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ABSTRACT 
Nowadays, a core technology for solving image processing problems such as denoising and deblurring is regularization. Image processing is 
an interdisciplinary research area which has profound applications in many areas of science, technology, engineering and medicine. We plan 
to present a comparative analysis of three methods for commonly used regularization method namely total variation regularization. The 
three methods are the well-known Split Bregman algorithms, the Alternating Direction Method of Multipliers and the Rudin Osher Fatemi 
denoising model on the graph (ROF model on the graph) which is very recent. The analysis is performed through experimental results on 
multiple test images both synthetic and real. We observe that they are all comparable in many cases; however the ROF model on the graph 
achieves a prescribed tolerance in fewer iterations than the other methods.  
 

 

 

 

                                                                                                                                                                                                                          
  

GSJ: Volume 9, Issue 2, February 2021 
ISSN 2320-9186 1336

GSJ© 2021 
www.globalscientificjournal.com

mailto:iravia2@gmail.com


 

INTRODUCTION 
Nowadays, a core technology for solving image processing problems such as denoising and deblurring is reg-ularization of the corres-
ponding inverse problem. Image processing is an interdisciplinary research area which has profound applications in many areas of 
science, technology, engineering and medicine. The main objective of this-this study is to present a comparative analysis of three 
methods for commonly used regularization method namely total variation regularization. The three methods are the well-known 
Split Bregman algorithms, the Alternating Direction Method of Multipliers and the Rudin Osher Fatemi denoising model on the graph 
(ROF model on the graph) which is very recent.    
 
 

 
 
 
 
 
 
     
 
 
 
 
 
 
 

This figure shows a schema representation of the formation of the noisy image g as follows  
)()()( 0 xxKfxg ω+=                                          (1) 

where )(0 xf  denotes the object (original image to be reconstructed); ),( xxK ′  denotes the imaging system so that )()( 00 xKfxg = is 
the noise-free image and 𝜔𝜔(𝑥𝑥) is the noise term that comes from the recording system. 
In this paper we treat the case where IK =  i.e., the denoising case. 
To obtain an estimate *f   of 0f , the total variation regularization suggests to take the function f that is exact minimizer of the fol-
lowing optimization problem: 
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where, 𝜇𝜇 is a positive regularization parameter. The three algorithms of our interest are implemented to solve the above problem in 
(2). 

METHODOLOGY AND ALGORITHMS. 
The analysis is performed through experimental results on multiple test images both synthetic and real. The test images we used are 
freely available on some well known online image databases. In this paper we illustrate the performance of algorithms on three 8 
bits per pixel test images all of the same size 512×512. The reconstructed images are compared to the true images and algorithms 
are compared for convergence and speed. Below we give a very short description of each of the algorithms. 
 

a. Algorithm 1 (Split Bregman) 
Split Bregman method puts the problem (2) in the form 

, H(u)subject to
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where )J(fp kk ∂∈ . 

b. Algorithm 2 (ADMM) 
The Alternating Direction Method of Multipliers (ADMM) puts the problem (2) in the form  
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 where ) ,1( nnRM −∈  is the difference matrix given by 
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Then perform the following iterations 
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where 0>ρ  is the augmented Lagrangian parameter and u  is the dual variable. 
 

c. Algorithm 3 (ROF Graph) 
The ROF-Graph takes advantage of the fact that an image can be considered as a grid of points (pixels). The vertices of the graph are 
pixels and edges are pairs of connected pixels. The algorithm constructs *f  reiteratively using an operator that decreases the dis-
tance from transformed elements to g  as follows: 
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with ( )jik , vve =  for some i  and j . 

EXPERIMENTAL RESULTS 
The figures below show experimental results for three test images. For each image we shoe the original image, the noisy image and 
the reconstructed images using ROF-Graph, Split Bregman and ADMM respectively and the figure at the bottom right shows the con-
vergence history for all three algorithms. 
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a) Test Image 1: Lena 
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b) Test Image 2: House 
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c) Test Image 3: Pentagone 
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Relative errors comparison. 
The table below shows the relative errors between the original image and reconstructed image for each method and each testing 
image. 

 
                        Images 
Methods 

 
    Lena 

 
House 

 
Pentagone 

ROF-Graph 2.0601×10-6 2.57415×10-6 1.37305×10-6 
S.Bregman 8.45849×10-6 6.43004×10-6 6.73468×10-6 

ADMM 1.55788×10-4 2.64989×10-4 1.36008×0-4 

CONCLUSION 
We have observed that in many cases, all three algorithms are comparable. However in general, as seen on the convergence history 
plots, the ROF-Graph algorithm will achieve a prescribed tolerance in fewer that both Split Bregman and ADMM algorithms. 
Inthis work, we have studied and analyses for comparison purposes two well known algorithms (Split Bregman and ADMM) with a 
recent algorithm named ROF-Graph that solves the model taking advantage of insights from that fact that a digital image can be as a 
function defined on a graph. All three algorithms were compared with respect to their performance in solving the total variation 
model for denoising. Results show that our algorithm compares very well the two and can even outperform them by achieving a de-
sired result using fewer iterations. The results hence show a very good indication that our algorithm can be used to solve other ℓ1  
regularized problems appearing in machine learning and statistics. 
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