Search 

s0  = Generate Initial Solution 

s*  = Local Search(s0) 

repeat 

s′   = Perturbation(s* ) 

s*′   = Local Search(s′) 

s*   = Acceptance Criterion (s*, s*′) 
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until     termination condition met 

end 

Local search applied to the initial solution s0 gives the starting point s* of the walk in the set S*. 

Starting with a good s* can be important if high-quality solutions are to be reached as fast as 

possible. The initial solution s0 used in the ILS is typically found one of two ways: a random 

starting solution is generated or a greedy construction heuristic is applied. A “random restart” 

approach with independent samplings is sometimes a useful strategy (in particular when all other 

options fail), it breaks down as the instance size grows because in that time the tail of the 

distribution of costs collapses. A greedy initial solution s0 has two main advantages over random 

starting solutions: (i) when combined with local search, greedy initial solutions often result in 

better quality solutions s*; (ii) a local search from greedy solutions takes, on average, less 

improvement steps and therefore the local search requires less CPU time. 

The current s*, we first apply a change or perturbation that leads to an intermediate state s′ (which 

belongs to S where S is set of all local optimum). Then Local Search is applied to s′ and we reach 

a solution s*′ in S*. If s*′ passes an acceptance test, it becomes the next element of the walk in S*; 

otherwise, one returns to s*. The resulting walk is a case of a stochastic search in S*, but where 

neighborhoods are never explicitly introduced. This iterated local search procedure should lead to 

good biased sampling as long as the perturbations are neither too small nor too large. If they are 

too small, one will often fall back to s* and few new solutions of S* will be explored. If on the 

contrary the perturbations are too large, s′ will be random, there will be no bias in the sampling, 

and we will recover a random restart type algorithm will be recovered. 

In practice, much of the potential complexity of ILS is hidden in the history dependence. If there 

happens to be no such dependence, the walk has no memory: the perturbation and acceptance 

criterion do not depend on any of the solutions visited previously during the walk, and one 

accepts or not s*′ with a fixed rule. This leads to random walk dynamics on S* that are 

“Markovian”, the probability of making a particular step from s1
* to s2

* depending only on s1
* and 

s2
*. Most of the wFork using ILS has been of this type, though the studies show unambiguously 

that incorporating memory enhances performance [Stutzle (1998)]. 

 

The main drawback of any local search algorithm is that, by definition, it gets trapped in local 

optima that might be significantly worse than the global optimum. The strategy employed by ILS 

to escape from local optima is represented by perturbations to the current local optima. The 

perturbation scheme takes a locally optimal solution, s*, and produces another solution from 
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which a local search is started at the next iteration. Hopefully, the perturbation will return a 

solution outside the basins of attraction of previously visited local minima. That is, it will be 

“near” a previously unvisited local optimum. Choice of the correct perturbation scheme is of 

primary importance, because it has a great influence on the intensification/diversification 

characteristics of the overall algorithm. Generally, the local search should not be able to undo the 

perturbation; otherwise one will fall back into the local optimum just visited. Perturbation 

schemes are commonly referred to as “strong” and “weak”, depending on how much they affect 

the solution that they change. A perturbation scheme that is too strong has too much diversity and 

will reduce the ILS to an iterated random restart heuristic. A perturbation scheme that is too weak 

has too little diversity and will result in the ILS not searching enough of the search space. 

2. Maximin Latin Hypercube Designs: 

We will denote as follows the s-norm distance between two points xi and xj,∀  i, j = 1, 2, · · · , N: 

dij=║xi− xj║s                                                                                             (1) 

Unless otherwise mentioned, we will only consider the Euclidean distance measure (s = 2). In 

fact, we will usually consider the squared value of dij (in brief d), i.e. d2 (saving the computation 

of the square root). This has a noticeable effect on the execution speed since the distances d will 

be evaluated many times. 

2.1  Definition of LHD: 

A Latin Hypercube Design (LHD) is a statistical design of experiments, which was first defined 

in 1979 [McKay et al. (1979)]. An LHD of k-factors (dimensions) with N design points, xi = (xi1, 

xi2 · · · xik) : i = 0, 1, . . . , N−1 , is given by a N×k- matrix (i.e. a matrix with N rows and k 

columns) X, where each column of X consists of a permutation of integers 0, 1, · · · , N−1 (note 

that each factor range is normalized to the interval [0, N −1] ) so that for each dimension j all xij , 

i = 0, 1, · · · , N −1 are distinct. We will refer to each row of X as a (discrete) design point and 

each column of X as a factor (parameter) of the design points. 

We can represent X as follows 

X=
















−1Nx

x

0
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









−− kNN

k

xx

xx

)1(1)1(

001







                                                              (2) 

such that for each j∈{1, 2 · · · , k} and for all p, q∈{0, 1, · · · ,N − 1} with p ≠ q; xpj ≠ xqj holds. 

Given a LHD X and a distance d, let 

D = {d(xi, xj) : 1 ≤ i < j ≤ N}. 
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Note that |D| ≤ 







2
n

. We define Dr(X) as the r-th minimum distance in D, and Jr(X) as the number 

of pairs {xi, xj} having d (xi, xj) = Dr(X) in X. 

The maximin LHD problem aims at finding a LHD X* such that D1(X) is as large as possible. 

However, a search which only takes into account the D1 values is certainly not efficient. Indeed, 

the landscape defined by the D1 values is “too flat”. For this reason the search should be driven 

by other optimality criteria, which take into account also other values besides D1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1  Optimality Criteria 

In order to drive the search through LHDs we need some criterion to compare them. Below we 

will describe some of the criteria employed in the literature. 

 

Opt(D1, J1) Optimality Criterion : Under this criterion a LHD Y can be considered better than 

another one X if a lexicographic ordering holds: 

 

D1(Y) > D1(X)      or 

D1(Y) = D1(X)      and    J1(Y ) < J1(X).                                                       (3) 

 

We illustrate this optimality criterion as follows. In Figure 2.1(a) Xr is a randomly generated 

LHD with (N, k,) = (9,2) where D1(Xr) = 2 and J(Xr) = 4; Figure 2.1 (b) presents an improved 

configuration Xsm where D1(Xsm) = 8 with J(Xsm) = 4. A third LHD XM is given in Figure 2.1 (c) 

Fig: (a) D1(Xr)=2, J1(Xr)=4 Fig: (b) D1(Xsm)=8, J1(Xsm)=4                        Fig: (c) D1(XM)=8, J1(XM)=2 

Figure 2.1: Some LHDs and their corresponding (D1, J1) values 
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where D1(XM) = 8 and J1(XM) = 2; by the Opt(D1,J1) criterion this is the best configuration among 

the three. 

 

By generalizing this approach, we can consider the problem like a multi-objective problem with 

priorities: maximize the objective with highest priority D1; within the set of optimal solutions 

with respect to D1, minimize the objective with second highest priority J1. Note that Johnson et 

al. [Johnson et al. (1990)] first proposed this optimality criterion. 

Opt(φ) Optimality Criterion : As previously remarked, if there exist different LHDs with equal 

D1 and J1 values, i.e. in case there exist at least two LHDs X, Y such that D1(X) = D1(Y) = D1 and 

J1(X) = J1(Y) = J1, we could further consider the objective D2 and maximize D2(X), the second 

smallest distance in X, and, if equality still holds, minimize J2(X), the number of occurrence of 

D2(X), and so on. Then an optimal design X sequentially maximizes Dis and minimizes Jis in the 

following order: D1, J1; D2, J2, · · · ,Dm, Jm. Morris and Mitchell [Morris and Mitchell (1995)] 

have used all the above measures to define a family of scalar-valued functions (to be minimized), 

which can be used to rank competing designs in such a way that a maximin design receives the 

highest ranking. This family of functions, indexed by p, is given by 

 

)(xpφ =
Pm

r
P

r

r

XD
XJ

1

1 ))((
)(∑

=








                                                                          (4) 

where p is a positive integer parameter. Under this criterion, LHD Y is better than X if 

Pφ (Y) < Rφ (X). 

Note that for large enough p, each term in the sum in (3.4) dominates all subsequent terms. 

Through p we can control the impact of the different Dr distances: as p increases, the impact of 

distance D1 becomes more and more relevant. In the form (3.4), the evaluation of φ p would be 

computationally costly. However, it has a computationally cheaper form (see [Jin et al. (2005)]). 

Indeed, (3.4) can be simplified as 

)(XPφ =
PN

i

N

ij
P
ijd

1

1 1

1











∑ ∑
= +=

                                                                         (5) 

which can be computed without the need of detecting and ordering all the Di values. 

An apparent drawback of the Opt(φ ) criterion, if we are interested in maximin values (maximum 

D1 value), is that LHDs with smaller (better ) φ p can have a worse(smaller) D1, i.e. we can have 

X and Y such that )(XPφ < )(YPφ  and D1(X) < D1(Y). This phenomenon has been frequently 
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observed in our computational experiments. Nevertheless, a profitable choice is to work in order 

to minimize the φ p function but, at the same time, keep track of the best (D1, J1) values observed 

during such minimization. This way the search in the solution space is guided by a kind of 

heuristic function. Such mixed approach might appear strange but, as we will demonstrate 

experimentally, it can be extremely effective. 

While the two criteria above are strictly related to maximin values and they will be widely 

employed in the definition of approaches for detecting  maximin solutions, for the sake of 

completeness, we also mention that also other optimality criteria, not necessarily related with 

maximin values, are available in the literature. We present a couple of them as well as the 

approaches for constructing the optimal Latin hypercube design in Table 3.1. 

 

designs alexperiment                                         
 optimalfor criterion   optimal  as  wellas approaches know  wellSome : 3.1 Table
 

Researchers Year Algorithm Objective functions 

Audze and Eglajs 1977 Coordinates Exchange 

Algorithm 

Potential Energy 

Park 1994 A 2-stage(exchange-and 

Newton-type) algorithm 

Integrated mean squared 

error and entropy criteria 

Morris and 

Mitchell 

1995 Simulated annealing φ p
 criterion 

Ye et al. 2000 Columnwise-pairwise φ p
and entropy criteria 

Fang et al. 2002 Threshold accepting 

algorithm 
Centered L2 -discrepancy 

Bates et al. 2004 Genetic algorithm Potential energy 

Jin et al. 2005 Enhanced stochastic 

evolutionary algorithms 
φ p

 criteria, entropy 

and L2  discrepancy 

Liefvendahl and 

Stocki 

2006 Columnwise-pairwise 

and genetic algorithms 

Minimum distance and 

Audze-Eglajs function 

Van Dam et al. 2007 Branch-and-bound 

algorithm 

1-norm and infinite norm 

distances 
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Grosso et al. 2008 Iterated local search and 

simulated annealing 

algorithms 

φ p
 criterion 

 

3.2  ILS Heuristic for Maximin LHD 

In Section 3.1 we have discussed a general scheme for ILS-based algorithms. Now we present the 

ILS based procedure for maximin Latin hypercube design. As we have stated earlier, the main 

components of ILS heuristic approaches  are Initialization (IS), LocalSearch (LM), Perturbation 

Move (PM), and the Stopping Rule (SR) 

 

The pseudo-code of the proposed ILS heuristic for maximin LHD problems is given bellow: 

Step 1. Initialization : X = IS({0, 1, . . . ,N − 1})) 

Step 2. Local Search : X* = LM(X) 

while SR not satisfied do 

Step 3. Perturbation Move :X′ = PM(X) 

Step 4. Local Search : X* = LM(X′) 

Step 5. Improvement test : if X* is better than X, 

set X = X* 

end while 

Return X 

Below we detail the components in order to fully specify our algorithm. 

3.3  Initialization (IS) 

The initialization (IS) procedure embedded in our algorithm is extremely simple: the first initial 

solution is randomly generated. In particular, the first initial solution generation is built as 

follows. For each component h∈{1, . . . , k} a random permutation v0, . . . , vN-1 of the integers 0, 

1, . . . ,N − 1 is generated and we set 

xrh = vr       for all r ∈{0, . . . , N − 1}. 

Although more aggressive procedures could be designed, we chose random generation because it 

is fast and unbiased. 

 

3.4 Local Search Procedure (LS) 

In order to define a local search procedure (LS), we need to define a concept of neighborhood of a 

solution. Given a LHD X = (x1, . . . , xN), its neighborhood is made of all other LHDs obtained by 
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applying local moves to X. Before introducing some local moves, we first introduce the notion of 

critical point. 

Critical point: We say that xi is a critical point for X, if 

ij≠
min d(xi, xj) = D1(X), 

 

i.e., the minimum distance from xi to all other points is also the minimum one among all the 

distances in X. We denote by I(X) {1, . . . ,N} the set of indices of the critical points in X. 

3.5 Local Moves (LM): A local move is an operator that applies some form of slight 

perturbation to a solution X, in order to obtain a different solution. Different local moves define 

different neighborhoods for local search. In the literature two different local moves are available: 

Rowwise-Pairwise (RP) exchange [Park (1994)] and Columnwise-Pairwise (CP) exchange 

[Morris and Mitchell (1995)]. In Park’s algorithm [Park (1994)] some active pairs (pairs of 

critical points, in our terminology) are selected. Then, for each chosen pair of two active rows, 

say i1 and i2, the RP exchange algorithm considers all the possible exchanges of corresponding 

elements as follows: 

xi1,p ↔ xi2,q  ∀   p, q = 1, 2, . . . , k : p≠ q, 

and finds the best exchange among them. The CP algorithm proposed by Morris and Mithchell 

[Morris and Mitchell (1995)] exchanges two randomly selected elements within a randomly 

chosen column. But in [Li and Wu (1997)], Li and Wu defined the CP algorithm in a bit different 

way: they randomly choose a column and replace it by its random permutations if a better LHD is 

obtained. 

It is observed that the effect of CP based local search and RP based local search is not 

significance [Jamali (2009)]. So, here, RP based local move is considered as defined in [Jamali 

(2009)] which is a bit different than that of [Park (1994)]. For optimal criteria we consider 

Opt(φ ) optimal criteria. 

The definition of Rowwise-Pairwise Critical Local Moves (we call it LMRpD1) as follows. The 

algorithm sequentially chooses two points (rows) such that at least one of them is a critical point, 

then exchanges two corresponding elements (factors) of the selected pair. If i∈I(X), r, j ∈ {1, . . . 

, N}, h, ℓ ∈ {1, . . . , k}, swapping the ℓ-th component gives the neighbor Y defined by 

yrh=








==
==
≠≠







h  and ir if    
h and jr  if    
hor    ir if    

jh

ih

rh

x
x
x

                                                                          (6) 
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It is remarked that, if Opt(D1, J1) be the optimality criterion, it perfectly makes sense to avoid 

considering pairs  xi and xj such that I(X) ∩ {xi, xj} = ∅ since any swap involving two non-critical 

points cannot improve the D1 value of the current LHD. 

When Opt(φ ) is adopted as optimality criterion, any exchange can, in general, lead to an 

improved value of φ . The RP local move for Opt(φ ) optimality criterion is denoted by 

LMRpφ and is also defined in equation, the only difference being that we drop the requirement 

that at least one point must be critical. 

We now illustrate the RP based local moves by considering a randomly generated initial design A 

: (N,k) = (7,2) (see Figure 3.2(a)). Then a neighborhood solution of A, by considering points 

(0,2), (4,4) (here both are critical points), is LHD B, obtained after swapping the second 

coordinate of the points (0, 2)  and (4,4) (See Figure 3.2 (b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also note that LHD B is an improving neighbor of LHD A, since (D1, J1)(B) = (2,1) whereas (D1, 

J1)(A) = (2,3).  

3.6 Acceptance Rule: Among the two type of local moves [Jamali (2009)], we considered 

Best Improve (BI) acceptance rule as there are no significant difference regarding output (see 

[Jamali (2009)]).  For the BI acceptance rule, the whole neighborhood of the current solution is 

searched for the best improving neighbor. We warn again the reader that the meaning of “Y is 

better than X” can be defined accordingly with the Opt(D1, J1) or Opt(φ ) optimality criterion. So 

for the Opt(D1, J1) optimality criterion: “Y is better than X” if 

D1(Y ) > D1(X) or (D1(X) = D1(Y)  and  J1(X) > J1(Y)). 

Figure 3.2: Illustration of Neighborhood solutions for LMRpD1 based local search 
(LS) procedure 

 

Initial solution – LHD A After single Local Move, nbh sol. LHD B After complete LS – LHD C 

Fig: (a) D1(Xr)=2, J1(Xr)=3 Fig: (b) D1(Xb)=2, J1(Xb)=1                           Fig: (c) D1(Xc)=8, J1(Xc)=4 
x x x 
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On the other hand for Opt(φ ) optimality criterion : “Y is better than X” if 

φ p(Y ) <φ p(X), 

where φ p is defined by (5). 

3.7 Perturbation Move (PM) 

Perturbation is the key operator in ILS, allowing the algorithm to explore the search space by 

jumping from one local optimum to another. Basically, a perturbation is similar to a local move, 

but it must be somehow less local, or, more precisely, it is a move within a neighborhood larger 

than the one employed in the local search. Actually the perturbation operator produces the initial 

solutions for all the local searches after the first one. Among the two types of perturbation 

operators, say, (i) Cyclic Order Exchange (COE) and (ii) Pairwise Crossover (PC) proposed in 

[Jamali (2009)], we consider COE. 

 

Cyclic Order Exchange (COE): Our first perturbation move procedure is Cyclic Order 

Exchange (COE). The operator COE produce a cyclic order exchange upon a randomly selected 

single component (column) of a randomly selected portion of the design points (rows). Among 

the three variant of COE perturbation move techniques: Single Cyclic Order Exchange (SCOE) 

perturbation operation, Multiple Components Cyclic Order Exchange (MCCOE), and Multiple 

Single Cyclic Order Exchange (MSCOE) [Jamali (2009)], we consider here only SCOE 

technique. 

Single Cyclic Order Exchange (SCOE): For SCOE, we randomly choose two different rows 

(points), say xi and xj , such that i < j and j − i ≥ 2, in the current LHD X*. Then, we randomly 

choose a column (component), say ℓ. Finally, we swap in cyclic order the value of component ℓ 

from point xi to point xj. The pseudo-code structure for SCOE is the following. 

 

The pseudo-code structure for SCOE is the following. 

Step 1:  randomly select two different points xi and xj 

such that i < j and j − i ≥ 2 

Step 2:  Randomly choose a component ℓ 

Step 3a: set temporarily xt
j   = xj   

for t = j, j − 1, . . . , i + 1 do 

Step 3b: Replace the component x(t)ℓ by x(t−1)ℓ 

end for 

Step 3c: and replace xi   by xt
j   
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Note that we require j − i ≥ 2 because otherwise the perturbation would be a special case of the 

local move employed in the local search procedure. We illustrate the SCOE perturbation by an 

example. Assume we have the current LHD X* with N = 6 and k = 8 

=    



























x
x
x
x
x
x

6

5

4

3

2

1

   = 



























35100245
20015134
11524023
02433512
53342401
44251350

                                                 (7) 

Now we randomly choose two rows (points), say x2 and x5 and we randomly choose the column 

(component) ℓ = 4. Then, after the SCOE perturbation we get the following LHD X′ (bold faces 

denote the values modified with respect to X*), 

X ′=



























x
x
x
x
x
x

6

5

4

3

2

1

 = 



























35100245
2001134
1152023
0243512
5334401
44251350

4
3
2
5

                                              (8) 

Note that SCOE only slightly modifies the current LHD X* but this exactly follows the spirit of 

ILS, where the perturbation should keep unchanged large portions of the current solution and 

should not completely disrupt it structure. 
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