

GSJ: Volume 9, Issue 2, February 2021, Online: ISSN 2320-9186

www.globalscientificjournal.com

COMPLEXITY ANALYSIS OF ITERATED LOCAL SEARCH ALGORITHM IN
EXPERIMENTAL DOMAIN: CONSIDER ILS (D1, J1) AND OPT (Φ).

Parimal Mridha, Lecturer, Mathematics Department,

Military Collegiate School Khulna (MCSK), Bangladesh.

parimalmridha@yahoo.com

Abstract: Computational complexity theory is a branch of the theory of computation in

theoretical computer science and mathematics that focuses on classifying computational

problems according to their inherent difficulty, and relating those classes to each other. It is

shown that the Iterated Local search(ILS) approach not only able to obtain good LHDs in the

sense of space-filling property but the correlations among the factors are acceptable i.e. multi-

collinearity is not high. Anyway from the point of view of computational complexity the problem

is open. When number of factors or number of design points is large then it requires hundreds of

hours by the brute-force approach to find out the optimal design. So when numbers of factors as

well as number of experimental points are large, the heuristic approaches also require a couple

of hours or even more to find out a simulated optimal design. So time complexity is an important

issue for a good algorithm. Specially for the need of real time solution, the time complexity of the

ILS approaches is analyzed. The inner most view as well as the effect of the parameters of the

algorithms have been observed and have been analyzed. After analyzing, the time complexity

model of the algorithms for two optimal criterion namely Opt (D1, J1) as well as Opt(Φ) has

been developed.

Keywords: Computational complexity, Local search, Opt (D1, J1), Opt(Φ), Multi-collinearity.

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 242

GSJ© 2021
www.globalscientificjournal.com

http://www.globalscientificjournal.com/
mailto:parimalmridha@yahoo.com
http://en.wikipedia.org/wiki/Theory_of_computation
http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computational_problems
http://en.wikipedia.org/wiki/Computational_problems
http://en.wikipedia.org/wiki/Computational_problems
http://en.wikipedia.org/wiki/Complexity_class

1. INTRODUCTION
There are two type of complexity regarding time and space. Time complexity is concerned with

the analysis of the elapsed time of an algorithm; whereas, how much memory required is

discussed in space complexity. Time Complexity comparisons are more interesting than space

complexity. The programming language chosen to implement the algorithm should not affect in

time complexity analysis. There are some other factors that should not affect in time complexity

are-: the quality of the compiler, the speed of the computer on which the algorithm is to be

executed.

The objectives of the time complexity analysis are to determine the feasibility of an algorithm by

estimating an upper bound on the amount of work performed. Objectives of the time complexity

analysis are also to compare different algorithms before deciding on which one to implement.

Time complexity analysis is based on the amount of work done by the algorithm. It expresses the

relationship between the size of the input and the run time for the algorithm. Time complexity is

usually expressed as proportionality, rather than an exact function.

 There are many different types of complexity involved in actual examples of scientific

modelling. Conflation of these into a single “complexity” of scientifically modelling a certain

system will generally result in confusion.

There might be:

 • The complexity of the data: the difficulty of encoding of a data model compactly given a

coding language;

 • The complexity of the informal (mental) model: the difficulty in making an informal

prediction from the model given hypothetical conditions;

 • The complexity of using the formal model to predict aspects of the system under study

given some conditions;

 • The complexity of using the formal model to explain aspects of the system under study

given some conditions.

Each of these will be relative to the framework it is being considered in (although this and the

type of difficulty may be implicit).

Many important complexity classes can be defined by bounding the time or space used by the

algorithm.

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 243

GSJ© 2021
www.globalscientificjournal.com

2. Iterated Local Search

Iterated Local Search (ILS) is a meta-heuristic designed to embed another, problem

specific, local search as if it were a black box. This allows ILS to keep a more general

structure than other meta-heuristics currently in practice. This simple type of search has

been reinvented numerous times in the literature, with one of its earliest incarnations

appearing in [Lin and Kernighan (1973)]. This simple idea [Baxter et al. (1981)] has a

long history, and its rediscovery by many authors has lead to many different names for

iterated local search like iterated descent [Baum.et al. (1986)], large-step Markov chains

[Martin et al. (1991)], iterated Lin-Kernighan [Johnson D. S. (1990)], chained local

optimization [Martin Otto (1996)], or combinations of these [Applegate et al. (1999)]. ILS has

many of the desirable features of a meta-heuristic: it is simple, easy to implement, robust

and highly effective. The essence of the iterated local search meta-heuristic can be given

in a nut-shell: one iteratively builds a sequence of solutions generated by the embedded

heuristic, leading to far better solutions than if one were to use repeated random trials of

that heuristic. The essential idea of ILS lies in focusing the search not on the full space of

solutions but on a smaller subspace defined by the solutions that are locally optimal for a given

optimization engine. The purpose of this review is to give a detailed description of iterated local

search and to show where it stands in terms of performance. So far, in spite of its conceptual

simplicity, it has lead to a number of state-of-the art results without the use of too much problem-

specific

knowledge; perhaps this is because iterated local search is very malleable, many

implementation choices being left to the developer.

2.1 Experimental Designs:

A computer experiment is modeled as a realization of a stochastic process, often in the presence

of nonlinearity and high dimensional inputs [Sacks et al. (1989a)]. In order to perform efficient

data analysis and prediction and in order to determine the best settings for a number of design

parameters that have an impact on the response variable(s) of interest and which influence the

critical quality characteristics of the product or process, it is often necessary to set a good design

as well as to optimize the product or process design. In computer experiments, instead of

physically doing an experiment on the product, mathematical models describing the

performance of the product are developed using engineering/physics laws. Then the

mathematical models are solved on computers through numerical methods such as the

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 244

GSJ© 2021
www.globalscientificjournal.com

finite element method. A computer simulation of the mathematical models is usually time

consuming and there is a great variety of possible input combinations. For these reasons,

meta-models [Barthelemy and Haftka (1993); Sobieski and Haftka (1997)] that model the

quality characteristics as explicit functions of the design parameters are constructed. Such

a meta-model, also called a (global) approximation model or surrogate model, is obtained

by simulating a number of design points. Since a meta-model evaluation is much faster

than a simulation run, in practice such a meta-model is used, instead of the simulation

model, to gain insight into the characteristics of the product or process and to optimize it.

Fang [Fang et al. (2000a); Fang et al. (2000b)] defined a uniform design as a design that

allocates experimental points uniformly scattered on the domain. Uniform designs do not

require orthogonal. They consider projection uniformity over all sub dimensions. In [Fang

et al. (2000b)] they classify uniform designs as space-filling designs.

Lee and Jung (2000) proposed maximin Eigen value sampling, that maximizes minimum

Eigen value, for Kriging model where maximin Eigen value sampling uses Eigen values of

the correlation matrix. The Kriging model is obtained from sampled points generated by

the proposed method. Note that the Kriging model [Krige (1951)] is used to compare the

characteristics of proposed sampling design with those of maximum entropy sampling.

The maximin design problem has also been studied in location theory. In this area of

research, the problem is usually referred to as the max-min facility dispersion problem

[Erkut (1990)]; facilities are placed such that the minimal distance to any other facility is

maximal. Again, the resulting solution is certainly space-filling, but not necessarily

noncollapsing.

In statistical environments Latin Hypercube sampling is often used. In such an approach,

points on the grid are sampled without replacement, thereby deriving a random

permutation for each dimension ([McKay et al. (1979)]).

Giunta [Giunta et al. (2003)] gives an overview of pseudo- and quasi-Monte Carlo

sampling, Latin hypercube sampling, orthogonal array sampling, and Hammersley

sequence sampling

3. Maximin Latin Hypercube Designs:

We will denote as follows the s-norm distance between two points xi and xj,∀ i, j = 1, 2, · · · , N:

dij=║xi− xj║s

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 245

GSJ© 2021
www.globalscientificjournal.com

Unless otherwise mentioned, we will only consider the Euclidean distance measure (s = 2). In

fact, we will usually consider the squared value of dij (in brief d), i.e. d2 (saving the computation

of the square root). This has a noticeable effect on the execution speed since the distances d will

be evaluated many times.

3.1 Definition of LHD:

A Latin Hypercube Design (LHD) is a statistical design of experiments, which was first defined

in 1979 [McKay et al. (1979)]. An LHD of k-factors (dimensions) with N design points, xi = (xi1,

xi2 · · · xik) : i = 0, 1, . . . , N−1 , is given by a N×k- matrix (i.e. a matrix with N rows and k

columns) X, where each column of X consists of a permutation of integers 0, 1, · · · , N−1 (note

that each factor range is normalized to the interval [0, N −1]) so that for each dimension j all xij ,

i = 0, 1, · · · , N −1 are distinct. We will refer to each row of X as a (discrete) design point and

each column of X as a factor (parameter) of the design points.

We can represent X as follows

X=

−1Nx

x

0

=

−− kNN

k

xx

xx

)1(1)1(

001

such that for each j∈{1, 2 · · · , k} and for all p, q∈{0, 1, · · · ,N − 1} with p ≠ q; xpj ≠ xqj holds.

Given a LHD X and a distance d, let

D = {d(xi, xj) : 1 ≤ i < j ≤ N}.

Note that |D| ≤

2
n

. We define Dr(X) as the r-th minimum distance in D, and Jr(X) as the number

of pairs {xi, xj} having d (xi, xj) = Dr(X) in X.

4. COMPLEXITY ANALYSIS OF THE ALGORITHM IN EXPERIMENTAL

DOMAIN: CONSIDER ILS (D1, J1):

As we know that there are mainly two kind of complexity – time complexity and space

complexity. It is noted that among the above two complexities, time complexity is most

important for analysis any algorithm. Moreover, in any CPU,

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 246

GSJ© 2021
www.globalscientificjournal.com

 Table 4.1: Pseudo code of the ILS (D1, J1) algorithm.

While do
 Set NonImpIteration = 0
 Whiledo
 for i = 1,……, N do
 for j = i + 1,….., N do
 Step 1= If {i,j} SCpt(X) ≠ φ
 then: let D1 = D1

(S), k/ = 0
 for l = 1,…., k do
 Step 2: Swap (Xil, Xjl)
 Step 3: Compute di

X

u

)1(

,
/
+ until di

X

u

)1(

,
/
+ ≥ 1D′

 i/∀ = i .j: u = 0………N-1; u i/≠
 else break
 Step 4 :Set k/= k and 1D′= min d X

JI
)1(+

 end for
 Step 5: Upload best LHD if any
 else continue
 end for
 end for
 Step 6: Repeat the three loops if there has been at least an improvement
 Otherwise STOP
 Return X/
 Step 7: if X/ is better then set X= X/ and NonimpIteration = 0
 Otherwise increase NonimpIteration by one
 Step 8: if MaxNonImp > NonimpIteration
 PM : X/ = ∈(X) and Repeat the loops
Otherwise STOP
Return X

are available spaces for running any algorithm. Also, now-a-days, the crisis of space for running

an algorithm is almost solved by the presence of high memory based computer. Therefore, our

main attention is to analyze the time complexity of the algorithms of ILS approach.

Before analysis the time complexity of the ILS (D1, J1) algorithm, It is worthwhile to present it in

a Pseudo code. The Pseudo code of the ILS (D1, J1) algorithm is displayed in the Table (4.1).

As the aim of this section is to experimentally assess the computational cost of the proposed

ILS(D1) algorithm, we will first derive the number of operations required by a single local

search, and then those for a single run of ILS (from now on in this section we will give as

understood that we are discussing the ILS(D1,J1) version). For these experiments we consider k =

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 247

GSJ© 2021
www.globalscientificjournal.com

3, 5, 7, 10 and N = 10i: i = 1, 2, . . ., 10. We use the following parameter setting: Acceptance

criteria= Best Improve (BI), Local Search=RP; Stopping criteria MaxNonImp=1000,

Perturbation moves=SCOE and number of trials is one if otherwise not defined.

Assume that we are at iteration s of a local search and that the current value is D1
(s),J1

(s)
. The

basic operation in a local search is the swap one between two points i and j. In order to compare

the new candidate solution with the current one, we need to evaluate D1
(s+1) and J1

(s+1). Such

operation does not require computing from scratch all the distances within the candidate solution.

Indeed, only those involving points i and j are changed with respect to the current solution.

Therefore, with a proper implementation we should only compute O(N) new distances, each of

which requires a number O(1) of operations (indeed, we do not need to compute the distance

from scratch but only update the part corresponding to the single coordinate whose value has

been changed). In fact we do not always need to compute all the new distances: as soon as we

compute a distance lower than D1
(s) we can stop, since the candidate solution is certainly worse

than the current one. Therefore, each swap operation requires at most O(N) operations.

The number of swap operation is not known in advance. Indeed, swap moves are restricted only

to those involving at least a critical point. In Figure 4.1 the x-axis reports N and the y-axis reports

the percentage of actually analyzed swap moves (those involving at least one critical point) over

the total number of possible swaps in each run (those involving all possible pairs of points), for k

= 3, 5, 7, 10. The black curve represents the percentage of analyzed swaps, the red curve

represents the percentage of “avoided” swaps, i.e. those not involving critical points. We observe

that for very small N (N <14) most of the possible swaps are to be considered, but as N grows the
percentage of swaps to be considered drops dramatically, quickly falling below 10% for N > 30.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

sw
ap

\N
on

-s
w

ap
 (i

n
pe

rc
en

ta
ge

)

N

 swap (exist Cpt. Pt)
 Non-swap (exist no any Cpt Pt.)

K=3

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

sw
ap

/n
on

-s
w

ap
 (i

n
pe

rc
en

ta
ge

)

N

 swap (exist Cpt. Pt.)
 non-swap(exist non-Cpt Pt.)

K=5

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 248

GSJ© 2021
www.globalscientificjournal.com

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

sw
ap

/n
on

-s
w

ap
 (
in

 p
er

ce
nt

ag
e)

N

 swap(exist Cpt. Pt)
 non-swap(exist non-Cpt Pt.)

K=7

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

sw
ap

/n
on

-s
w

ap
 (
in

 p
er

ce
nt

ag
e)

N

 swap (exist Cpt. Pt)
 non-swap (exist non-Cpt. Pt.)

K=10

Figure 4.2 shows the history of the number of critical points during the local searches for the

case (k, N) = (7, 50). We observe that most of the times the number of critical points is 1 or 2,

and only occasionally is greater than 6. Figure 4.3 shows with a bar diagram the maximum

number of critical points (MCP) obtained during the run of the algorithms for each (k, N).

Apparently, we cannot observe any significant impact of N and k on the values of MCP. Indeed

such values are always below 20, and most of the time they are near 10. In Figure 4.4 we report

the average number of critical points in each neighborhood, rounded to the largest integer;

this number is always stuck at 2, for all k = 3, 5, 10. So we can confidently claim that the size of

the problem has practically no impact on the number of critical points in each visited

configuration.

Figure 4.1: The percentage of pairs involving and not involving critical points

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 249

GSJ© 2021
www.globalscientificjournal.com

50 100 150 9000 10000 11000
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

Ctr
itic

al
Po

int
s

Local Move

(k,N)=(7, 50)

Since we need to consider all the swap moves involving at least one critical point, the above

considerations lead us to conclude that the total number of swap moves that we need to perform

at a given iteration is simply O(kN) (factor N is due to the number of pairs involving at least a

critical point, factor k is due to the fact that, given a pair, we have a swap operation for each

possible coordinate).

Figure 4.2: The history of number of critical points for (k,N) = (7, 50) during local Move

Figure 4.3: The impact of N on Maximum Critical Points during history of evaluation

N

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 250

GSJ© 2021
www.globalscientificjournal.com

10 20 30 40 50 60 70 80 90 100
0

2

4

Avg
. Nu

mbe
r of

Cpt
. Pt

(in e
ach

 effe
ctive

 swa
p)

N

 k=3
 k=5
 k=10

20 40 60 80 500 1000 1500 2000
0

5

10

15

20

25

Nu
mb

er
 of

 W
L

LocalSearch

 (k,N)=(7,20)(a)

0 20 40 60 80
0

10

20

30

40

50

60

70

Nu
mb

er
of

W
L

Local Search

 (k,N)=(7,50)(b)

The last thing, we need to consider, in order to evaluate the number of operations required by a

local search, is the number of times the While-Loop is executed, i.e. the number of times an

improving solution is observed during a local search. We will denote this number by WL. We

will perform some experiments in order to find the impact of N as Figure 4.5 shows the history

of WL during Local Search for (a) (k, N) = (7, 20)) and (b) (k, N) = (7, 50). We observe in Figure

4.5 (a) that most of the time WL lies near 10 and the largest value observed in the figure is less

than 25. In Figure (b) we notice that most of the time the number WL lies near 30 and the

maximum value of WL (MWL) is near 80. That is WL (average as well as maximum value)

increases together with N. Figure 4.6 shows a cleaner representation of the impact of N on the

number MWL. Apparently there exists a linear relation between WL and N. We can also observe

an impact of the dimension k on WL. In order to investigate the dependence on k, we performed

another series of experiments, for k = 5i : i = 1, 2,… , 10 and N = 10, 25, 50, 100. Note that for

finding out the impact on the local search phase, WL is averaged over the corresponding number

Figure 4.4: The impact of N on average Critical Points during history of evaluation

Figure 4.5: The history of WL for (k, N) = (7, 20) and (k, N) = (7, 50) during Local
Search

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 251

GSJ© 2021
www.globalscientificjournal.com

of performed perturbations. We observe in Figure 4.7 that there is a significant impact of k for all

N : N = 10, 25, 50, 100 on the average number of WL (AWL).

0 20 40 60 80 100

0

20

40

60

80

100

120

140

160

180

200

220

Nu
m

be
r o

f M
ax

. W
hil

e
Lo

op

N

 k=3
 k=5
 k=7
 k=10

0 20 40 60 80 100

0

20

40

60

80

100

120

Av
g.

 N
um

be
r o

f e
xic

ut
ion

 o
f W

L

N

 k=3
 k=5
 k=7
 k=10

0 10 20 30 40 50
0

25

50

75

100

125

150

175

200

225

AW
L

Dimension

 N=50
 N=100

Aceptance = BI; Objective = Opt(D1, J1)

0 10 20 30 40 50

5

10

15

20

25

AW
L

Dimension

 N=10
 N=25

Aceptance = BI, Objetive = Opt(D1, J1)

 We observe that the trend shown by WL is roughly

 T ≈ kc

where 0 〈 c 〈 1, i.e. a fractional power functional dependence of WL on k. In conclusion, it has

been experimentally seen that the number WL is O(N kc).

Now, if we sum up the time required by a single swap (at most O(N)), the total number of swaps

per iteration O(Nk), and the total number of iterations WL O(Nkc), we conclude that a local

search requires at most O(krNq) for some r and q (in particular, we might conjecture that q is

close to 3 and r ranges between 1 and 2). In order to validate this result we performed some

experiments whose outcome is shown in Figure 4.8. In such figure we report the average

Figure 4.6: The impact of N on (a) Maximum WL (b) Average WL during history of

Local Search

Figure 4.7: The Impact of k on AWL during Local Search

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 252

GSJ© 2021
www.globalscientificjournal.com

computation time per local search as a function of N for the three different values k = 3, 7, 10

(the time is the average per local search over 10 runs of ILS).

0 10 20 30 40 50 60 70 80 90 100
-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Av
g-

Ti
m

e(
pe

r L
S)

N

 K=3

0 10 20 30 40 50 60 70 80 90 100

0.00

0.01

0.02

0.03

0.04

0.05

A
vg

-T
im

e
(p

er
 L

S
)

N

 k=7

-10 0 10 20 30 40 50 60 70 80 90 100 110
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
vg

- T
im

e(
pe

r L
oc

al
S

ea
rc

h)

N

 K=10

0 10 20 30 40 50 60 70 80 90 100

0.00

0.03

0.06

0.09

0.12

0.15
Av

g.
 ti

m
e

N

 k=3
 k=7
 k=10

We assume, as derived above, that the approximate time complexity for a local search of the ILS

approach is

 T ≈ O(krNq),

and will try to determine practical values for r and q experimentally. In Figure 4.8, we observe

that, for each k, the curves of elapsed times grow non-linearly with respect to the increasing of N.

To find out the approximate value of q we fitted the data in a linear regression for each k as ,

 log(T) = q log(N) + r log(k),

 where T = Average elapsed time in each LS. We observe from Figure 4.9 that the range of q is

2.5 〈 q ≤ 3. In particular, as k increases it seems that q tends to 3, which is the value previously

conjectured.

 Figure 4.8: The History of Elapsed time

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 253

GSJ© 2021
www.globalscientificjournal.com

To find out the approximate value of r we performed some experiments by considering LHDs k

= 5i : i = 1, 2, . . . , 10 with N = 10, 25, 50, 100. Figure 4.10 shows the impact of k on average

elapsed time in each LS. In the figure we observe that the average elapsed time T increases

slightly more than linearly with respect to k. In order to find out the approximate value of r we

have fitted the data (see figure 4.10). We notice that the range of r is 1 〈 r ≤2, which is again in

accordance with what was previously conjectured.

3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6
-6.5

-6.0

-5.5

-5.0

-4.5

Data: K=3
Model: LineMod
Equation: y = a*(x-b)
Weighting:
y No weighting

Chî 2/DoF = 0.00002
R^2 = 0.99993

a 2.50676 ±0.00328
b 6.46845 ±0.0029

 k=3

log (N)

lo
g(

T)

y = a*(x-b)

3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7
-5.0

-4.5

-4.0

-3.5

-3.0
Data: k=7
Model: LineMod
Equation: y = a*(x-b)
Weighting:
y No weighting

Chî 2/DoF = 0.00014
R^2 = 0.99956

a 2.69169 ±0.00807
b 5.72074 ±0.00431

 k=7

log (N)

lo
g

(T
)

 y = a*(x-b)

3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7
-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

Data: k=10
Model: LineMod
Equation: y = a*(x-b)
Weighting:
y No weighting

Chî 2/DoF = 0.00002
R^2 = 0.99994

a 2.97833 ±0.00332
b 5.2474 ±0.00108

 k=10

log (N)

log
(T)

y = a*(x-b

We remind the reader that this practical time complexity ≈ O(krNq), with r ∈ (1, 2) and q ∈ (2,

3), for LS has been estimated in the environment of ILS instead of evaluating a stand-alone local

search. According to our observations, the local search usually performs less iterations in the ILS

environment, due to the “partially optimal” structure preserved by the perturbation

Figure 4.9: The values of log(T) plotted against log(N)

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 254

GSJ© 2021
www.globalscientificjournal.com

0 10 20 30 40 50

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Data: N=25
Model: Pow2P2
Equation:
y = a*(1 + x)̂ b
Weighting:
y No weighting

Chî 2/DoF = 6.8201E-8
R^2 = 0.99924

a 0.00006 ±5.4148E-6
b 1.59596 ±0.02507

 N=25

k

T
y = a*(1 + x)̂ b

0 10 20 30 40 50

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Data: N=25
Model: Pow2P2
Equation:
y = a*(1 + x)̂ b
Weighting:
y No weighting

Chî 2/DoF = 6.8201E-8
R^2 = 0.99924

a 0.00006 ±5.4148E-6
b 1.59596 ±0.02507

 N=25

k

T

y = a*(1 + x)̂ b

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Data: N =50
Model: Pow2P2
Equation:
y = a*(1 + x)̂ b
Weighting:
y No weighting

Chî 2/DoF = 5.3653E-6
R^2 = 0.99938

a 0.00051 ±0.00004
b 1.59025 ±0.02117

 N=50

k

T

y = a*(1 + x)̂ b

 Figure 4.10: The approximate time complexity for LS with respect to k

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 255

GSJ© 2021
www.globalscientificjournal.com

0 20 40 60 80 100

1000

2000

3000

4000

5000

6000

Av
g:

 N
um

be
r o

f P
er

tu
rb

at
io

n

N

 k=3
 Y=a*log(x-b)(Empirical)

0 20 40 60 80 100

1000

2000

3000

4000

5000

6000

Av
g:

 N
um

be
r o

f P
er

tu
rb

at
ion

N

 k=7
 Y=a*log(x-b)(Empirical)

0 20 40 60 80 100

1000

2000

3000

4000

5000

6000

Av
g: N

um
ber

 of
Pe

rtu
rba

tion

N

 k=10
 Y=a*log(x-b)(Empirical)

In order to get to an empirical evaluation of the number of operations required by an ILS run, we

still need to evaluate the number of perturbations (and, thus, of local searches) performed during

an ILS run. Then, we would like to find out the impact of N as well as k on the number of

perturbations during each ILS run. For these experiments we performed ten runs of ILS and

considered the average number of perturbations per run. For these experiments we considered

LHDs with k = 3, 7, 10 and N = 3, 4, . . . , 100. From the experiments (see Figure 4.11) we notice

that there is a significant impact of N on the number of perturbation invoked for all k considered.

It seems that the number of invoked perturbations is somewhat logarithmic with respect to N

(see the dot curve in Figure 4.11).

Figure 4.11: The impact of N on the number of perturbations

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 256

GSJ© 2021
www.globalscientificjournal.com

5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Avg
. No

. of
Pert

uba
tion

k

 N=10
 N=25
 N=50
 N=100

In order to find the impact of k on the number of perturbations, we considered LHDs: for each N

: N = 10, 25, 50, 100 ; k = 5i : i = 1, . . . , 10. From the experiments we remark that there is no

significant impact of k on the perturbation invoked during the run (see the bar diagram in Figure

4.12). Now, if we put together the observation that the overall number of perturbations/ local

searches per ILS run is O(log(N)), and the previous one about the O(krNq) about the complexity

of local searches, we can conclude that a bound on the overall time required by a single ILS run

is O(krNq log(N)), a fact that it is also experimentally confirmed by the analysis of the elapsed

times per ILS run.

Finally, the analysis of time complexity for ILS (D1, J1) is given in a tabular form along with the

pseudo code of the algorithm. Table 4.2 represents the analysis of the time complexity for the

ILS (D1, J1).

Figure 4.12: The impact of k on the number of perturbations

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 257

GSJ© 2021
www.globalscientificjournal.com

 cord.) swappedonly (comp.
)1(Compute)()1(

, Odi Operations
ui →+

′

) assoon as stop compu. since(
)(case)(in worst 3 Step)(

1
)1(

, Dd
NOii

s
ui

Operation

′≤

 →
+

′

move) local BI(in
)(loop formost Inner)(kOiii Operation →

computedally experiment), 10(
)(search) local(in WL)(

<<
 →

c
NkOv cOperation

) swapally experiment(but
) ally theoreticcase (in worse

)(loops for outer two)(
2

O(N)
)O(N

NOiv Operation →

computedally experiment), 10(
)(search) local(in WL)(

<<
 →

c
NkOv cOperation

 Total cost of a single LS

)(1 qrc NkO)k).O(N).O(N).O(N).O(kO(≈
) 32(&) 21(: ≤<<< qr

Cost of a single ILS: Opt),(11 JD
Perturbation (for fixed MIN))
 O (log(N))

Total Cost:

) 32(&) 21(:
))log(())(log().(

≤<<<
≈

qr
NNkONONkO qrqr

While do
 Set NonImpIteration = 0
 Whiledo
 for i = 1,……, N do
 for j = i + 1,….., N do
 Step 1= If {i,j} SCpt(X) ≠ φ
 then: let D1 = D1

(S), K/ = 0
 for l = 1,…., k do
 Step 2: Swap (Xi, Xjl)
 Step 3:
 Step 3: Compute di

X

u

)1(

,
/
+

 until di
X

u

)1(

,
/
+ ≥ 1D′

 i/∀ = i .j: u = 0………N-1;

 u i/≠
 else break
 Step 4 :Set k/= k and
 1D′= min d X

JI
)1(+

 end for
 Step 5: Upload best LHD
 if any
 else continue
 end for
 end for
 Step 6: Repeat the three loops if
 there has been at least an
 improvement
 Otherwise STOP
 Return X/
 Step 7: if X/ is better then
 set X= X/ and NonimpIteration = 0
 Otherwise increase
NonimpIteration by on
 Step 8: if MaxNonImp >
NonimpIteration
 PM : X/ = ∈(X) and Repeat the
loops
Otherwise STOP
Return X

 Table 4.2: Analysis of time complexity for ILS (D1, J1)

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 258

GSJ© 2021
www.globalscientificjournal.com

5. COMPLEXITY ANALYSIS OF THE ALGORITHM IN EXPERIMENTAL
DOMAIN: CONSIDER ILS(Φ)

In this section we will perform some experiments to derive a formula connecting the
computation times of ILS(φ) with N and k. The analysis will be similar to the one previously
done for ILS(D 1). For these experiments we consider ILS(φ) with the following setting: Local
Search: acceptance criterion=First Improve(FI), local move = φRpLM ; stopping criterion:
MaxNonImp =100; Perturbation Technique = SCOE.

.

While do
 Set NonImpIteration = 0
 Whiledo
 for i = 1,……, N do
 for j = i + 1,….., N do
 Step 1= let D1 = D1

(S), k/ = 0
 for l = 1,…., k do
 Step 2: Swap (Xil, Xjl)
 Step 3: Compute di

X

u

)1(

,
/
+ until di

X

u

)1(

,
/
+ ≥ 1D′

 i/∀ = i .j: u = 0………N-1; u i/≠
 else break
 Step 4 :Set k/= k and 1D′= min d X

JI
)1(+

 end for
 Step 5: Upload best LHD if any
 else continue
 end for
 end for
 Step 6: Repeat the three loops if there has been at least
an improvement
 Otherwise STOP
 Return X/
 Step 7: if X/ is better then set X= X/ and
NonimpIteration = 0
 Otherwise increase NonimpIteration by one
 Step 8: if MaxNonImp > NonimpIteration
 PM : X/ = ∈(X) and Repeat the loops
Otherwise STOP
Return X

 Again before analysis the time complexity of the ILS(φ) algorithm, It is worthwhile to present

it in a Pseudo code. The Pseudo code of the ILS(φ) algorithm is displayed in the Table (5.1).

Table 5.1: Pseudo code of the ILS(Φ) algorithm

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 259

GSJ© 2021
www.globalscientificjournal.com

0 20 40 60 80 100 120 140 160 180

2

4

6

8

10

12
W

L

LS

 (k,N) =(7,10)

0 10 20 30 40 50 60 100 200 300 400

10

20

30

40

50

60

70

80

90

W
L

LS

 (k,N) =(7,50)

We will first discuss the time required by a local search. We do not discuss the time required by

each swap move: this is the same as in ILS(D 1) and is at most O(N). However, the number of

swap moves which have to be attempted at each iteration is now different. Indeed, since we are

considering the LM φRp local move, we have to consider all possible pairs of points (also those

not involving critical points). Therefore, the number of swap operations is O(kN 2). Note that this

is an upper bound: since we are employing the FI acceptance criterion, we perform swap

operations only until an improvement is observed.

Next, we need to derive some formula for the number of times the While-Loop is executed

during a local search, i.e. for the number of iterations performed by a local search. As before, we

will denote this number with WL. Note that with respect to ILS(D1) we made a change in the

local search, adopting the FI acceptance criterion rather than the BI one. Figure 5.1 shows the

history of WL values during different local searches for (a) (k,N) = (7, 10)) and (b) (k,N) = (7,

50). We observe in Figure 5.1(a) that most of the time WL lies near 5 and never exceeds 12,

whereas in (b) we notice that most of the time WL lies near 35 and the maximum value of WL is

near 90. Therefore, it seems that WL increases together with N both for what concerns Average

WL (AWL) values and Maximum WL (MWL) values. Figure 5.2 shows more clearly the

relation between N and MWL as well as AWL. We observe that there is a linear impact of N. In

order to establish the dependency of WL on k, we perform other experiments with k = 2i : i = 1,

Figure 5.1: The history of WL values for (k,N) = (7, 10) and (k,N) = (7, 50) during

Local Search

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 260

GSJ© 2021
www.globalscientificjournal.com

2……,40 and N = 10, 25, 50, 75. The relation between WL and k is not quite clear. Indeed, we

have observed in Figure 4.7 that WL is increasing with k for k < 10 but after that it decreases and

finally tends to get stable around a constant value. It seems that by enlarging k the local search is

able to reach a local minimum in quite few iterations with respect to lower values of k. This

might be due to the fact that by increasing k we also enlarge the size of the neighborhood

explored at each iteration of a local search.

0 10 20 30 40 50 60 70 80

0

30

60

90

120

150

180

M
W

L

 k=3
 k=5
 k=7
 k=10

N
0 10 20 30 40 50 60 70 80

0

7

14

21

28

35

42

49

56

A
W

L

N

 k=3
k=5
 k=7
 k=10

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

22

24

AW
L

N

 N=10 Aceptance =FI; Mm(f)

0 10 20 30 40 50 60 70 80 90 100

6

8

10

12

14

16

18

20

22

24

AW
L

k

 N=25 Aceptance=FI ; Objective=Mm(f)

 Figure 5.2: The impact of N on (a) MWL (b) AWL

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 261

GSJ© 2021
www.globalscientificjournal.com

0 5 10 15 20 25 30 35 40 45 50

10

15

20

25

30

35

AW
L

k

 N=50 Aceptance=FI; Objective=Mm(f)

0 5 10 15 20 25 30 35 40 45 50

25

30

35

40

45

50

55

60

65
Aceptance=FI; Objective=Mm(f)

AW
L

k

 N=75

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

22

24

AW
L

N

 N=10 Aceptance =FI; Mm(f)

0 5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

50

60

70

AW
L

k

 N=25 Aceptance=FI; Objective=Mm(D1,J1)

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

AW
L

k

 N=50 Aceptance=FI, Objective=Mm(D1,J1)

Figure 5.4: The Impact of k on execution of AWL during Local Search with FI(First

Improve) in Opt(D 1 , J 1)

 Figure 5.3: The Impact of k on AWL

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 262

GSJ© 2021
www.globalscientificjournal.com

In what follows we will neglect the dependency of WL on k and only consider WL as O(N), but

we should keep in mind that at small k values a dependency of WL on k is in fact present. Since

when testing ILS(D 1) we employed the BI acceptance criterion, we would like to check, for

completeness, if such phenomenon, i.e. the non dependency of WL on k at large k values, is

somehow connected to the fact that we have considered the FI acceptance criterion. For this

reason, we have performed another experiment with ILS(D 1) but with the FI acceptance

criterion. We considered LHDs: k = 2i : i = 1, 2, ……,40 with N = 10, 50. We observe in Figure

5.4 that WL increases quickly at small k values, while at large k values WL still increases,

though more slowly. Such behavior is quite similar to the one observed in ILS(D 1) with the BI

acceptance criterion. If we put together the expected times for all the components of a local

search, we can conclude that the approximate time required by a local search is

 T ≈ O(k r N q),

where we expect that the q value is close to 4, while the r value could range between 1 and 2. In

order to find out the values of q and p experimentally, we performed the following experiments.

At first we perform experiments to find the approximate value of q. For these experiments we

considered k = 5 and N = 20, 21,…….. 80 and run ILS(φ) ten times for each LHD. In Figure 5.5,

we plotted the average execution time per local search as a function of N. We observe that the

increase with N is non linear. Therefore, we applied the logarithmic transformation

 log T = q(logN − b),
where T denotes the average elapsed time, and then fitted the data in a linear regression.

According to the data, we have that the value of q is 3.92 (see Figure 5.6), thus very close to the

expected one, 4.

20 30 40 50 60 70 80

0

5

10

15

20

25

30

T

N

 k=5

Figure 5.5: Elapsed time per local search as a function of

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 263

GSJ© 2021
www.globalscientificjournal.com

2.5 3.0 3.5 4.0 4.5
-6

-4

-2

0

2

4 Data: k=5
Model: LineMod
Equation: y = a*(x-b)
Weighting:
y No weighting

Chi^2/DoF = 0.05954
R^2 = 0.98798

a 3.92005 ±0.05243
b 3.56512 ±0.00757

 k=5

log N

log
T

y = a*(x-b)

 Now to find out the approximate value of r we performed experiments by considering LHDs

with k = 2i : i = 1, 2, . . . , 25 with N = 50. Figure 5.7 shows the impact of k on the average

elapsed time per local search. In the figure we observe that T increases somewhat linearly with

the increase of k. In order to find out the approximate time complexity with respect to k, we have

fitted the data (see Figure 5.8) and detected a value of r approximately equal to 1.13, again in

accordance with what previously derived .

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

T/ L
S

k

 N=50

 Figure 5.6: Linear regression between log(T) and log(N)

Figure 5.7: Impact of k on T

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 264

GSJ© 2021
www.globalscientificjournal.com

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

y = a*x^b

Data: N=50
Model: Allometric1
Equation:
y = a*x^b
Weighting:
y No weighting

Chî 2/DoF = 27.0143
R^2 = 0.95767

a 0.51037 ±0.15629
b 1.12988 ±0.08357

 N=50

k

T

0 10 20 30 40 50 60 70 80 90

100

200

300

400

500

600

Avg.
 Num

ber
0f P

ertur
batio

n

N

 k=5
 y=a*(log N-b) (Empirical)

In order to

derive the overall time complexity of ILS(φ) we still need to derive a formula for the number of
perturbations (i.e. the number of local searches) performed during each ILS run. To find out the
impact of N on such number we considered LHDs with k = 5 and N = 3, 4, . . . , 80 performing
ten runs for each LHD. From the experiments (see Figure 5.9) we notice that there is a
significant impact of N on the number of perturbations. We also try to establish a functional
relation between N and the number of perturbations. Similarly to what already observed for
ILS(D 1), the relation appears to be a logarithmic one with respect to N (see the dot curve in
Figure 5.9). We point out that in both cases such logarithmic behavior is probably due to the fact
that a fixed value for MaxNonImp (100 for ILS(φ), 1000 for ILS(D 1)) has been employed in all
these tests, so that the total number of perturbations tends to get stable as we increase N.

To find out the impact of k on the number of perturbations, we considered LHDs with N = 50 and

k = 2i : i = 1, . . . , 10. From the experiments we notice that, in spite of a peak at k = 6, there is no

significant impact of k on the number of perturbations invoked during a run (see the bar diagram

in Figure 5.10).

Figure 5.8: The approximate time complexity of k for LS obtained by the
experiments

Figure 5.9: Relation between the number of perturbations and N

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 265

GSJ© 2021
www.globalscientificjournal.com

In conclusion, summing up all the previous observations, we have that the time required for a

single ILS(φ) run appears to be O(k r N q log(N)), with r slightly larger than 1 and q slightly lower

than 4.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

Num
ber

 of
Per

turb
atio

n

k

 N=50

Finally, the analysis of time complexity for ILS (Φ) is given in a tabular form along with the

pseudo code of the algorithm. Table 5.2 represents the analysis of the time complexity for the

ILS (Φ).

Figure 5.10: Impact of k on the number of perturbations

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 266

GSJ© 2021
www.globalscientificjournal.com

 cord.) swappedonly (comp.
)1(Compute)()1(

, Odi Operations
ui →+

′

) assoon as stop compu. since(
 (case)(in worst 3 Step)(

1
)1(

, Dd
NOii

s
ui

Operation

′≤

 →
+

′

move) local BI(in
)(loop formost Inner)(kOiii Operation →

) swapally experiment(but
) ally theoreticcase (in worse

 (loops for outer two)(
2

O(N)
)O(N

NOiv Operation →

computedally experiment), 10(
)(search) local(in WL)(

<<
 →

c
NkOv cOperation

Total cost of a single LS

)(1 qrc NkO)k).O(N).O(N).O(N).O(kO(≈
) 42(&) 21(: ≤<<< qr

Cost of a single ILS (Φ)

Perturbation (for fixed MIN))
 O (log(N))

Total Cost:

) 42(&) 21(:
))log(())(log().(

≤<<<
≈

qr
NNkONONkO qrqr

While do
 Set NonImpIteration = 0
 Whiledo
 for i = 1,……, N do
 for j = i + 1,….., N do
 Step 1= D1 = D1

(S), k/ = 0
 for l = 1,…., k do
 Step 2: Swap (Xil, Xjl)
 Step 3: Compute di

X

u

)1(

,
/
+

 until di
X

u

)1(

,
/
+ ≥ 1D′

 i/∀ = i .j:
 u = 0………N-1;
 u i/≠
 else break
 Step 4 :Set k/= k
 and 1D′= min d X

JI
)1(+

 end for
 Step 5: Upload best LHD if any
 else continue
 end for
 end for
 Step 6: Repeat the three loops if
 there has been at least an
 improvement
 Otherwise STOP
 Return X/
 Step 7: if X/ is better then set X= X/
and NonimpIteration = 0
 Otherwise increase
NonimpIteration by one
 Step 8: if MaxNonImp >
NonimpIteration
 PM : X/ = ∈(X) and Repeat the loops
Otherwise STOP
Return X

 Table 5.2: Analysis of time complexity for ILS (Φ)

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 267

GSJ© 2021
www.globalscientificjournal.com

REFERENCES

01. Applegate D., W. Cook and A. Rohe, 1999, “Chained Lin-Kernighan for large traveling

salesman problems”, Technical Report No. 99887, Forschungsinstitut f
..
u r Diskrete

Mathematik, University of Bonn, Germany.

02. Baum, E. B., 1986(b), “Iterated descent: A better algorithm for local search in combinatorial

optimization problems”, Technical report, Caltech, Pasadena, CA Manuscript.

03. Baum, E. B.,1986(a), “Towards practical “neural” computation for combinatorial

optimization problems”, In J. Denker, editor, Neural Networks for Computing, pp. 53–64,

AIP conference proceedings.

04. Baxter, J., 1981, “Local optima avoidance in depot location”, Journal of the Operational

Research Society, Vol. 32, pp. 815–819.

05. Fang, K. T., D. K. J. Lin, P. Winkler, and Y. Zhang (2000b), “Uniform design: theory and

application”, Technometrics, Vol. 42, pp. 237–248.

06. Fang K. T., R. Li, and A. Sudjianto, 2006, “Design and Modeling for Computer

Experiments”, CRC Press, New York.

07. Grosso A., Jamali A. R. J. U. and Locatelli M., 2009, “ Finding Maximin Latin Hypercube

Designs by Iterated Local Search Heuristics”, European Journal of Operations Research,

Elsevier, Vol. 197, pp. 541-547.

08. Johnson M. E., Moore L. M., and Ylvisaker D., 1990, “ Minimax and maximin distance

designs”, Journal of Statistical planning and inference, Vol. 26, pp.131-148.

09. Kirkpatrick S., C. D. Gelatt Jr., and M. P. Vecchi, 1983, “Optimization by Simulated

Annealing , Science, Vol. 220, pp. 671-680.

10. Lin D. K. J., and D. M. Steinberg, 2006, “A Construction Method for Orthogonal Latin

Hypercube Designs”, Biometrika, Oxford University Press, Vol. 93(2), pp. 279 -288.

11. Martin O. and S. W. Otto., 1996, “Combining simulated annealing with local search

heuristics”, Annals of Operations Research, Vol. 63, pp. 57–75.

12. Martin O., S. W. Otto, and E. W. Felten, 1991, “ Large-step Markov chains for the traveling

salesman problem”, Complex Systems, Vol. 5(3), pp. 299–326.

13. McKay M. D., Beckman, R. J., and W. J. Conover W. J., 1979, “ A comparison of three

methods for selecting values of input variables in the analysis of output from a computer

code”, Technometrics, vol. 21, pp. 239-245.

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 268

GSJ© 2021
www.globalscientificjournal.com

14. Sacks, J. and Ylvisaker, D. (1985), “Model robust design in regression: Bayes theory”. In

Proc. of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer (L. M. Le Cam

and R. A. Olshen, eds.), Vol. 2, pp. 667-679, Wadsworth, Monterey, Calif.

15. www.spacefillingdesigns.nl

GSJ: Volume 9, Issue 2, February 2021
ISSN 2320-9186 269

GSJ© 2021
www.globalscientificjournal.com

http://www.spacefillingdesigns.nl/

