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ABSTRACT 

A k-dimensional Latin hypercube design (LHD) of n points, is a set of n points   where xi = (xij, 
xi2, . . . , xik)  {0, . . . , N − 1}k such that for each factor j all xij are distinct. we assume that our 
design space is equal to the [0, N−1]k hypercube. However by scaling, we can use LHDs for any 
rectangular design space. One definition of LHD is  to divide each axis into n equally sized bins 
and randomly select points such that each bin contains exactly one point. However, we refer to 
this technique as Latin hypercube sampling (LHS).We have compared the performance of ILS 
approach with other approaches regarding various characteristics of the optimal designs by 
considering a typical design namely (k, N) = (4, 9). The comparison study reveals that ILS 
approach is one of the best approaches for finding maximin LHDs.    

KEYWORDS: Latin hypercube design (LHD), Iterated Local search, Optimal criteria. 

 

1. INTRODUCTION 

Computer simulation experiments [e.g., Santner et al (2003); Fang et al (2006)] have now 

become a popular substitute for real experiments when the physical experiment are infeasible or 

too costly. In these experiments, a deterministic computer code, the simulator, replaces the real 

(stochastic) data generating process. This practice has generated a wealth of statistical questions, 

such as how well the simulator is able to mimic reality or which estimators are most suitable to 

adequately represent a system. However, the foremost issue presents itself even before the 

experiment is started, namely how to determine the inputs for which the simulator is run? It has 

become standard practice to select these inputs such as to cover the available space as uniformly 
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as possible, thus generating so called space-filling experimental designs. Naturally, in 

dimensions greater than one, there are alternative ways to produce such designs. 

For the design of computer experiments Latin Hypercube Designs (LHDs), first introduced in 

[McKay et al. (1979)], fulfill the non-collapsing property. LHDs are important in the design of 

computer-simulated experiments (e.g., [Fang et al. (2006)]). Here LHD is defined a bit different 

than [McKay et al. (1979)] but similar to [Johnson et al. (1990); Husslage et al. (2006); Morris 

and Mitchell (1995); Grosso et al. (2008)]. Assume that we have to place N design points and 

that there are k distinct parameters. We would like to place the points so that they are uniformly 

spread when projected along each single parameter axis. We will assume that each parameter 

range is normalized to the interval [0, N-1]; Then, a LHD is made up by N points, each of which 

has k integer coordinates with values in 0,1, . . . , N-1 and such that there do not exist two points 

with one common coordinate value. This allows a non-collapsing design because points are 

evenly spread when projected along a single parameter axis.  

 

A k-dimensional Latin hypercube design (LHD) of n points, is a set of n points   where xi = (xij, 

xi2, . . . , xik)∈ {0, . . . , N − 1}k such that for each factor j all xij are distinct. In this definition, we 

assume that our design space is equal to the [0, N−1]k hypercube. However by scaling, we can 

use LHDs for any rectangular design space. Alternative definitions of LHDs also occur in the 

literature. One alternative definition is  to divide each axis into n equally sized bins and 

randomly select points such that each bin contains exactly one point. However, we refer to this 

technique as Latin hypercube sampling (LHS). In this paper the term ‘LHD’ thus only refers to 

the first definition. 

A configuration  
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with all { }1,1,0 −= Nxij   is a LHD if each column has no duplicate entries. This one-dimensional 

projective property ensures that there is little redundancy of design points when some of the 

factors have a relatively negligible effect (sparsity principle). 

Unfortunately, randomly generated LHDs almost always show poor space-filling properties or / 

and the factors are highly correlated. On the other hand, maximin distance objective based 

designs proposed by [Johnson et al. (1990)], have very good space-filling properties but often no 

good projection properties under the Euclidean (L2), or the Rectangular (L1), distance. To 
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overcome this shortcoming, Morris and Mitchell [Morris and Mitchell (1995)] suggested for 

searching maximin LHDs which have both the important properties when looking for “optimal” 

designs. An LHD is 
ij≠

min d(xi, xj) is maximal 

among all LHDs of given size n, where d is a certain distance measure. In this paper, we 

concentrate on the Euclidean (L2) distance measure, i.e., 

   ∑
=

−=
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2. Maximin Latin Hypercube Designs 

We will denote as follows the p-norm distance between two points xi and xj,∀  i, j = 1, 2, · · · , 

N: 

d i j =║xi− x j ║ p,                                                                                             

Unless otherwise mentioned, we will only consider the Euclidean distance measure (p = 2) and 

Manhattan distance (p = 1). In fact, we will usually consider the squared value of dij (in brief d), 

i.e. d2 (saving the computation of the square root) in case of Euclidean distance. This has a 

noticeable effect on the execution speed since the distances d2 will be evaluated many times. 

 

3. COMPUTATIONAL EXPERIMENT OF ITERATED LOCAL SEARCH FOR 
HIGHER DIMENSIONS ((k, N) = (4, 9) ): 

  
Symbols   Meaning   Symbols   Meaning   
ρ            Average correlation  D1(J1)(L1)  D1(J1) value in L1  
 ρmax  Maximum correlation  D1(J1)(L2)  D1(J1) value in L2  
D1  Minimum pair-wise distance in a  

LHD  
Φp(L1)           Φp value in L1  

(J1)  Number of time D1 occur in a LHD  Φp(L2)          Φp value in L2  
 (L1)  Manhattan distance measure (L1)  A-E( (L1)  A-E  value in in L1  
(L2)  Euclidean distance measure (L2)  A-E(L2)  A-E  value in in L2  
Φp  Φp optimal criterion  ɷ1 and  ɷ2  (Weight average) 

constant   
A-E  Audze-Eglais optimal criterion      

  
  
It is observed in the Table that each optimal LHD is best according to the corresponding 
optimal criteria. Anyway it is observe that the ρ  of MLH-SA and MLH- 
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ILS are comparable in which both LHDs are optimized by same Φp criterion. Though ρ value 
MLH- ILS is worse compare to other LHDs but the multi-co-linearity of the LHD is 
negligible as ρ = 0. 5 . 

It is also observed in the Table that though   MLH-SA is best  in D1(J1)(1) value (as it is 
optimized regarding L1 measure) but the D1(J1)(1) value of  MLH- ILS is comparable  with  
that of MLH-SA and almost identical with other LHDs.  Moreover the Φp

(L1)  value of   MLH- 
ILS  is almost identical with    that of MLH-SA and  relatively better than other optimal 
LHDs. Again it is notice that A-E( (L1)  and A-E( (L2)  values of  MLH- ILS are also comparable  
with the best one that is with the A-E( (L1)  and A-E( (L2)  values of  MLH-ESE which is 
optimized by A-E( (L2) optimal criterion. We observe that the Φp

(L2)   value of  MLH- ILS is 
better than that of other   optimal LHDs as  MLH- ILS is optimized by 

Φp
(L2)  optimal criteria along with tracking D1 value.  Now it is remarkable that the D1(J1) (L2)  

value of MLH- ILS is significantly  better and ultimately the best among the other optimal 
LHDs according to D1(J1) (L2)  value. It may conclude that tracking D1 along with 

Φp
(L2)  optimal criteria ILS approach outperform compare to other approaches. Moreover MLH- 

ILS is good enough according to other experimental properties. 

 
 
  
 Comparison of MLH-SA,  OMLH – MSA,  OLH- Y, MLH-ESE and  MLH-ILS  
  for (N,k)=(9, 4) : 
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CONCLUSION 

Regarding correlation criterion and some other criteria we have performed another experiment 
in the Chapter V.  For this experiment we have considered several optimal LHDS with 
(N,k)=(9, 4).  We again observe in this experiment that maximin LHD obtained by ILS 
approach is significantly better than all other optimal LHDs regarding D1 value. Though 
according to the ρ (correlation coefficient) value maximin LHD obtained by ILS approach is 
worse compare to OMLH – SA_M and OLH- Y in which DoE are optimized by ρ2 optimal 
criterion, the value of ρ in maximin LHD are enough small.   
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