
 1

GSJ: Volume 9, Issue 1, January 2021, Online: ISSN 2320-9186

www.globalscientificjournal.com

COMPLEXITY ANALYSIS OF ITERATED LOCAL SEARCH ALGORITHM FOR

OPTIMIZING LATIN HYPERCUBE DESIGNS

Parimal Mridha, Lecturer, Mathematics Department,

Military Collegiate School Khulna (MCSK), Bangladesh.

parimalmridha@yahoo.com

Abstract: Computer experiments involve a large numbers of variables, but only a few of them

have no negligible influence on the response. As is recognized by several authors, the choice of

the design points for computer experiments should fulfill at lest two requirements – space-filling

and non-collapsing. Unfortunately, randomly generated Latin Hypercube Designs (LHDs) almost

always show poor space-filling properties. On the other hand, maximin distance designs have

very well space-filling properties but often show poor projection properties under the Euclidean

or the Rectangular distance. To overcome this shortcoming, Morris et al. have suggested to

search for maximin LHDs when looking for “optimal” designs. It is shown that the Iterated Local

search(ILS) approach not only able to obtain good LHDs in the sense of space-filling property

but the correlations among the factors are acceptable i.e. multi-collinearity is not high. Anyway

from the point of view of computational complexity the problem is open. When numbers of factors

as well as number of experimental points are large, the heuristic approaches also require a

couple of hours or even more to find out a simulated optimal design. So time complexity is an

important issue for a good algorithm. Specially for the need of real time solution, the time

complexity of the ILS approaches is analyzed. The inner most view as well as the effect of the

parameters of the algorithms have been observed and have been analyzed.

Keywords: ILS approach, Latin Hypercube design, Space-filling, multi-collinearity.

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1253

GSJ© 2021
www.globalscientificjournal.com

http://www.globalscientificjournal.com/
mailto:parimalmridha@yahoo.com

 2

1. INTRODUCTION

In general usage, complexity tends to be used to characterize something with many parts in

intricate arrangement. Complexity Theory is concerned with the study of the intrinsic complexity

of computational tasks. Its ``final'' goals include the determination of the complexity of any well-

defined task. Additional ``final'' goals include obtaining an understanding of the relations

between various computational phenomena (e.g., relating one fact regarding computational

complexity to another). Indeed, we may say that the former type of goals is concerned with

absolute answers regarding specific computational phenomena, whereas the latter type is

concerned with questions regarding the relation between computational phenomena.

Interestingly, the current success of Complexity Theory in coping with the latter type of goals has

been more significant. In fact, the failure to resolve questions of the ``absolute'' type, led to the

flourishing of methods for coping with questions of the “relative” type.

In general, Computational complexity theory is a branch of the theory of computation in

theoretical computer science and mathematics that focuses on classifying computational

problems according to their inherent difficulty, and relating those classes to each other. A

computational problem is understood to be a task that is in principle amenable to being solved by

a computer, which is equivalent to stating that the problem may be solved by mechanical

application of mathematical steps.

Anyway there are two type of complexity regarding time and space. Time complexity is

concerned with the analysis of the elapsed time of an algorithm; whereas, how much memory

required is discussed in space complexity.

1.1. Some Definitions:

Some of these concept and respective are offered below:

(i) Time Complexity: A measure of the amount of time required to execute an algorithms is

called time complexity. Later time complexity is discussed elaborately.

(ii) Space Complexity: The (space) complexity of a program (for a given input) is the

number of elementary objects that this programs needs to store during its execution. This number

is computed with respect to the size n of the input data. We thus make the assumption that each

elementary object needs the same amount of space.

(iii) Turing Machine: Turing machines provide a model of digital computational which is

more primitive, hence harder to ‘program” than random access machines. However, their

primitiveness becomes an advantage when they are manipulated for the purpose of proving

theorical results.

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1254

GSJ© 2021
www.globalscientificjournal.com

http://en.wikipedia.org/wiki/Theory_of_computation
http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computational_problems
http://en.wikipedia.org/wiki/Computational_problems
http://en.wikipedia.org/wiki/Computational_problems
http://en.wikipedia.org/wiki/Complexity_class

 3

A Turing machine is a hypothetical device that manipulates symbols on a strip of tape according

to a table of rules. Despite its simplicity, a Turing machine can be adapted to simulate the logic of

any computer algorithm, and is particularly useful in explaining the functions of a CPU inside a

computer.

1.2 Time Complexity: Time Complexity comparisons are more interesting than space

complexity. The programming language chosen to implement the algorithm should not affect in

time complexity analysis. There are some other factors that should not affect in time complexity

are-: the quality of the compiler, the speed of the computer on which the algorithm is to be

executed.

The objectives of the time complexity analysis are to determine the feasibility of an algorithm by

estimating an upper bound on the amount of work performed. Objectives of the time complexity

analysis are also to compare different algorithms before deciding on which one to implement.

Time complexity analysis is based on the amount of work done by the algorithm. It expresses the

relationship between the size of the input and the run time for the algorithm. Time complexity is

usually expressed as proportionality, rather than an exact function.

To simplify analysis, we sometimes ignore work that takes a constant amount of time,

independent of the problem input size. When comparing two algorithms that perform the same

task, we often just concentrate on the differences between algorithms.

For time Complexity, simplified analysis can be based on:

(i) Number of arithmetic operations performed

(ii) Number of comparisons made

(iii) Number of times through a critical loop

(iv) Number of array elements accessed, etc.

1.3. Constant Time Complexity:

Algorithms whose solutions are independent of the size of the problem’s inputs are said to have

constant complexity. It is denoted as 1(O).

Example:

Suppose that exponentiation is carried out using multiplications. Two ways to evaluate the

polynomial

P(x) = 4x4 + 7x3 - 2x2 + 3x1 + 6

In Brute force method:

P(x) = 6x*3x*x*2-x*x*x*7 x *x*x*x*4 +++

In Horner’s method:

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1255

GSJ© 2021
www.globalscientificjournal.com

 4

P(x) = 6x*3)x*2)-x*7)x*(((4 +++

1.4 Measuring Time Complexity:

The worst-case time complexity of an algorithm is expressed as a function T : N → N

Where T(n) is the maximum number of “steps” in any execution of the algorithm on inputs of

“size” n. Intuitively, the amount of time an algorithm takes depends on how large is the input on

which the algorithm must operate: Sorting large lists takes longer than sorting short lists;

multiplying huge matrices takes longer than multiplying small ones. The dependence of the time

needed to the size of the input is not necessarily linear: sorting twice the number of elements

takes quite a bit more than just twice as much time; searching (using binary search) through a

sorted list twice as long, takes a lot less than twice as much time. The time complexity function

expresses that dependence. Note that an algorithm might take different amounts of time on inputs

of the same size. We have defined the worst-case time complexity, which means that we count

the maximum number of steps that any input of a particular size could take. For example, if the

time complexity of an algorithm is 3n2, it means that on inputs of size n the algorithm requires up

to 3n2 steps. To make this precise, we must clarify what we mean by “input size” and “step”.

(i) Input Size: We can define the size of an input in a general way as the number of bits required

to store the input. This definition is general but it is sometimes inconvenient because it is too

low-level. More usefully we define the size of the input in a way that is problem-dependent. For

example, when we are dealing with sorting algorithms, it may be more convenient to use the

number of elements we want to sort as the measure of the input size. This measure ignores the

size of the individual elements that are to be sorted.

Sometimes there may be several reasonable choices for the size of input. For instance, if we are

dealing with algorithms for multiplying square matrices, we may express the input size as the

dimension of the matrix (i.e., the number of columns or rows), or we may express the input size

as the number of entries in the matrix. In this case the two measures are related to each other (the

latter is the square of the former). One conclusion from this discussion is that in order to properly

interpret the function that describes the time complexity of an algorithm we must be clear about

how exactly we measure the size of inputs[Nicolas, (2007)].

(ii) Step: A step of the algorithm can be defined precisely if we fix a particular machine on

which the algorithm is to be run. For instance, if we are using a machine with a Pentium

processor, we might define a step to be one Pentium instruction. This is not the only reasonable

choice: different instructions take different amounts of time, so a more refined definition might

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1256

GSJ© 2021
www.globalscientificjournal.com

 5

be that a step is one cycle of the processor’s clock. In general, however, we want to analyze the

time complexity of an algorithm without restricting ourselves to some particular machine. We

can do this by adopting a more flexible notion of what constitutes a step. In general, we will

consider a step to be anything that we can reasonably expect a computer to do in a fixed amount

of time. Typical examples are performing an arithmetic operation, comparing two numbers, or

assigning a value to a variable.

1.5 Big-O Notation:

Big O notation (with a capital letter O, not a zero), also called Landau's symbol, is a symbolism

used in complexity theory, computer science, and mathematics to describe the

asymptotic behavior of functions. Basically, it tells us how fast a function grows or declines.

Landau's symbol comes from the name of the German number theoretician Edmund Landau who

proposed the notation. The letter O is used because the rate of growth of a function is also called

its order.

For example, when analyzing some algorithm, one might find that the time (or the number of

steps) it takes to complete a problem of size n is given by T(n) = 4n2 -2n +2. If we ignore

constants (which makes sense because those depend on the particular hardware the program is

run on) and slower growing terms, we could say "T(n) grows at the order of n2 and write: T(n) =

O(n2).

1.6. Iterated Local Search

The Latin hypercube design is a popular choice of experimental design when computer

simulation is used to study a physical process. A number of methods have been proposed

[Lournce et al.(2002), Martin and Otto(1996) for extending the uniform sampling to higher

dimensions.

The importance of high performance algorithms for tackling difficult optimization problems

cannot be understated, and in many cases the only available methods are metaheuristics. The

word metaheuristics contains all heuristics methods that show evidence of achieving good quality

solutions for the problem of interest within an acceptable time. Metaheuristic techniques have

become more and more competitive. When designing a metaheuristic, it is preferable that it be

simple, both conceptually and in practice. Naturally, it also must be effective, and if possible,

general purpose. The main advantage of this approach is the ease of implementation and the

quickness.

As metaheuristics have become more and more sophisticated, this ideal case has been pushed

aside in the quest for greater performance. As a consequence, problem-specific knowledge (in

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1257

GSJ© 2021
www.globalscientificjournal.com

 6

addition to that built into the heuristic being guided) must now be incorporated into

metaheuristics in order to reach the state of the art level. Unfortunately, this makes the boundary

between heuristics and metaheuristics fuzzy, and we run the risk of loosing both simplicity and

generality.

Here a well known metaheuristics approaches, namely general Iterated Local Search (ILS)has

been discussed. Iterated Local Search is a metaheuristic designed to embed

another, problem specific, local search as if it were a black box. This allows Iterated Local Search

to keep a more general structure than other metaheuristics currently in practice.

The essence of metaheuristic - the iterated local search - can be given in a nut-shell: one

iteratively builds a sequence of solutions generated by the embedded heuristic, leading to far

better solutions than if one were to use repeated random trials of that heuristic. This simple idea

[Baxter (1981)] has a long history, and its rediscovery by many authors has lead to many

different names for iterated local search like iterated descent [Baum (1986a), Baum (1986b)],

large-step Markov chains [Martin et al. (1991)], iterated Lin-Kernighan [Johnson (1990)],

chained local optimization [Martin and Otto (1996)], or combinations of these [Applegate et al.

(1999)]. There are two main points that make an algorithm an iterated local search: (i) there must

be a single chain that is being followed (this then excludes population-based algorithms); (ii) the

search for better solutions occurs in a reduced space defined by the output of a black box

heuristic. In practice, local search has been the most frequently used embedded heuristic, but in

fact any optimizer can be used, be-it deterministic or not.

The purpose of this review is to give a detailed description of iterated local search and to show

where it stands in terms of performance. So far, in spite of its conceptual simplicity, it has lead to

a number of state-of-the art results without the use of too much problem-specific knowledge;

perhaps this is because iterated local search is very malleable, many implementation choices

being left to the developer. In what follows we will give a formal description of ILS and

comment on its main components.

Procedure Iterated Local Search

s0 = Generate Initial Solution

s* = Local Search(s0)

repeat

s′ = Perturbation(s*)

s*′ = Local Search(s′)

s* = Acceptance Criterion (s*, s*′)

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1258

GSJ© 2021
www.globalscientificjournal.com

 7

until termination condition met

end

Local search applied to the initial solution s0 gives the starting point s* of the walk in the set S*.

Starting with a good s* can be important if high-quality solutions are to be reached as fast as

possible. The initial solution s0 used in the ILS is typically found one of two ways: a random

starting solution is generated or a greedy construction heuristic is applied. A “random restart”

approach with independent samplings is sometimes a useful strategy (in particular when all other

options fail), it breaks down as the instance size grows because in that time the tail of the

distribution of costs collapses. A greedy initial solution s0 has two main advantages over random

starting solutions: (i) when combined with local search, greedy initial solutions often result in

better quality solutions s*; (ii) a local search from greedy solutions takes, on average, less

improvement steps and therefore the local search requires less CPU time.

The current s*, we first apply a change or perturbation that leads to an intermediate state s′ (which

belongs to S where S is set of all local optimum). Then Local Search is applied to s′ and we reach

a solution s*′ in S*. If s*′ passes an acceptance test, it becomes the next element of the walk in S*;

otherwise, one returns to s*. The resulting walk is a case of a stochastic search in S*, but where

neighborhoods are never explicitly introduced. This iterated local search procedure should lead to

good biased sampling as long as the perturbations are neither too small nor too large. If they are

too small, one will often fall back to s* and few new solutions of S* will be explored. If on the

contrary the perturbations are too large, s′ will be random, there will be no bias in the sampling,

and we will recover a random restart type algorithm will be recovered.

In practice, much of the potential complexity of ILS is hidden in the history dependence. If there

happens to be no such dependence, the walk has no memory: the perturbation and acceptance

criterion do not depend on any of the solutions visited previously during the walk, and one

accepts or not s*′ with a fixed rule. This leads to random walk dynamics on S* that are

“Markovian”, the probability of making a particular step from s1
* to s2

* depending only on s1
* and

s2
*. Most of the wFork using ILS has been of this type, though the studies show unambiguously

that incorporating memory enhances performance [Stutzle (1998)].

The main drawback of any local search algorithm is that, by definition, it gets trapped in local

optima that might be significantly worse than the global optimum. The strategy employed by ILS

to escape from local optima is represented by perturbations to the current local optima. The

perturbation scheme takes a locally optimal solution, s*, and produces another solution from

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1259

GSJ© 2021
www.globalscientificjournal.com

 8

which a local search is started at the next iteration. Hopefully, the perturbation will return a

solution outside the basins of attraction of previously visited local minima. That is, it will be

“near” a previously unvisited local optimum. Choice of the correct perturbation scheme is of

primary importance, because it has a great influence on the intensification/diversification

characteristics of the overall algorithm. Generally, the local search should not be able to undo the

perturbation; otherwise one will fall back into the local optimum just visited. Perturbation

schemes are commonly referred to as “strong” and “weak”, depending on how much they affect

the solution that they change. A perturbation scheme that is too strong has too much diversity and

will reduce the ILS to an iterated random restart heuristic. A perturbation scheme that is too weak

has too little diversity and will result in the ILS not searching enough of the search space.

2. Maximin Latin Hypercube Designs:

We will denote as follows the s-norm distance between two points xi and xj,∀ i, j = 1, 2, · · · , N:

dij=║xi− xj║s (1)

Unless otherwise mentioned, we will only consider the Euclidean distance measure (s = 2). In

fact, we will usually consider the squared value of dij (in brief d), i.e. d2 (saving the computation

of the square root). This has a noticeable effect on the execution speed since the distances d will

be evaluated many times.

2.1 Definition of LHD:

A Latin Hypercube Design (LHD) is a statistical design of experiments, which was first defined

in 1979 [McKay et al. (1979)]. An LHD of k-factors (dimensions) with N design points, xi = (xi1,

xi2 · · · xik) : i = 0, 1, . . . , N−1 , is given by a N×k- matrix (i.e. a matrix with N rows and k

columns) X, where each column of X consists of a permutation of integers 0, 1, · · · , N−1 (note

that each factor range is normalized to the interval [0, N −1]) so that for each dimension j all xij ,

i = 0, 1, · · · , N −1 are distinct. We will refer to each row of X as a (discrete) design point and

each column of X as a factor (parameter) of the design points.

We can represent X as follows

X=
















−1Nx

x

0

=
















−− kNN

k

xx

xx

)1(1)1(

001







 (2)

such that for each j∈{1, 2 · · · , k} and for all p, q∈{0, 1, · · · ,N − 1} with p ≠ q; xpj ≠ xqj holds.

Given a LHD X and a distance d, let

D = {d(xi, xj) : 1 ≤ i < j ≤ N}.

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1260

GSJ© 2021
www.globalscientificjournal.com

 9

Note that |D| ≤ 







2
n

. We define Dr(X) as the r-th minimum distance in D, and Jr(X) as the number

of pairs {xi, xj} having d (xi, xj) = Dr(X) in X.

The maximin LHD problem aims at finding a LHD X* such that D1(X) is as large as possible.

However, a search which only takes into account the D1 values is certainly not efficient. Indeed,

the landscape defined by the D1 values is “too flat”. For this reason the search should be driven

by other optimality criteria, which take into account also other values besides D1.

3.1 Optimality Criteria

In order to drive the search through LHDs we need some criterion to compare them. Below we

will describe some of the criteria employed in the literature.

Opt(D1, J1) Optimality Criterion : Under this criterion a LHD Y can be considered better than

another one X if a lexicographic ordering holds:

D1(Y) > D1(X) or

D1(Y) = D1(X) and J1(Y) < J1(X). (3)

We illustrate this optimality criterion as follows. In Figure 2.1(a) Xr is a randomly generated

LHD with (N, k,) = (9,2) where D1(Xr) = 2 and J(Xr) = 4; Figure 2.1 (b) presents an improved

configuration Xsm where D1(Xsm) = 8 with J(Xsm) = 4. A third LHD XM is given in Figure 2.1 (c)

Fig: (a) D1(Xr)=2, J1(Xr)=4 Fig: (b) D1(Xsm)=8, J1(Xsm)=4 Fig: (c) D1(XM)=8, J1(XM)=2

Figure 2.1: Some LHDs and their corresponding (D1, J1) values

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1261

GSJ© 2021
www.globalscientificjournal.com

 10

where D1(XM) = 8 and J1(XM) = 2; by the Opt(D1,J1) criterion this is the best configuration among

the three.

By generalizing this approach, we can consider the problem like a multi-objective problem with

priorities: maximize the objective with highest priority D1; within the set of optimal solutions

with respect to D1, minimize the objective with second highest priority J1. Note that Johnson et

al. [Johnson et al. (1990)] first proposed this optimality criterion.

Opt(φ) Optimality Criterion : As previously remarked, if there exist different LHDs with equal

D1 and J1 values, i.e. in case there exist at least two LHDs X, Y such that D1(X) = D1(Y) = D1 and

J1(X) = J1(Y) = J1, we could further consider the objective D2 and maximize D2(X), the second

smallest distance in X, and, if equality still holds, minimize J2(X), the number of occurrence of

D2(X), and so on. Then an optimal design X sequentially maximizes Dis and minimizes Jis in the

following order: D1, J1; D2, J2, · · · ,Dm, Jm. Morris and Mitchell [Morris and Mitchell (1995)]

have used all the above measures to define a family of scalar-valued functions (to be minimized),

which can be used to rank competing designs in such a way that a maximin design receives the

highest ranking. This family of functions, indexed by p, is given by

)(xpφ =
Pm

r
P

r

r

XD
XJ

1

1))((
)(∑

=








 (4)

where p is a positive integer parameter. Under this criterion, LHD Y is better than X if

Pφ (Y) < Rφ (X).

Note that for large enough p, each term in the sum in (3.4) dominates all subsequent terms.

Through p we can control the impact of the different Dr distances: as p increases, the impact of

distance D1 becomes more and more relevant. In the form (3.4), the evaluation of φ p would be

computationally costly. However, it has a computationally cheaper form (see [Jin et al. (2005)]).

Indeed, (3.4) can be simplified as

)(XPφ =
PN

i

N

ij
P
ijd

1

1 1

1











∑ ∑
= +=

 (5)

which can be computed without the need of detecting and ordering all the Di values.

An apparent drawback of the Opt(φ) criterion, if we are interested in maximin values (maximum

D1 value), is that LHDs with smaller (better) φ p can have a worse(smaller) D1, i.e. we can have

X and Y such that)(XPφ <)(YPφ and D1(X) < D1(Y). This phenomenon has been frequently

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1262

GSJ© 2021
www.globalscientificjournal.com

 11

observed in our computational experiments. Nevertheless, a profitable choice is to work in order

to minimize the φ p function but, at the same time, keep track of the best (D1, J1) values observed

during such minimization. This way the search in the solution space is guided by a kind of

heuristic function. Such mixed approach might appear strange but, as we will demonstrate

experimentally, it can be extremely effective.

While the two criteria above are strictly related to maximin values and they will be widely

employed in the definition of approaches for detecting maximin solutions, for the sake of

completeness, we also mention that also other optimality criteria, not necessarily related with

maximin values, are available in the literature. We present a couple of them as well as the

approaches for constructing the optimal Latin hypercube design in Table 3.1.

designs alexperiment
 optimalfor criterion optimal as wellas approaches know wellSome : 3.1 Table

Researchers Year Algorithm Objective functions

Audze and Eglajs 1977 Coordinates Exchange

Algorithm

Potential Energy

Park 1994 A 2-stage(exchange-and

Newton-type) algorithm

Integrated mean squared

error and entropy criteria

Morris and

Mitchell

1995 Simulated annealing φ p
 criterion

Ye et al. 2000 Columnwise-pairwise φ p
and entropy criteria

Fang et al. 2002 Threshold accepting

algorithm
Centered L2 -discrepancy

Bates et al. 2004 Genetic algorithm Potential energy

Jin et al. 2005 Enhanced stochastic

evolutionary algorithms
φ p

 criteria, entropy

and L2 discrepancy

Liefvendahl and

Stocki

2006 Columnwise-pairwise

and genetic algorithms

Minimum distance and

Audze-Eglajs function

Van Dam et al. 2007 Branch-and-bound

algorithm

1-norm and infinite norm

distances

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1263

GSJ© 2021
www.globalscientificjournal.com

 12

Grosso et al. 2008 Iterated local search and

simulated annealing

algorithms

φ p
 criterion

3.2 ILS Heuristic for Maximin LHD

In Section 3.1 we have discussed a general scheme for ILS-based algorithms. Now we present the

ILS based procedure for maximin Latin hypercube design. As we have stated earlier, the main

components of ILS heuristic approaches are Initialization (IS), LocalSearch (LM), Perturbation

Move (PM), and the Stopping Rule (SR)

The pseudo-code of the proposed ILS heuristic for maximin LHD problems is given bellow:

Step 1. Initialization : X = IS({0, 1, . . . ,N − 1}))

Step 2. Local Search : X* = LM(X)

while SR not satisfied do

Step 3. Perturbation Move :X′ = PM(X)

Step 4. Local Search : X* = LM(X′)

Step 5. Improvement test : if X* is better than X,

set X = X*

end while

Return X

Below we detail the components in order to fully specify our algorithm.

3.3 Initialization (IS)

The initialization (IS) procedure embedded in our algorithm is extremely simple: the first initial

solution is randomly generated. In particular, the first initial solution generation is built as

follows. For each component h∈{1, . . . , k} a random permutation v0, . . . , vN-1 of the integers 0,

1, . . . ,N − 1 is generated and we set

xrh = vr for all r ∈{0, . . . , N − 1}.

Although more aggressive procedures could be designed, we chose random generation because it

is fast and unbiased.

3.4 Local Search Procedure (LS)

In order to define a local search procedure (LS), we need to define a concept of neighborhood of a

solution. Given a LHD X = (x1, . . . , xN), its neighborhood is made of all other LHDs obtained by

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1264

GSJ© 2021
www.globalscientificjournal.com

 13

applying local moves to X. Before introducing some local moves, we first introduce the notion of

critical point.

Critical point: We say that xi is a critical point for X, if

ij≠
min d(xi, xj) = D1(X),

i.e., the minimum distance from xi to all other points is also the minimum one among all the

distances in X. We denote by I(X) {1, . . . ,N} the set of indices of the critical points in X.

3.5 Local Moves (LM): A local move is an operator that applies some form of slight

perturbation to a solution X, in order to obtain a different solution. Different local moves define

different neighborhoods for local search. In the literature two different local moves are available:

Rowwise-Pairwise (RP) exchange [Park (1994)] and Columnwise-Pairwise (CP) exchange

[Morris and Mitchell (1995)]. In Park’s algorithm [Park (1994)] some active pairs (pairs of

critical points, in our terminology) are selected. Then, for each chosen pair of two active rows,

say i1 and i2, the RP exchange algorithm considers all the possible exchanges of corresponding

elements as follows:

xi1,p ↔ xi2,q ∀ p, q = 1, 2, . . . , k : p≠ q,

and finds the best exchange among them. The CP algorithm proposed by Morris and Mithchell

[Morris and Mitchell (1995)] exchanges two randomly selected elements within a randomly

chosen column. But in [Li and Wu (1997)], Li and Wu defined the CP algorithm in a bit different

way: they randomly choose a column and replace it by its random permutations if a better LHD is

obtained.

It is observed that the effect of CP based local search and RP based local search is not

significance [Jamali (2009)]. So, here, RP based local move is considered as defined in [Jamali

(2009)] which is a bit different than that of [Park (1994)]. For optimal criteria we consider

Opt(φ) optimal criteria.

The definition of Rowwise-Pairwise Critical Local Moves (we call it LMRpD1) as follows. The

algorithm sequentially chooses two points (rows) such that at least one of them is a critical point,

then exchanges two corresponding elements (factors) of the selected pair. If i∈I(X), r, j ∈ {1, . . .

, N}, h, ℓ ∈ {1, . . . , k}, swapping the ℓ-th component gives the neighbor Y defined by

yrh=








==
==
≠≠







h and ir if
h and jr if
hor ir if

jh

ih

rh

x
x
x

 (6)

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1265

GSJ© 2021
www.globalscientificjournal.com

 14

It is remarked that, if Opt(D1, J1) be the optimality criterion, it perfectly makes sense to avoid

considering pairs xi and xj such that I(X) ∩ {xi, xj} = ∅ since any swap involving two non-critical

points cannot improve the D1 value of the current LHD.

When Opt(φ) is adopted as optimality criterion, any exchange can, in general, lead to an

improved value of φ . The RP local move for Opt(φ) optimality criterion is denoted by

LMRpφ and is also defined in equation, the only difference being that we drop the requirement

that at least one point must be critical.

We now illustrate the RP based local moves by considering a randomly generated initial design A

: (N,k) = (7,2) (see Figure 3.2(a)). Then a neighborhood solution of A, by considering points

(0,2), (4,4) (here both are critical points), is LHD B, obtained after swapping the second

coordinate of the points (0, 2) and (4,4) (See Figure 3.2 (b)).

Also note that LHD B is an improving neighbor of LHD A, since (D1, J1)(B) = (2,1) whereas (D1,

J1)(A) = (2,3).

3.6 Acceptance Rule: Among the two type of local moves [Jamali (2009)], we considered

Best Improve (BI) acceptance rule as there are no significant difference regarding output (see

[Jamali (2009)]). For the BI acceptance rule, the whole neighborhood of the current solution is

searched for the best improving neighbor. We warn again the reader that the meaning of “Y is

better than X” can be defined accordingly with the Opt(D1, J1) or Opt(φ) optimality criterion. So

for the Opt(D1, J1) optimality criterion: “Y is better than X” if

D1(Y) > D1(X) or (D1(X) = D1(Y) and J1(X) > J1(Y)).

Figure 3.2: Illustration of Neighborhood solutions for LMRpD1 based local search
(LS) procedure

Initial solution – LHD A After single Local Move, nbh sol. LHD B After complete LS – LHD C

Fig: (a) D1(Xr)=2, J1(Xr)=3 Fig: (b) D1(Xb)=2, J1(Xb)=1 Fig: (c) D1(Xc)=8, J1(Xc)=4
x x x

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1266

GSJ© 2021
www.globalscientificjournal.com

 15

On the other hand for Opt(φ) optimality criterion : “Y is better than X” if

φ p(Y) <φ p(X),

where φ p is defined by (5).

3.7 Perturbation Move (PM)

Perturbation is the key operator in ILS, allowing the algorithm to explore the search space by

jumping from one local optimum to another. Basically, a perturbation is similar to a local move,

but it must be somehow less local, or, more precisely, it is a move within a neighborhood larger

than the one employed in the local search. Actually the perturbation operator produces the initial

solutions for all the local searches after the first one. Among the two types of perturbation

operators, say, (i) Cyclic Order Exchange (COE) and (ii) Pairwise Crossover (PC) proposed in

[Jamali (2009)], we consider COE.

Cyclic Order Exchange (COE): Our first perturbation move procedure is Cyclic Order

Exchange (COE). The operator COE produce a cyclic order exchange upon a randomly selected

single component (column) of a randomly selected portion of the design points (rows). Among

the three variant of COE perturbation move techniques: Single Cyclic Order Exchange (SCOE)

perturbation operation, Multiple Components Cyclic Order Exchange (MCCOE), and Multiple

Single Cyclic Order Exchange (MSCOE) [Jamali (2009)], we consider here only SCOE

technique.

Single Cyclic Order Exchange (SCOE): For SCOE, we randomly choose two different rows

(points), say xi and xj , such that i < j and j − i ≥ 2, in the current LHD X*. Then, we randomly

choose a column (component), say ℓ. Finally, we swap in cyclic order the value of component ℓ

from point xi to point xj. The pseudo-code structure for SCOE is the following.

The pseudo-code structure for SCOE is the following.

Step 1: randomly select two different points xi and xj

such that i < j and j − i ≥ 2

Step 2: Randomly choose a component ℓ

Step 3a: set temporarily xt
j  = xj 

for t = j, j − 1, . . . , i + 1 do

Step 3b: Replace the component x(t)ℓ by x(t−1)ℓ

end for

Step 3c: and replace xi  by xt
j 

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1267

GSJ© 2021
www.globalscientificjournal.com

 16

Note that we require j − i ≥ 2 because otherwise the perturbation would be a special case of the

local move employed in the local search procedure. We illustrate the SCOE perturbation by an

example. Assume we have the current LHD X* with N = 6 and k = 8

=



























x
x
x
x
x
x

6

5

4

3

2

1

 =



























35100245
20015134
11524023
02433512
53342401
44251350

 (7)

Now we randomly choose two rows (points), say x2 and x5 and we randomly choose the column

(component) ℓ = 4. Then, after the SCOE perturbation we get the following LHD X′ (bold faces

denote the values modified with respect to X*),

X ′=



























x
x
x
x
x
x

6

5

4

3

2

1

 =



























35100245
2001134
1152023
0243512
5334401
44251350

4
3
2
5

 (8)

Note that SCOE only slightly modifies the current LHD X* but this exactly follows the spirit of

ILS, where the perturbation should keep unchanged large portions of the current solution and

should not completely disrupt it structure.

REFERENCES

Aparna D., 2012 , “Iterated Local search Approaches For Maximin Latin Hypercube

Designs”, M. Phil thesis paper, Department of Mathematics, Khulna university of

Engineering & Tecnology, Khulna.

Audze P., and V. Eglais, 1997, “New approach to planning out of experiments, problems

 of dynamics and strength”, Vol. 35, pp. 104-107.

Bates S. J., Sienz J. and Langley D.S., 2003, “Formulation of the Audze-Eglais Uniform

Latin Hypercube design of experiments”, Advanced in Engineering Software, Vol. 34,

Issue 8, pp. 493-506.

Blondel V. D., Tsitsiklis J. N., 2000, “A survey of computational complexity results in

systems and control”, Vol. 36, pp. 1249-1274,

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1268

GSJ© 2021
www.globalscientificjournal.com

 17

Fang, K. T., D. K. J. Lin, P. Winkler, and Y. Zhang (2000b), “Uniform design: theory

 and application”, Technometrics, Vol. 42, pp. 237–248.

Felipe A.C. Viana, Venter G., 2009(Oct), “An Algorithm for Fast Optimal latin

 Hypercube Design of Experiments”, pp.1-4, Dol: 10.1002/nme.2750

Grosso A., Jamali A. R. J. U. and Locatelli M., 2009, “ Finding Maximin Latin

 Hypercube Designs by Iterated Local Search Heuristics”, European Journal of

 Operations Research, Elsevier, Vol. 197, pp. 541-547.

Grassberger P., 1997, “Pruned-enriched Rosenbluth method: Simulations of θ polymers

 of chain length up to 1000000”, Phys. Rev., Vol. 56(3), pp. 3682-3693

Helton J. C. & Davis F. J. 2000, “Sampling-based methods, in Sensitivity Analysis”, Ed.

Iman, R. L. and Conover W. J. (1982b), “Small-sample sensitivity analysis techniques

 for computer models, with an application to risk assessment. Communications in

 Statistics – Part A”, Theory and Methods 17, 1749–1842.

Jin R., W. Chen, and A. Sudjianto, 2005, “An efficient algorithm for constructing optimal

 design of computer experiments”, Journal of Statistical Planning and Inference,

 Vol. 134(1), pp. 268-287.

http://www.wikipedia.org/w/wiki.phtm?tittle=Big O notation

http://www.cs.toronto.edu/~vassos/teaching/c73/handouts/brief-com

http://www.spacefillingdesigns.nl

GSJ: Volume 9, Issue 1, January 2021
ISSN 2320-9186 1269

GSJ© 2021
www.globalscientificjournal.com

http://www.wikipedia.org/w/wiki.phtm?tittle=Big
http://www.cs.toronto.edu/~vassos/teaching/c73/handouts/brief-com
http://www.spacefillingdesigns.nl/

