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Abstract: Computational complexity theory is a branch of the theory of computation in 

theoretical computer science and mathematics that focuses on classifying computational 

problems according to their inherent difficulty, and relating those classes to each other. It is 

shown that the Iterated Local search(ILS) approach not only able to obtain good LHDs in the 

sense of space-filling property but the correlations among the factors are acceptable i.e. multi-

collinearity is not high. Anyway from the point of view of computational complexity the problem 

is open. When number of factors or number of design points is large then it requires hundreds of 

hours by the brute-force approach to find out the optimal design. So when numbers of factors as 

well as number of experimental points are large, the heuristic approaches also require a couple 

of hours or even more to find out a simulated optimal design. So time complexity is an important 

issue for a good algorithm. Specially for the need of real time solution, the time complexity of the 

ILS approaches is analyzed. The inner most view as well as the effect of the parameters of the 

algorithms have been observed and have been analyzed. After analyzing, the time complexity 

model of the algorithms for two optimal criterion namely Opt (D1, J1) as well as Opt(Φ)  has 

been developed. 
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1.  INTRODUCTION 
There are two type of complexity regarding time and space. Time complexity is concerned with 

the analysis of the elapsed time of an algorithm; whereas, how much memory required is 

discussed in space complexity. Time Complexity comparisons are more interesting than space 

complexity. The programming language chosen to implement the algorithm should not affect in 

time complexity analysis. There are some other factors that should not affect in time complexity 

are-: the quality of the compiler, the speed of the computer on which the algorithm is to be 

executed. 

The objectives of the time complexity analysis are to determine the feasibility of an algorithm by 

estimating an upper bound on the amount of work performed. Objectives of the time complexity 

analysis are also to compare different algorithms before deciding on which one to implement. 

Time complexity analysis is based on the amount of work done by the algorithm. It expresses the 

relationship between the size of the input and the run time for the algorithm. Time complexity is 

usually expressed as proportionality, rather than an exact function.  

       There are many different types of complexity involved in actual examples of scientific 

modelling. Conflation of these into a single “complexity” of scientifically modelling a certain 

system will generally result in confusion. 

There might be: 

         • The complexity of the data: the difficulty of encoding of a data model compactly given a 

coding language; 

         • The complexity of the informal (mental) model: the difficulty in making an informal 

prediction from the model given hypothetical conditions; 

         • The complexity of using the formal model to predict aspects of the system under study 

given some conditions; 

         • The complexity of using the formal model to explain aspects of the system under study 

given some conditions. 

Each of these will be relative to the framework it is being considered in (although this and the 

type of difficulty may be implicit).  

Many important complexity classes can be defined by bounding the time or space used by the 

algorithm.  
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2.  Iterated Local Search   

Iterated Local Search (ILS) is a meta-heuristic designed to embed another, problem 

specific, local search as if it were a black box. This allows ILS to keep a more general 

structure than other meta-heuristics currently in practice. This simple type of search has 

been reinvented numerous times in the literature, with one of its earliest incarnations 

appearing in [Lin and Kernighan (1973)]. This simple idea [Baxter et al. (1981)] has a 

long history, and its rediscovery by many authors has lead to many different names for 

iterated local search like iterated descent [Baum.et al. (1986) ], large-step Markov chains 

[Martin et al. (1991)], iterated Lin-Kernighan [Johnson D. S. (1990)], chained local 

optimization [Martin Otto (1996)], or combinations of these [Applegate et al. (1999)]. ILS has 

many of the desirable features of a meta-heuristic: it is simple, easy to implement, robust 

and highly effective. The essence of the iterated local search meta-heuristic can be given 

in a nut-shell: one iteratively builds a sequence of solutions generated by the embedded 

heuristic, leading to far better solutions than if one were to use repeated random trials of 

that heuristic. The essential idea of ILS lies in focusing the search not on the full space of 

solutions but on a smaller subspace defined by the solutions that are locally optimal for a given 

optimization engine. The purpose of this review is to give a detailed description of iterated local 

search and to show where it stands in terms of performance. So far, in spite of its conceptual 

simplicity, it has lead to a number of state-of-the art results without the use of too much problem-

specific 

knowledge; perhaps this is because iterated local search is very malleable, many 

implementation choices being left to the developer. 

 

2.1 Experimental Designs:  

A computer experiment is modeled as a realization of a stochastic process, often in the presence 

of nonlinearity and high dimensional inputs [Sacks et al. (1989a)]. In order to perform efficient 

data analysis and prediction and in order to determine the best settings for a number of design 

parameters that have an impact on the response variable(s) of interest and which influence the 

critical quality characteristics of the product or process, it is often necessary to set a good design 

as well as to optimize the product or process design. In computer experiments, instead of 

physically doing an experiment on the product, mathematical models describing the 

performance of the product are developed using engineering/physics laws. Then the 

mathematical models are solved on computers through numerical methods such as the 
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finite element method. A computer simulation of the mathematical models is usually time 

consuming and there is a great variety of possible input combinations. For these reasons, 

meta-models [Barthelemy and Haftka (1993); Sobieski and Haftka (1997)] that model the 

quality characteristics as explicit functions of the design parameters are constructed. Such 

a meta-model, also called a (global) approximation model or surrogate model, is obtained 

by simulating a number of design points. Since a meta-model evaluation is much faster 

than a simulation run, in practice such a meta-model is used, instead of the simulation 

model, to gain insight into the characteristics of the product or process and to optimize it. 

Fang [Fang et al. (2000a); Fang et al. (2000b)] defined a uniform design as a design that 

allocates experimental points uniformly scattered on the domain. Uniform designs do not 

require orthogonal. They consider projection uniformity over all sub dimensions. In [Fang 

et al. (2000b)] they classify uniform designs as space-filling designs. 

Lee and Jung (2000) proposed maximin Eigen value sampling, that maximizes minimum 

Eigen value, for Kriging model where maximin Eigen value sampling uses Eigen values of 

the correlation matrix. The Kriging model is obtained from sampled points generated by 

the proposed method. Note that the Kriging model [Krige (1951)] is used to compare the 

characteristics of proposed sampling design with those of maximum entropy sampling. 

The maximin design problem has also been studied in location theory. In this area of 

research, the problem is usually referred to as the max-min facility dispersion problem 

[Erkut (1990)]; facilities are placed such that the minimal distance to any other facility is 

maximal. Again, the resulting solution is certainly space-filling, but not necessarily 

noncollapsing. 

In statistical environments Latin Hypercube sampling is often used. In such an approach, 

points on the grid are sampled without replacement, thereby deriving a random 

permutation for each dimension ([McKay et al. (1979)]). 

Giunta [Giunta et al. (2003)] gives an overview of pseudo- and quasi-Monte Carlo 

sampling, Latin hypercube sampling, orthogonal array sampling, and Hammersley 

sequence sampling 

 

3.  Maximin Latin Hypercube Designs: 

We will denote as follows the s-norm distance between two points xi and xj,∀  i, j = 1, 2, · · · , N: 

 

dij=║xi− xj║s                                                                                                
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Unless otherwise mentioned, we will only consider the Euclidean distance measure (s = 2). In 

fact, we will usually consider the squared value of dij (in brief d), i.e. d2 (saving the computation 

of the square root). This has a noticeable effect on the execution speed since the distances d will 

be evaluated many times. 

 

3.1  Definition of LHD: 

A Latin Hypercube Design (LHD) is a statistical design of experiments, which was first defined 

in 1979 [McKay et al. (1979)]. An LHD of k-factors (dimensions) with N design points, xi = (xi1, 

xi2 · · · xik) : i = 0, 1, . . . , N−1 , is given by a N×k- matrix (i.e. a matrix with N rows and k 

columns) X, where each column of X consists of a permutation of integers 0, 1, · · · , N−1 (note 

that each factor range is normalized to the interval [0, N −1] ) so that for each dimension j all xij , 

i = 0, 1, · · · , N −1 are distinct. We will refer to each row of X as a (discrete) design point and 

each column of X as a factor (parameter) of the design points. 

We can represent X as follows 
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such that for each j∈{1, 2 · · · , k} and for all p, q∈{0, 1, · · · ,N − 1} with p ≠ q; xpj ≠ xqj holds. 

Given a LHD X and a distance d, let 

                                                              
D = {d(xi, xj) : 1 ≤ i < j ≤ N}. 

 
 

Note that |D| ≤ 







2
n

. We define Dr(X) as the r-th minimum distance in D, and Jr(X) as the number 

of pairs {xi, xj} having d (xi, xj) = Dr(X) in X. 

 

4. COMPLEXITY ANALYSIS OF THE ALGORITHM IN EXPERIMENTAL 

DOMAIN: CONSIDER ILS (D1, J1): 

As we know that there are mainly two kind of complexity – time complexity and space 

complexity. It is noted that among the above two complexities, time complexity is most 

important for analysis any algorithm. Moreover, in any CPU,   
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                       Table 4.1:  Pseudo code of the ILS (D1, J1) algorithm. 

While do 
       Set NonImpIteration = 0 
       Whiledo 
            for   i = 1,……, N do      
                for j = i + 1,….., N do 
                     Step 1=  If  {i,j} SCpt(X) ≠ φ  
                     then:  let D1 = D1

(S), k/ = 0 
                     for l = 1,…., k do 
                            Step 2: Swap (Xil, Xjl)  
                            Step 3: Compute di

X

u

)1(

,
/
+   until   di

X

u

)1(

,
/
+ ≥ 1D′  

                            i/∀ = i .j: u = 0………N-1; u i/≠  
                             else break 
                            Step 4 :Set  k/= k and 1D′= min d X

JI
)1( +  

                      end for  
                     Step 5:   Upload best LHD  if any 
                     else continue 
                end for  
           end for  
       Step 6: Repeat the three loops if  there has been at least an improvement 
      Otherwise STOP 
      Return  X/   
      Step 7: if X/   is better then set X= X/ and NonimpIteration = 0 
    Otherwise increase NonimpIteration by one 
    Step 8: if MaxNonImp > NonimpIteration 
 PM : X/ = ∈(X) and Repeat the loops  
Otherwise STOP 
Return X 
 

 

are available spaces for running any algorithm. Also, now-a-days, the crisis of space for running 

an algorithm is almost solved by the presence of high memory based computer. Therefore, our 

main attention is to analyze the time complexity of the algorithms of ILS approach. 

 

Before analysis the time complexity of the ILS (D1, J1) algorithm, It is worthwhile to present it in 

a Pseudo code.  The Pseudo code of the ILS (D1, J1) algorithm is displayed in the Table (4.1).                           

 

As the aim of this section is to experimentally assess the computational cost of the proposed 

ILS(D1) algorithm, we will first derive the number of operations required by a single local 

search, and then those for a single run of ILS (from now on in this section we will give as 

understood that we are discussing the ILS(D1,J1) version). For these experiments we consider k = 
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3, 5, 7, 10 and N = 10i: i = 1, 2, . . ., 10. We use the following parameter setting: Acceptance 

criteria= Best Improve (BI), Local Search=RP; Stopping criteria MaxNonImp=1000, 

Perturbation moves=SCOE and number of trials is one if otherwise not defined. 

 

Assume that we are at iteration s of a local search and that the current value is D1
(s),J1

(s)
. The 

basic operation in a local search is the swap one between two points i and j. In order to compare 

the new candidate solution with the current one, we need to evaluate D1
(s+1) and J1

(s+1). Such 

operation does not require computing from scratch all the distances within the candidate solution. 

Indeed, only those involving points i and j are changed with respect to the current solution. 

Therefore, with a proper implementation we should only compute O(N) new distances, each of 

which requires a number O(1) of operations (indeed, we do not need to compute the distance 

from scratch but only update the part corresponding to the single coordinate whose value has 

been changed). In fact we do not always need to compute all the new distances: as soon as we 

compute a distance lower than D1
(s) we can stop, since the candidate solution is certainly worse 

than the current one. Therefore, each swap operation requires at most O(N) operations.  

 

The number of swap operation is not known in advance. Indeed, swap moves are restricted only 

to those involving at least a critical point. In Figure 4.1 the x-axis reports N and the y-axis reports 

the percentage of actually analyzed swap moves (those involving at least one critical point) over 

the total number of possible swaps in each run (those involving all possible pairs of points), for k 

= 3, 5, 7, 10. The black curve represents the percentage of analyzed swaps, the red curve 

represents the percentage of “avoided” swaps, i.e. those not involving critical points. We observe 

that for very small N (N <14) most of the possible swaps are to be considered, but as N grows the 
percentage of swaps to be considered drops dramatically, quickly falling below 10% for N > 30.   
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Figure 4.2 shows the history of the number of critical points during the local searches for the 

case (k, N) = (7, 50). We observe that most of the times the number of critical points is 1 or 2, 

and only occasionally is greater than 6. Figure  4.3 shows with a bar diagram the maximum 

number of critical points (MCP) obtained during the run of the algorithms for each (k, N). 

Apparently, we cannot observe any significant impact of N and k on the values of MCP. Indeed 

such values are always below 20, and most of the time they are near 10. In Figure 4.4 we report 

the average number of critical points in each neighborhood,   rounded to the    largest integer;   

this number is always stuck at 2, for all  k = 3, 5, 10. So we can confidently claim that the size of 

the problem has practically no impact on the number of critical points in each visited 

configuration. 

Figure 4.1:  The percentage of pairs involving and not involving critical points 
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Since we need to consider all the swap moves involving at least one critical point, the above 

considerations lead us to conclude that the total number of swap moves that we need to perform 

at a given iteration is simply O(kN) (factor N is due to the number of pairs involving at least a 

critical point, factor k is due to the fact that, given a pair, we have a swap operation for each 

possible coordinate). 

 

Figure 4.2: The history of number of critical points for (k,N) = (7, 50) during local Move 

Figure 4.3: The impact of N on Maximum Critical Points during history of evaluation 

N 
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The last thing, we need to consider, in order to evaluate the number of operations required by a 

local search, is the number of times the While-Loop is executed, i.e. the number of times an 

improving solution is observed during a local search. We will denote this number by WL. We 

will perform some experiments in order to find the impact of N as Figure 4.5 shows the history 

of WL during Local Search for (a) (k, N) = (7, 20)) and (b) (k, N) = (7, 50). We observe in Figure 

4.5 (a) that most of the time WL lies near 10 and the largest value observed in the figure is less 

than 25. In Figure (b) we notice that most of the time the number WL lies near 30 and the 

maximum value of WL (MWL) is near 80. That is WL (average as well as maximum value) 

increases together with N. Figure 4.6 shows a cleaner representation of the impact of N on the 

number MWL. Apparently there exists a linear relation between WL and N. We can also observe 

an impact of the dimension k on WL. In order to investigate the dependence on k, we performed 

another series of experiments, for k = 5i : i = 1, 2,… , 10 and N = 10, 25, 50, 100. Note that for 

finding out the impact on the local search phase, WL is averaged over the corresponding number 

Figure 4.4: The impact of N on average Critical Points during history of evaluation 

Figure 4.5: The history of WL for (k, N) = (7, 20) and (k, N) = (7, 50) during Local 
Search 
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of performed perturbations. We observe in Figure 4.7 that there is a significant impact of k for all 

N : N = 10, 25, 50, 100 on the average number of WL (AWL). 
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 We observe that the trend shown by WL is roughly 

                             T ≈ kc 

where 0 〈 c 〈 1, i.e. a fractional power functional dependence of WL on k. In conclusion, it has 

been experimentally seen that the number WL is O(N kc). 

 
Now, if we sum up the time required by a single swap (at most O(N)), the total number of swaps 

per iteration O(Nk), and the total number of iterations WL O(Nkc), we conclude that a local 

search requires at most O(krNq) for some r and q (in particular, we might conjecture that q is 

close to 3 and r ranges between 1 and 2). In order to validate this result we performed some 

experiments whose outcome is shown in Figure 4.8. In such figure we report the average 

Figure 4.6: The impact of N on (a) Maximum WL (b) Average WL during history of 

Local Search 

Figure 4.7: The Impact of k on AWL during Local Search 
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computation time per local search as a function of N for the three different values k = 3, 7, 10 

(the time is the average per local search over 10 runs of ILS). 
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We assume, as derived above, that the approximate time complexity for a local search of the ILS 

approach is 

                                   T ≈ O(krNq), 

and will try to determine practical values for r and q experimentally. In Figure 4.8, we observe 

that, for each k, the curves of elapsed times grow non-linearly with respect to the increasing of N. 

To find out the approximate value of q we fitted the data in a linear regression for each k as , 

                     log(T ) = q log(N) + r log(k), 

 where T = Average elapsed time in each LS. We observe from Figure 4.9 that the range of q is 

2.5 〈  q ≤  3. In particular, as k increases it seems that q tends to 3, which is the value previously 

conjectured. 

 

  Figure 4.8: The History of Elapsed time 
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To find out the approximate value of r we performed some experiments by considering LHDs k 

= 5i : i = 1, 2, . . . , 10 with N = 10, 25, 50, 100. Figure 4.10 shows the impact of k on average 

elapsed time in each LS. In the figure we observe that the average elapsed time T increases 

slightly more than linearly with respect to k. In order to find out the approximate value of r we 

have fitted the data (see figure 4.10). We notice that the range of r is 1 〈  r ≤2, which is again in 

accordance with what was previously conjectured.       
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Chî 2/DoF = 0.00002
R^2 =  0.99994
  
a 2.97833 ±0.00332
b 5.2474 ±0.00108

    k=10

log (N)

log 
(T)

y = a*(x-b

 

           
We remind the reader that this practical time complexity ≈ O(krNq), with r ∈ (1, 2) and q ∈ (2, 

3), for LS has been estimated in the environment of ILS instead of evaluating a stand-alone local 

search. According to our observations, the local search usually performs less iterations in the ILS 

environment, due to the “partially optimal” structure preserved by the perturbation

Figure 4.9: The values of log(T) plotted against log(N) 
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               Figure 4.10: The approximate time complexity for LS with respect to k 
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In order to get to an empirical evaluation of the number of operations required by an ILS run, we 

still need to evaluate the number of perturbations (and, thus, of local searches) performed during 

an ILS run. Then, we would like to find out the impact of N as well as k on the number of 

perturbations during each ILS run. For these experiments we performed ten runs of ILS and 

considered the average number of perturbations per run. For these experiments we considered 

LHDs with k = 3, 7, 10 and N = 3, 4, . . . , 100. From the experiments (see Figure 4.11) we notice 

that there is a significant impact of N on the number of perturbation invoked for all k considered. 

It seems that the number of  invoked perturbations is somewhat logarithmic with respect to N 

(see the dot curve in Figure 4.11). 

Figure 4.11: The impact of N on the number of perturbations 
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In order to find the impact of k on the number of perturbations,  we considered LHDs: for each N 

: N = 10, 25, 50, 100 ; k = 5i : i = 1, . . . , 10. From the experiments we remark that there is no 

significant impact of k on the perturbation invoked during the run (see the bar diagram in Figure 

4.12). Now, if we put together the observation that the overall number of perturbations/ local 

searches per ILS run is O(log(N)), and the previous one about the O(krNq) about the complexity 

of local searches, we can conclude that a bound  on the overall time required by a single ILS run 

is O(krNq log(N)), a fact that it is also experimentally confirmed by the analysis of the elapsed 

times per ILS run. 

Finally, the analysis of time complexity for ILS (D1, J1) is  given in a tabular form along with the 

pseudo code of the algorithm.  Table 4.2 represents the analysis of the time complexity for the 

ILS (D1, J1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: The impact of k on the number of perturbations 
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While do 
    Set NonImpIteration = 0 
       Whiledo 
       for   i = 1,……, N do      
         for j = i + 1,….., N do 
        Step 1=  If  {i,j} SCpt(X) ≠ φ  
          then:  let D1 = D1

(S),  K/ = 0 
            for l = 1,…., k do 
                   Step 2: Swap (Xi, Xjl)  
                   Step 3:                        
                   Step 3: Compute di

X

u

)1(

,
/
+   

                   until di
X

u

)1(

,
/
+ ≥ 1D′  

               i/∀ = i .j: u = 0………N-1; 

                 u i/≠  
                   else break 
                 Step 4 :Set  k/= k and  
                   1D′= min d X

JI
)1( +  

            end for  
            Step 5:   Upload best LHD  
                         if any 
            else continue 
         end for  
       end for  
     Step 6: Repeat the three loops if  
          there has been at least an  
          improvement 
    Otherwise STOP 
    Return  X/   
    Step 7: if X/   is better then 
   set X= X/ and NonimpIteration = 0 
     Otherwise increase 
NonimpIteration by on 
 Step 8: if MaxNonImp > 
NonimpIteration 
 PM : X/ = ∈(X) and Repeat the 
loops  
Otherwise STOP 
Return X 
 

 
 
 
 

               Table 4.2: Analysis of time complexity for ILS (D1, J1) 
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5. COMPLEXITY ANALYSIS OF THE ALGORITHM IN EXPERIMENTAL  
DOMAIN: CONSIDER ILS(Φ) 
 
In this section we will perform some experiments to derive a formula connecting the 
computation times of ILS(φ ) with N and k. The analysis will be similar to the one previously 
done for ILS(D 1 ). For these experiments we consider ILS(φ ) with the following setting: Local 
Search: acceptance criterion=First Improve(FI), local move = φRpLM ;  stopping criterion: 
MaxNonImp =100; Perturbation Technique = SCOE. 
 
 
 
. 

While do 
    Set NonImpIteration = 0 
    Whiledo 
         for   i = 1,……, N do 
             for j = i + 1,….., N do 
                  Step 1=  let D1 = D1

(S), k/ = 0 
                    for l = 1,…., k do 
                          Step 2: Swap (Xil, Xjl)  
                            Step 3: Compute di

X

u

)1(

,
/
+   until   di

X

u

)1(

,
/
+ ≥ 1D′  

                            i/∀ = i .j: u = 0………N-1; u i/≠  
                             else break 
                            Step 4 :Set  k/= k and 1D′= min d X

JI
)1( +  

                      end for  
                     Step 5:   Upload best LHD  if any 
                     else continue 
                end for  
           end for  
       Step 6: Repeat the three loops if  there has been at least 
an improvement 
      Otherwise STOP 
      Return  X/   
      Step 7: if X/   is better then set X= X/ and 
NonimpIteration = 0 
    Otherwise increase NonimpIteration by one 
    Step 8: if MaxNonImp > NonimpIteration 
 PM : X/ = ∈(X) and Repeat the loops  
Otherwise STOP 
Return X 
 

                          

 Again before analysis the time complexity of the ILS(φ ) algorithm, It is worthwhile to present 

it  in a Pseudo code.  The Pseudo code of the ILS(φ ) algorithm is displayed in the  Table (5.1).                           

Table 5.1: Pseudo code of the ILS(Φ) algorithm 
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We will first discuss the time required by a local search. We do not discuss the time required by 

each swap move: this is the same as in ILS(D 1 ) and is at most O(N). However, the number of 

swap moves which have to be attempted at each iteration is now different. Indeed, since we are 

considering the LM φRp  local move, we have to consider all possible pairs of points (also those 

not involving critical points). Therefore, the number of swap operations is O(kN 2 ). Note that this 

is an upper bound: since we are employing the FI acceptance criterion, we perform swap 

operations only until an improvement is observed. 

 
Next, we need to derive some formula for the number of times the While-Loop is executed 

during a local search, i.e. for the number of iterations performed by a local search. As before, we 

will denote this number with WL. Note that with respect to ILS(D1) we made a change in the 

local search, adopting the FI acceptance criterion rather than the BI one. Figure 5.1 shows the 

history of WL values during different local searches for (a) (k,N) = (7, 10)) and (b) (k,N) = (7, 

50). We observe in Figure 5.1(a) that most of the time WL lies near 5 and never exceeds 12, 

whereas in (b) we notice that most of the time WL lies near 35 and the maximum value of WL is 

near 90. Therefore, it seems that WL increases together with N both for what concerns Average 

WL (AWL) values and Maximum WL (MWL) values. Figure 5.2 shows more clearly the 

relation between N and MWL as well as AWL. We observe that there is a linear impact of N. In 

order to establish the dependency of WL on k, we perform other experiments with k = 2i : i = 1, 

Figure 5.1: The history of WL values for (k,N) = (7, 10) and (k,N) = (7, 50) during 

Local Search 
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2……,40 and N = 10, 25, 50, 75. The relation between WL and k is not quite clear. Indeed, we 

have observed in Figure 4.7 that WL is increasing with k for k < 10 but after that it decreases and 

finally tends to get stable around a constant value. It seems that by enlarging k the local search is 

able to reach a local minimum in quite few iterations with respect to lower values of k. This 

might be due to the fact that by increasing k we also enlarge the size of the neighborhood 

explored at each iteration of a local search.  
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                Figure 5.2: The impact of N on (a) MWL (b) AWL 
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Figure 5.4: The Impact of k on execution of AWL during Local Search with FI(First 

Improve) in Opt(D 1 , J 1 ) 

                 Figure 5.3: The Impact of k on AWL 
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In what follows we will neglect the dependency of WL on k and only consider WL as O(N), but 

we should keep in mind that at small k values a dependency of WL on k is in fact present. Since 

when testing ILS(D 1 ) we employed the BI acceptance criterion, we would like to check, for 

completeness, if such phenomenon, i.e. the non dependency of WL on k at large k values, is 

somehow connected to the fact that we have considered the FI acceptance criterion. For this 

reason, we have performed another experiment with ILS(D 1 ) but with the FI acceptance 

criterion. We considered LHDs: k = 2i : i = 1, 2, ……,40 with N = 10, 50. We observe in Figure 

5.4 that WL increases quickly at small k values, while at large k values WL still increases, 

though more slowly. Such behavior is quite similar to the one observed in ILS(D 1 ) with the BI 

acceptance criterion. If we put together the expected times for all the components of a local 

search, we can conclude that the approximate time required by a local search is 

                                T ≈ O(k r N q ), 

where we expect that the q value is close to 4, while the r value could range between 1 and 2. In 

order to find out the values of q and p experimentally, we performed the following experiments. 

At first we perform experiments to find the approximate value of q. For these experiments we 

considered k = 5 and N = 20, 21,…….. 80 and run ILS(φ) ten times for each LHD. In Figure 5.5, 

we plotted the average execution time per local search as a function of N. We observe that the 

increase with N is non linear. Therefore, we applied the logarithmic transformation 

                            log T = q(logN − b), 
where T denotes the average elapsed time, and then fitted the data in a linear regression. 

According to the data, we have that the value of q is 3.92 (see Figure 5.6), thus very close to the 

expected one, 4. 
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Figure 5.5: Elapsed time per local search as a function of 
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 Now to find out the approximate value of r we performed experiments by considering LHDs 

with k = 2i : i = 1, 2, . . . , 25 with N = 50. Figure 5.7 shows the impact of k on the average 

elapsed time per local search. In the figure we observe that T increases somewhat linearly with 

the increase of k. In order to find out the approximate time complexity with respect to k, we have 

fitted the data (see Figure 5.8) and detected a value of r approximately equal to 1.13, again in 

accordance with what previously derived . 
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              Figure 5.6: Linear regression between log(T) and log(N) 
 
 

Figure 5.7: Impact of k on T 
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In order to 

derive the overall time complexity of ILS(φ ) we still need to derive a formula for the number of 
perturbations (i.e. the number of local searches) performed during each ILS run. To find out the 
impact of N on such number we considered LHDs with k = 5 and N = 3, 4, . . . , 80 performing 
ten runs for each LHD. From the experiments (see Figure 5.9) we notice that there is a 
significant impact of N on the number of perturbations. We also try to establish a functional 
relation between N and the number of perturbations. Similarly to what already observed for 
ILS(D 1 ), the relation appears to be a logarithmic one with respect to N (see the dot curve in 
Figure 5.9). We point out that in both cases such logarithmic behavior is probably due to the fact 
that a fixed value for MaxNonImp (100 for ILS(φ ), 1000 for ILS(D 1 )) has been employed in all 
these tests, so that the total number of perturbations tends to get stable as we increase N. 
 

To find out the impact of k on the number of perturbations, we considered LHDs with N = 50 and 

k = 2i : i = 1, . . . , 10. From the experiments we notice that, in spite of a peak at k = 6, there is no 

significant impact of k on the number of perturbations invoked during a run (see the bar diagram 

in Figure 5.10). 

 

Figure 5.8: The approximate time complexity of k for LS obtained by the     
experiments 

 

Figure 5.9: Relation between the number of perturbations and N 
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In conclusion, summing up all the previous observations, we have that the time required for a 

single ILS(φ ) run appears to be O(k r N q log(N)), with r slightly larger than 1 and q slightly lower 

than 4. 

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

Num
ber

 of 
Per

turb
atio

n

k

 N=50

 
 

 
Finally, the analysis of time complexity for ILS (Φ) is given in a tabular form along with the 

pseudo code of the algorithm.  Table 5.2 represents the analysis of the time complexity for the 

ILS (Φ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Impact of k on the number of perturbations 
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While do 
    Set NonImpIteration = 0 
    Whiledo 
         for   i = 1,……, N do 
             for j = i + 1,….., N do 
               Step 1= D1 = D1

(S), k/ = 0  
                   for l = 1,…., k do 
                       Step 2: Swap (Xil, Xjl)  
                       Step 3: Compute di

X

u

)1(

,
/
+    

                       until   di
X

u

)1(

,
/
+ ≥ 1D′  

                       i/∀ = i .j: 
                        u = 0………N-1; 
                        u i/≠  
                        else break 
                        Step 4 :Set  k/= k  
                        and 1D′= min d X

JI
)1( +  

                    end for  
           Step 5: Upload best LHD if any 
                     else continue 
              end for  
         end for  
     Step 6: Repeat the three loops if  
     there has been at least an 
     improvement 
 Otherwise STOP 
 Return  X/   
 Step 7: if X/   is better then set X= X/ 
and NonimpIteration = 0 
    Otherwise increase 
NonimpIteration by one 
    Step 8: if MaxNonImp > 
NonimpIteration 
 PM : X/ = ∈(X) and Repeat the loops  
Otherwise STOP 
Return X 
 

     

 

          

 
 

                                  Table 5.2: Analysis of time complexity for ILS (Φ) 
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