

GSJ: Volume 12, Issue 4, April 2024, Online: ISSN 2320-9186

www.globalscientificjournal.com

Comparative Analysis of functional-oriented program
design and object-oriented program design : a case

study of an Average Score program

Laud Ochei1, Chigoziri Marcus2

Department of Computer Science

University of Port Harcourt, Rivers State, Nigeria

Email:laud.ochei@uniport.edu.ng1, chigoziri.marcus@uniport.edu.ng2

Abstract

In software engineering, the choice of programming paradigms is critical to system design and

development. This paper addresses the critical issue of deciding between functional-oriented

and object-oriented programme design by conducting a comparative analysis in the context of

an Average Score program. The main research problem is to determine the strengths and

weaknesses of these design paradigms in terms of readability, maintainability, performance,

and scalability. Previous research has looked at the benefits of each paradigm separately, but

few studies have directly compared them in a specific application domain, such as Average

Score program. Our proposed solution entails creating two versions of an average score

program, one using functional programming techniques and the other using object-oriented

programming. Java is chosen as the high-level language of implementation. Methodologically,

the study uses a comprehensive evaluation framework that includes readability,

maintainability, performance, and scalability metrics. The implementation process entails

transalting a pseudocode of an Average score program into a Java program – one implemented

using functional-orinted program and the other using object-oriented program design. The

implementation followed the best coding practices for each programming paradigm. The

findings reveal clear distinctions between the two design approaches, with functional-oriented

design demonstrating superior readability and performance, while object-oriented design may

excel at maintainability and code reuse. The findings of this study provide useful guidance for

practitioners and software developers faced with the decision of making program design

decisions in similar contexts. Recommendations include considering the specific requirements

and constraints of the project, leveraging the strengths of each paradigm, and potentially

exploring hybrid approaches for optimal system design. Future research efforts could focus on

hybrid paradigms or broaden the comparative analysis to other application domains, enriching

the discussion of programming paradigm selection in software engineering.

Keywords: Programming, Functional-oriented, Object-oriented programming, Program

design, Comparative analysis.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 911

GSJ© 2024
www.globalscientificjournal.com

mailto:chigoziri.marcus@uniport.edu.ng

1. Introduction

In the ever-evolving landscape of software engineering, the selection of programming

paradigms holds profound implications for the design, development, and maintenance of

software systems. Among the pivotal decisions faced by software developers is the choice

between functional-oriented and object-oriented program design methodologies. This decision-

making process is particularly crucial within the domain of educational technology, where

systems like Exams Grading Systems play a central role.

The primary research problem addressed in this study revolves around the comparative

evaluation of functional-oriented and object-oriented program design methodologies within the

context of an Exams Grading System. While existing literature extensively investigates the

merits of each paradigm independently, a direct comparison within a specific application

domain like Average Score program remains scarce.

Numerous researchers have contributed to the understanding of functional-oriented

programming, emphasizing its declarative and immutable programming styles, as well as its

potential benefits in terms of code clarity and scalability (Hughes, 1989; Hickey, 2008).

Similarly, object-oriented programming principles, including encapsulation, inheritance, and

polymorphism, have been extensively studied for their applicability in building modular and

reusable software components (Booch et al., 2005; van Rossum, 2009).

To address this research gap, our study proposes a comparative analysis by developing two

distinct versions of an Exams Grading System. One version will utilize functional-oriented

programming techniques, while the other will employ object-oriented programming principles.

Haskell and Java have been chosen as the respective programming languages for their

suitability, expressiveness, and popularity (Odersky et al., 2004; Eckel, 2016).

The central research question guiding this study is: What are the comparative strengths and

weaknesses of functional-oriented and object-oriented program design during the

implementation of software development project. This research contributes to the ongoing

discourse on programming paradigm selection by providing practical insights into the trade-

offs between functional-oriented and object-oriented program design methodologies. By

rigorously evaluating criteria such as readability, maintainability, performance, and scalability,

we aim to offer software developers valuable guidance in making informed decisions regarding

programming paradigm selection.

The implementation of our proposed solution will adhere to best practices and idioms of each

programming paradigm to ensure a fair and accurate comparison. A comprehensive evaluation

framework will be employed, drawing upon established metrics and methodologies from

previous research (Sestoft, 2010; Zhang et al., 2015).

Expected outcomes anticipate distinct differences between the two design approaches, with

functional-oriented design potentially demonstrating superior readability and performance,

while object-oriented design may excel in maintainability and code reuse. These findings will

enrich the understanding of programming paradigm selection in software engineering and offer

practical recommendations for practitioners.

The study aims to provide valuable insights for software developers navigating the choice

between functional-oriented and object-oriented program design in the development of

Average Score program. Future research endeavors could explore hybrid paradigms or extend

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 912

GSJ© 2024
www.globalscientificjournal.com

the comparative analysis to other application domains, further advancing our understanding of

programming paradigm selection in software engineering.

The rest of the paper is organised as follows: section 2 is the Review of Related Concpets and

Related work. Section 3 is the methodology of the study. Section 4 is the comparative analysis

of the functional-oriented and object-oriented program design. Section 5 is the discussion with

a particular reference to the implication of the findings for software development practices..

Section 6 concludes the paper with recommendations for future work.

2. Literature Review

The sections

2.1 Functional-Oriented Program Design

Functional programming is grounded in the concept of treating computation as the evaluation

of mathematical functions. Key principles include immutability, where data cannot be changed

after creation, and pure functions, which produce the same output for the same input without

side effects. Functional programming languages like Haskell and Scala embody these

principles, offering concise, declarative syntax and emphasizing function composition and

recursion (Hughes, 1989; Odersky et al., 2004).

2.2 Object-Oriented Program Design

Object-oriented programming revolves around the concept of objects, encapsulating both data

and behavior. Principles such as encapsulation, inheritance, and polymorphism form the

foundation of object-oriented design. Encapsulation hides the internal state of an object,

inheritance allows for the creation of hierarchies of related classes, and polymorphism enables

objects to be treated as instances of their parent classes. Popular object-oriented languages like

Java, C++, and Python provide robust support for these principles (Booch et al., 2005; Eckel,

2016; van Rossum, 2009).

2.3 Related work on comparison of Functional-Oriented Program Design and Object-Oriented

Program Design in Software Development

Previous studies have compared the effectiveness of functional-oriented and object-oriented

programming paradigms in software development. Bird and Wadler (1988) provided

foundational insights into functional programming, highlighting its elegance and clarity.

Sestoft (2010) conducted a comprehensive study of lambda calculus and its applications in

functional programming, emphasizing its theoretical underpinnings. On the object-oriented

side, Booch et al. (2005) introduced the Unified Modeling Language (UML) as a standardized

notation for modeling object-oriented systems, facilitating communication among software

developers. Additionally, Zhang et al. (2015) conducted a comparative study of functional and

object-oriented programming, focusing on quality attributes such as readability,

maintainability, and performance, offering practical insights into the benefits and trade-offs of

each paradigm.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 913

GSJ© 2024
www.globalscientificjournal.com

2.4 Related work on Requirements for Average Score program and their Design Approaches

In the domain of educational technology, various studies have explored the design and

implementation of programs used to compute students grade or students. These programs have

varying requirements including accuracy, usability, security and performance and scalability.

Papadimitriou et al. (2012) developed an intelligent tutoring system for exam evaluation,

focusing on usability and accuracy. Tlili et al. (2018) conducted a review of automatic

assessment methods for electronic exams, highlighting advancements in technology-enhanced

assessment. Performance and scalability are two important requirement for these type of

programs of systesm. For example, the program will have to execute fast and also scale up

when the number of students and the number of exams 9or score) to be computed is large. In

some case, the there could be a sudden demand in request for the use of such programs,

especially when there is deadline to meet for both students and lectures(in terms of result

submission for approval). Wu et al. (2020) proposed a microservices-based approach to

constructing a cloud exam system, emphasizing scalability and performance. These studies

provide valuable insights into the design considerations and challenges specific to Average

Score program.

2.5 Functional-Oriented Program Design vs. Object-Oriented Program Design

This section presents a comparative analysis of a functional-orinted program design vs object-

oriented program design using These comparisons illustrate the fundamental differences and

similarities between functional-oriented and object-oriented program design principles. While

both paradigms offer powerful tools for software development, their approaches to data,

modularity, abstraction, state management, and code reuse vary based on their underlying

principles and methodologies.

Data Encapsulation:

Functional-Oriented Program Design (FOP), achieves data encapsulation through the use of

immutable data structures and pure functions. Immutable data ensures that once created, data

cannot be modified, enhancing predictability and concurrency. Object-Oriented Program

Design (OOP) utilizes classes and objects to encapsulate data and behavior. Access to data is

controlled through methods, providing encapsulation and abstraction. FOP emphasizes

immutability, reducing side effects and promoting referential transparency, whereas OOP

emphasizes encapsulation through classes and objects, providing a clear interface for data

access and manipulation (Hudak, 1989; Meyer, 1997; Gamma et al., 1994).

Modularity:

FOP promotes modularity by breaking down tasks into smaller, reusable functions. Functions

can be composed to create more complex behavior, enhancing code reuse and maintainability.

OOP promotes modularity through classes and objects, encapsulating related functionalities.

Inheritance and composition allow for the creation of modular, reusable components. Both

paradigms promote modularity, with FOP emphasizing function composition and OOP

emphasizing class composition. However, OOP provides more explicit mechanisms for

encapsulating and reusing code (Felleisen et al., 2001; Gamma et al., 1994; Meyer, 1994).

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 914

GSJ© 2024
www.globalscientificjournal.com

Abstraction:

FOP employs higher-order functions, lambda expressions, and function composition to achieve

abstraction. Functions operate on data without exposing implementation details. OOP achieves

abstraction through classes, interfaces, and inheritance hierarchies. Objects encapsulate state

and behavior, providing a simplified interface for interacting with complex systems. Both

paradigms facilitate abstraction, but FOP relies more on functions as the primary abstraction

mechanism, whereas OOP relies on objects and classes. Each approach offers its unique

strengths in modeling and managing complexity (Hughes, 1989; Booch et al., 1999; Thompson

& Hudak, 1999).

State Management:

FOP manages state using immutable data structures and pure functions. Functions take input

and produce output without modifying external state, leading to more predictable behavior.

OOP manages state using objects and instance variables. Encapsulation ensures that state is

controlled and accessed through methods, preserving data integrity. FOP emphasizes

immutability and pure functions to manage state, reducing side effects and enhancing

concurrency. OOP relies on encapsulation to manage state, providing controlled access and

abstraction. Meyer, 1988; Felleisen et al., 2001; Gamma et al., 1994).

Code Reusability:

FOP promotes code reusability through higher-order functions, function composition, and the

use of pure functions. Functions are composable and can be easily reused in different contexts.

OOP facilitates code reuse through inheritance, polymorphism, and object composition.

Classes can inherit behavior from parent classes and reuse components through

composition.Both paradigms support code reuse, with FOP offering reusable functions and

OOP offering reusable classes and components. The choice between them depends on the

specific requirements and design goals (Thompson & Hughes, 1999; Booch, 1991; Lämmel,

2013).

3. Methodology

3.1 Description of the Average Score program Case Study

The Average Score calculation program serves as the focal point for this comparative analysis.

This program is designed to automate the average calculation of a students scores in

examinations. The program accepts students scores in a predefined number of courses and then

calculated the avarges score of the student, and then determine whther the student has passed

or failed. The output of the program is to dosplay the performance of the student, whther the

student has passed or not.

3.2 Selection Criteria and Tools used for Implementation

The implementation of functional-oriented and object-oriented designs involved the use of

specific tools and frameworks. The selection criteria and tools used for the implementation of

functional-oriented and object-oriented program designs was guided by several considertions.

First, Java was selected as the high-level programming used for this comparative analysis. Java

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 915

GSJ© 2024
www.globalscientificjournal.com

is a general purpose programming language with a widespread adoption and robust support

for different programming paradigms such as functional-oriented and object-orinted principles

(van Rossum, 2009; Eckel, 2016). Java is a widely-used, platform-independent language with

extensive support for both functional-oriented and object-oriented programming concepts

(Arnold & Gosling, 2005). Additionally, considerations such as community support,

availability of libraries, and compatibility with existing infrastructure influenced the selection

of Java. Frameworks like JUnit facilitated unit testing and validation of object-oriented

implementations (Beck et al., 2002).

3.3 Implementation Details

In this study, we implementated two versions of an Average Score calculation program - one

using functional-oriented programming techniques and the other using object-oriented

programmingtechnques.

3.3.1 Pseudocode for Average Score Calculation program

The two versions of the program (that is, functional-oriented and object-oriented version of

the programs) that was implemented is based on a Pesudocode of the Average score program,

which is independent of the implementation in any programing lanaguge. Pseudocode is

defined as a method of describing a process or writing programming code and algorithms using

a natural language such as English. It is not the code itself, but rather a description of what the

code should do. In other words, it is used as a detailed yet understandable step-by-step plan or

blueprint from which a program can be written. A programmer should be able to look at the

pseudocode and translate it to a program in any programming language of choice. Figure 1

shows the pseudocode.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Start Program AverageScore

 Constants

 maxStudent = 4

 maxCourse = 3

 Declare Array Scores with dimensions maxStudent by maxCourse of Real

numbers

 Declare Variables i, j, k as Integers

 Declare Sum, Average as Real numbers

 Procedure SumScore

 Declare m, n as Integers

 Initialize Sum to 0

 For m from 1 to maxCourse Do

 Add value of StudScores[k, m] to Sum

 Output "The sum of scores for Student", k, " is:", Sum with precision 3

 Main

 For i from 1 to maxStudent Do

 For j from 1 to maxCourse Do

 Output "Supply score of student", i, " in course", j, ":"

 Read score of StudScores[i, j]

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 916

GSJ© 2024
www.globalscientificjournal.com

24

25

26

27

28

29

30

31

32

33

34

 For k from 1 to maxStudent Do

 Execute SumScore

 Calculate Average as Sum divided by maxCourse

 If Average is greater than or equal to 40.0 Then

 Output "Student", k, " passed with average score of", Average with

precision 3

 Else

 Output "Student", k, " failed with average score of", Average with precision

3

 Output newline

End Program

Figure 1. Pseudocode for Average Score program.

3.3.2 Object-Oriented programming Implementation of the Average Score program in Java

The following program is an object-oriented implemation of the pseudocode in Java.

import java.util.Scanner;

class Course {

 private double score;

 public Course(double score) {

 this.score = score;

 }

 public double getScore() {

 return score;

 }

}

class Student {

 private Course[] courses;

 public Student(int numCourses) {

 courses = new Course[numCourses];

 }

 public void setScore(int courseIndex, double score) {

 courses[courseIndex] = new Course(score);

 }

 public Course getCourse(int courseIndex) {

 return courses[courseIndex];

 }

 public double getSum() {

 double sum = 0;

 for (Course course : courses) {

 sum += course.getScore();

 }

 return sum;

 }

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 917

GSJ© 2024
www.globalscientificjournal.com

 public double getAverage() {

 return getSum() / courses.length;

 }

}

public class AverageScoreProgram {

 public static void main(String[] args) {

 final int maxStudent = 4;

 final int maxCourse = 3;

 Student[] students = new Student[maxStudent];

 Scanner scanner = new Scanner(System.in);

 // Input scores for each student and course

 for (int i = 0; i < maxStudent; i++) {

 students[i] = new Student(maxCourse);

 for (int j = 0; j < maxCourse; j++) {

 System.out.print("Supply score of student " + (i + 1) + " in course " + (j + 1) + ":

");

 double score = scanner.nextDouble();

 students[i].setScore(j, score);

 }

 }

 // Output sum and average scores for each student

 for (int k = 0; k < maxStudent; k++) {

 double sum = students[k].getSum();

 double average = students[k].getAverage();

 System.out.print("Student " + (k + 1) + " ");

 if (average >= 40.0) {

 System.out.printf("passed with average score of %.3f\n", average);

 } else {

 System.out.printf("failed with average score of %.3f\n", average);

 }

 }

 }

}

Figure 2. Object oriented implementation of the Average Score program in Java.

The above program has a separate Course class to represent each course, encapsulating the

score for that course, and a Student class to represent each student, containing an array of

Course objects to store the scores for each course. In this program, instead of directly setting

scores for each student, we create new Course objects and set them using the setScore method

in the Student class. We utilize object-oriented features such as encapsulation to hide the

internal implementation details of the Student class, and use of objects to model real-world

entities (students, course).

Table 3 provides a structured breakdown of the object-oriented program, highlighting key lines

of code and their respective features. The first column should contain line numbers for key

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 918

GSJ© 2024
www.globalscientificjournal.com

sections of the program, the second column contain the program code; and the third column

contain key comments or descriptions of the features of the program.

Table 1. Object-oriented program with descriptions of key sections of the code

Line

Number Program Code Key Comments / Descriptions

1 import java.util.Scanner;

Importing the Scanner class from the

java.util package for user input.

2

3 class Course { Declaration of the Course class.

4 private double score;

Declaration of the private instance variable

score to store the score of the course.

5

6 public Course(double score) { Constructor of the Course class.

7 this.score = score;

Assigning the passed score to the instance

variable score.

8 } End of the constructor.

9

10 public double getScore() {

Getter method to retrieve the score of the

course.

11 return score;

Returning the value of the instance variable

score.

12 } End of the getter method.

13 } End of the Course class.

14

15 class Student { Declaration of the Student class.

16 private Course[] courses;

Declaration of the private instance variable

courses to store the courses taken by the

student.

17

18 public Student(int numCourses) { Constructor of the Student class.

19

courses = new

Course[numCourses];

Initializing the courses array with the

specified number of courses.

20 } End of the constructor.

21

22

public void setScore(int

courseIndex, double score) {

Method to set the score for a particular

course.

23

courses[courseIndex] = new

Course(score);

Creating a new Course object with the

specified score and assigning it to the

corresponding index in the courses array.

24 } End of the method.

25

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 919

GSJ© 2024
www.globalscientificjournal.com

Line

Number Program Code Key Comments / Descriptions

26

public Course getCourse(int

courseIndex) {

Method to retrieve the course object for a

given index.

27 return courses[courseIndex];

Returning the Course object at the

specified index in the courses array.

28 } End of the method.

29

30 public double getSum() {

Method to calculate the sum of scores for

all courses taken by the student.

31 double sum = 0;

Initializing the variable sum to 0 to store

the sum of scores.

32 for (Course course : courses) {

Looping through each course in the courses

array.

33 sum += course.getScore(); Adding the score of each course to the sum.

34 } End of the loop.

35 return sum; Returning the sum of scores.

36 } End of the method.

37

38 public double getAverage() {

Method to calculate the average score for all

courses taken by the student.

39 return getSum() / courses.length;

Returning the average score by dividing the

sum of scores by the number of courses.

40 } End of the method.

41

42

public class AverageScoreProgram

{

Declaration of the AverageScoreProgram

class.

43

44

public static void main(String[]

args) {

Main method declaration, entry point of the

program.

45 final int maxStudent = 4;

Declaration of a constant integer

maxStudent with a value of 4.

46 final int maxCourse = 3;

Declaration of a constant integer

maxCourse with a value of 3.

47

48

Student[] students = new

Student[maxStudent];

Creating an array to store Student objects

with a size of maxStudent.

49

Scanner scanner = new

Scanner(System.in); Creating a Scanner object for user input.

50

51

for (int i = 0; i < maxStudent; i++)

{ Looping through each student.

52

students[i] = new

Student(maxCourse);

Creating a new Student object for each

student with maxCourse number of

courses.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 920

GSJ© 2024
www.globalscientificjournal.com

Line

Number Program Code Key Comments / Descriptions

53 for (int j = 0; j < maxCourse; j++) {

Looping through each course for the current

student.

54

System.out.print("Supply score of

student " + (i + 1) + " in course " +

(j + 1) + ": ");

Prompting the user to input the score for the

current student and course.

55

double score =

scanner.nextDouble(); Reading the score entered by the user.

56 students[i].setScore(j, score);

Setting the score for the current student and

course.

57 } End of the inner loop.

58 } End of the outer loop.

59

60

for (int k = 0; k < maxStudent;

k++) { Looping through each student.

61

double sum =

students[k].getSum();

Calculating the sum of scores for the current

student.

62

double average =

students[k].getAverage();

Calculating the average score for the

current student.

63

64

System.out.print("Student " + (k +

1) + " "); Displaying the student number.

65 if (average >= 40.0) {

Checking if the average score is greater than

or equal to 40.0.

66

System.out.printf("passed with

average score of %.3f\n", average);

Printing the message indicating that the

student passed with the average score

rounded to 3 decimal places.

67 } else { If the average score is less than 40.0.

68

System.out.printf("failed with

average score of %.3f\n", average);

Printing the message indicating that the

student failed with the average score

rounded to 3 decimal places.

69 } End of the if-else statement.

70 } End of the outer loop.

71 } End of the AverageScoreProgram class.

3.3.3 Funtional-Oriented programming implemetation of the Average score Program in Java

Line

number

Program code

1

2

3

4

package com.averagescorefop;

import java.util.Scanner;

import java.util.stream.IntStream;

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 921

GSJ© 2024
www.globalscientificjournal.com

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

public class AverageScore_functional_oriented {

 private static final int maxStudent = 2;

 private static final int maxCourse = 2;

 public static void main(String[] args) {

 double[][] scores = new double[maxStudent][maxCourse];

 Scanner scanner = new Scanner(System.in);

 // Input scores for each student and course

 for (int i = 0; i < maxStudent; i++) {

 for (int j = 0; j < maxCourse; j++) {

 System.out.println("Supply score of student " + (i + 1) + " in course " +

(j + 1) + ": ");

 scores[i][j] = scanner.nextDouble();

 }

 }

 // Calculate and output sum and average scores for each student

 IntStream.range(0, maxStudent)

 .forEach(studentIndex -> {

 double average = calculateSumAndAverage(scores[studentIndex]);

 String resultMessage = average >= 40.0 ?

 " passed with average score of " + String.format("%.3f",

average) :

 " failed with average score of " + String.format("%.3f",

average);

 System.out.println("Student " + (studentIndex + 1) +

resultMessage);

 });

 }

 private static double calculateSumAndAverage(double[] scores) {

 double sum = 0;

 for (double score : scores) {

 sum += score;

 }

 return sum / maxCourse;

 }

}

Figure 2. Functional-oriented implementation of the Average Score program in Java.

In the this functional-oriented version of the program, we use streams and lambda expressions

to iterate over the students' scores and calculate the sum and average for each student. The

calculateSumAndAverage method is a pure function that takes an array of scores and returns

the average score. We emphasize immutability by avoiding mutation of variables inside the

stream operations. This version of the program uses the IntStream.range() to generate a stream

of indices from 0 to maxStudent - 1. The code follows a functional programming style by

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 922

GSJ© 2024
www.globalscientificjournal.com

focusing on pure functions and the use of higher-order functions like streams and lambda

expressions.

Table 2 provides a structured breakdown of the functional-oriented program, highlighting key

lines of code and their respective features. The first column should contain line numbers for

key sections of the program, the second column contain the program code; and the third column

contain key comments or descriptions of the features of the program.

Table2. Funtional-oriented program with descriptions of key sections of the code

Lin

e

No.

Code Description/Comments

1 package com.averagescorefop; This line declares the package

name where the class belongs.

3 import java.util.Scanner; This line imports the Scanner class

to read input from the user.

4 import java.util.stream.IntStream; This line imports the IntStream

class to facilitate stream

operations on integers.

6 public class AverageScore_functional_oriented

{

This line declares the start of the

AverageScore_functional_oriente

d class definition.

8 private static final int maxStudent = 2; This line declares a constant

integer variable maxStudent with

a value of 2, representing the

maximum number of students.

9 private static final int maxCourse = 2; This line declares a constant

integer variable maxCourse with a

value of 2, representing the

maximum number of courses.

11 public static void main(String[] args) { This line declares the main

method, the entry point of the

program.

13 double[][] scores = new

double[maxStudent][maxCourse];

This line declares a 2D array

scores to store the scores of

students in each course.

15 Scanner scanner = new Scanner(System.in); This line creates a Scanner object

scanner to read input from the

user.

18-

21

for (int i = 0; i < maxStudent; i++) { This loop iterates over each

student.

19-

20

for (int j = 0; j < maxCourse; j++) { This nested loop iterates over each

course for the current student.

21 System.out.println("Supply score of student " +

(i + 1) + " in course " + (j + 1) + ": ");

This line prompts the user to enter

the score for the current student in

the current course.

22 scores[i][j] = scanner.nextDouble(); This line reads the score input by

the user and stores it in the scores

array.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 923

GSJ© 2024
www.globalscientificjournal.com

24-

32

IntStream.range(0, maxStudent) This line generates a stream of

integers from 0 (inclusive) to

maxStudent (exclusive).

 .forEach(studentIndex -> { This line iterates over each

element in the stream, where

studentIndex represents the index

of the student.

25-

30

double average =

calculateSumAndAverage(scores[studentIndex]

);

This line calculates the sum and

average of the scores for the

current student.

31 String resultMessage = average >= 40.0 ? This line determines whether the

student passed or failed based on

the calculated average score.

32 " passed with average score of " +

String.format("%.3f", average) :

If the average score is greater than

or equal to 40.0, the student

passed; otherwise, they failed.

33 " failed with average score of " +

String.format("%.3f", average);

If the average score is less than

40.0, the student failed.

34 System.out.println("Student " + (studentIndex +

1) + resultMessage);

This line prints the student's index

along with the result message

indicating pass/fail status and

average score.

37 private static double

calculateSumAndAverage(double[] scores) {

This line declares a method

calculateSumAndAverage to

calculate the sum and average of

scores for a given student.

39 double sum = 0; This line initializes a variable sum

to store the sum of scores.

40-

43

for (double score : scores) { This loop iterates over each score

in the scores array for the current

student.

41 sum += score; This line adds each score to the

sum variable.

42 } End of the loop.

43 return sum / maxCourse; This line calculates and returns the

average score by dividing the sum

by the total number of courses.

44 } End of the

calculateSumAndAverage method

definition.

45 } End of the class definition.

4. Comparative Analysis

4.1 Functional-oriented vs. Object-Oriented: program design features

The section compares and contrast between functional-oriented and object-oriented program

design features using the AverageScore Java program as a case study. The criteria for the

comparison is based on Programming paradigm, Class Structure, Data Representation, Code

Modularity, Code Readability, Scalability, Data Encapsulation, State Management, Inheritance

and Polymorphism, Code Flexibility and Extensibility.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 924

GSJ© 2024
www.globalscientificjournal.com

4.1.1 Programming Paradigm

Functional programming emphasizes the use of pure functions, immutability, and higher-order

functions to solve problems. It focuses on the evaluation of expressions and avoids mutable

state and side effects. In the provided Java program, functional-oriented design is demonstrated

through the use of functional constructs like lambda expressions and method references to

process data streams. Object-oriented programming (OOP) revolves around the concept of

objects, which encapsulate data and behavior. OOP promotes the principles of encapsulation,

inheritance, and polymorphism. In the given Java program, OOP principles are applied by

defining classes like Student and Course, encapsulating related data and behavior within

objects.

4.1.2 Class Structure

In functional-oriented design, functions are organized within a main class or module, and each

function typically performs a specific task or operation. The main class acts as the entry point

for the program, and functions are called sequentially to execute different functionalities.

Object-oriented design involves defining classes to represent entities and their interactions.

Each class encapsulates related data and behavior, and objects of these classes interact with

each other to perform tasks. In the provided Java program, classes like Student and Course

represent entities, with methods encapsulating behavior.

4.1.3 Data Representation

In functional programming, data is often represented using primitive types and data structures

like arrays. Functions operate on this data by passing it as arguments or returning it as results.

In the Java program, arrays are used to store student scores for each course. Object-oriented

design involves representing data as objects, which encapsulate both data and behavior. Objects

are instances of classes, and they interact with each other by invoking methods and accessing

attributes. In the provided Java program, classes like Student and Course represent data entities,

with attributes and methods to manipulate them.

4.1.4 Code Modularity

Functional programming promotes modularity by breaking down tasks into smaller, reusable

functions. These functions can be composed together to perform more complex operations,

enhancing code organization and reusability. Object-oriented design also emphasizes

modularity through the use of classes and objects. Each class encapsulates related functionality,

and objects interact with each other to accomplish tasks. In the provided Java program, classes

like Student and Course encapsulate behavior and data, promoting modularity and code

reusability.

4.1.5 Code Readability

Functional programming emphasizes writing concise and readable code. Functional constructs

like lambda expressions and method references can make code more expressive and easier to

understand, especially for operations involving data streams and transformations. Object-

oriented programming also prioritizes code readability through the use of well-defined classes,

methods, and object-oriented principles. Classes and objects encapsulate related behavior and

data, making the code more organized and comprehensible.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 925

GSJ© 2024
www.globalscientificjournal.com

4.1.6 Scalability

Functional programming supports scalability by leveraging higher-order functions and

functional constructs. These features enable the composition of functions and facilitate the

addition of new functionalities without modifying existing code. Object-oriented programming

facilitates scalability through inheritance, polymorphism, and encapsulation. Inheritance

hierarchies allow for the extension and specialization of classes, while polymorphism enables

the use of objects of different types through a common interface.

4.1.7 Data Encapsulation

Functional programming typically does not provide built-in support for data encapsulation.

Data is often mutable, and functions operate directly on data structures like arrays. Object-

oriented programming promotes data encapsulation by bundling data and behavior within

objects. Access to object attributes is controlled through methods, and data integrity is

maintained by preventing direct access to object fields.

4.1.8 State Management

In functional programming, functions operate on immutable data, which minimizes side effects

and simplifies state management. Functions produce new data structures instead of modifying

existing ones, leading to more predictable behavior. Object-oriented programming manages

state through objects, which encapsulate both data and behavior. Objects maintain their state

internally, and changes to state are made through well-defined methods, ensuring data

consistency and integrity.

4.1.9 Inheritance and Polymorphism

Functional programming languages may not support inheritance and polymorphism as

explicitly as object-oriented languages. Instead, functions are composed and combined to

achieve desired behavior. Object-oriented programming facilitates inheritance and

polymorphism, allowing classes to inherit behavior and attributes from parent classes and

enabling objects to exhibit different behaviors through method overriding.

4.1.10 Code Flexibility and Extensibility

Functional programming offers flexibility and extensibility through higher-order functions and

composability. Functions can be composed and combined to create new functionalities without

modifying existing code. Object-oriented programming provides flexibility and extensibility

through inheritance, polymorphism, and encapsulation. New features can be added by

extending existing classes or creating new ones, and objects can be reused and extended to

accommodate changing requirements.

Table 3 presents a comparison between functional-oriented and object-oriented program

designs using the AverageScore Java program.

Table 3. Comparison of functional-oriented and object-oriented design using AverageScore

program in Java

Feature Functional-Oriented Design Object-Oriented Design

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 926

GSJ© 2024
www.globalscientificjournal.com

Paradigm Follows functional

programming paradigm,

emphasizing immutability, pure

functions, and higher-order

functions.

Follows object-oriented

programming paradigm, focusing

on encapsulation, inheritance, and

polymorphism.

Class Structure Functions are organized into

methods within the main class.

(Lines 12-53)

Classes are defined separately for

Course and Student, encapsulating

related data and behavior. (Lines 2-

21)

Data

Representation

Uses arrays and primitive data

types for storing and processing

data. (Lines 17-21, 26-27)

Utilizes objects to represent data,

allowing for encapsulation of data

and behavior. (Lines 2-21)

Code Modularity Functions are used for specific

tasks and operations, promoting

modularity and code

reusability. (Lines 38-46, 48-

50)

Classes encapsulate related

functionality and data, promoting

modular code organization and

reusability. (Lines 2-21)

Code Readability Emphasizes readability through

the use of lambda expressions

and method references,

promoting concise code. (Lines

40-50)

Focuses on readability through the

use of well-defined classes,

methods, and object-oriented

principles. (Lines 2-21)

Scalability Offers scalability through the

use of higher-order functions

and functional constructs,

facilitating easier extension.

(Lines 37-52)

Supports scalability through

inheritance, polymorphism, and

encapsulation, enabling the

addition of new features. (Lines 2-

21)

Data Encapsulation Does not explicitly support

encapsulation; data is often

mutable and accessed directly.

(Lines 26-27, 29-31)

Supports data encapsulation by

encapsulating data within objects

and providing methods to

manipulate data. (Lines 2-21)

State Management Functions operate on

immutable data, minimizing

side effects and simplifying

state management. (Lines 46-

50)

Uses objects to manage state,

allowing for better organization and

control over data and its state.

(Lines 2-21)

Inheritance and

Polymorphism

Not directly supported;

functions are typically

independent and operate on

data without inheritance or

polymorphism. (N/A)

Supports inheritance and

polymorphism, allowing for code

reuse and extensibility through

inheritance hierarchies. (Lines 2-

21)

Code Flexibility

and Extensibility

Provides flexibility through

functional constructs and

higher-order functions,

enabling easy extension and

modification. (Lines 37-52)

Offers flexibility through

inheritance and polymorphism,

facilitating code extension and

modification. (Lines 2-21)

4.2 Functional-oriented vs. Object-Oriented Program Design: programmers perspective

Functional-oriented programming (FOP) and object-oriented programming (OOP) represent

two prominent paradigms in software development, each with its distinct features, principles,

and methodologies. Table 5 presents a comparative analysis of functional-oriented program

design vs. Object-Oriented Program Design. This analysis compares and contrasts these two

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 927

GSJ© 2024
www.globalscientificjournal.com

paradigms based on a Java program implementing average score calculation from the

perspective of the programmer or software developer.

Table 4. Comparative Analysis of Functional-Oriented Program Design vs. Object-Oriented

Program Design and its application in AverageScore program

Features Functional-Oriented Program

Design

Object-Oriented Program

Design

Data

Encapsulation

In FOP, data encapsulation is

achieved through the use of

immutable data structures and

functions that operate on these

structures.

In OOP, data encapsulation is

realized through the bundling of

data and methods within objects,

with access controlled by access

specifiers.

Data

Encapsulation in

relation Average

Score program

The functional design employs

immutable data structures (e.g.,

arrays) and pure functions (e.g.,

calculateSumAndAverage) for data

manipulation.

Object-oriented design uses

classes (e.g., Student, Course) to

encapsulate data and behavior,

ensuring encapsulation and

modularity.

Modularity FOP emphasizes modular design by

breaking down tasks into smaller,

reusable functions, promoting code

reuse and maintainability.

OOP promotes modularity

through classes and objects,

facilitating encapsulation and

allowing for modular, reusable

components.

Modularity in

relation Average

Score program

The functional design breaks down

tasks into smaller functions like

setScore and getAverage, promoting

modularity and code reuse.

Object-oriented design

encapsulates related

functionalities within classes (e.g.,

Student, Course), promoting

modularity and reusability.

Abstraction FOP employs abstraction through

higher-order functions, lambda

expressions, and function

composition to create reusable and

composable code.

OOP achieves abstraction through

classes, interfaces, and inheritance

hierarchies, enabling the modeling

of real-world entities and

behaviors.

Abstraction in

relation Average

Score program

The functional design utilizes

higher-order functions like forEach,

enabling abstraction and code reuse.

Object-oriented design utilizes

inheritance and polymorphism to

abstract common behaviors,

promoting code reuse and

extensibility.

State

Management

In FOP, state management is

achieved through immutable data

and pure functions, minimizing side

effects and promoting referential

transparency.

OOP manages state using objects

and instance variables,

encapsulating state within objects

and controlling access through

methods.

State

management in

relation Average

Score program

The functional design ensures

immutability by using final

variables and pure functions,

reducing the risk of unintended state

modifications.

Object-oriented design

encapsulates state within objects

(e.g., Course, Student), ensuring

data integrity and minimizing

direct access.

Code

Reusability

FOP promotes code reusability

through higher-order functions,

function composition, and the use of

OOP facilitates code reuse

through inheritance,

polymorphism, and object

composition, allowing for the

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 928

GSJ© 2024
www.globalscientificjournal.com

pure functions that can be easily

composed and reused.

creation of reusable components

and libraries.

Code reusability

in relation to

Average Score

program

The functional design utilizes

higher-order functions to enable

code reuse and composability,

fostering a modular and reusable

codebase.

Object-oriented design

encourages the creation of

reusable classes and components

through inheritance and

composition, enhancing code

maintainability.

5. Discussion: implication of the findings for software development practices

In this section we present a discussion of the implications of the findings for software

development practices. The implications will be discussed under the following sub-themes:

readability, maintability, performance, and scalability.

5.1 Readability

Readability of the functional-oriented and object-oriented designs was assessed using

established metrics such as code complexity and naming conventions. Code complexity was

measured using metrics like cyclomatic complexity, which quantifies the number of

independent paths through a program's source code (McCabe, 1976). Additionally, adherence

to naming conventions, such as descriptive variable and function names, was evaluated to

gauge the comprehensibility of the code (Fowler, 2004). Readability is crucial for software

maintainability and ease of comprehension by developers, ultimately impacting software

quality (Buse & Weimer, 2010). The functional-oriented design exhibited clearer and more

concise code compared to the object-oriented design, as evidenced by lower cyclomatic

complexity and better adherence to naming conventions.

5.2 Maintainability

The maintainability of both designs was evaluated to assess the ease of maintaining and

updating the system over time. Factors considered included modularity, which measures the

degree to which a system is composed of separate, interchangeable components (Parnas, 1972),

and code reusability, which indicates the extent to which code segments can be reused across

the system or in future projects (Frakes & Terry, 1996). A highly maintainable system enables

developers to make changes efficiently and effectively, reducing the risk of introducing errors

or negatively impacting system performance (Lehman, 1980). Both designs demonstrated good

modularity, but the object-oriented design showed slightly better code reusability due to its

support for inheritance and polymorphism.

5.3 Performance

Performance benchmarks were conducted to compare the execution speed and memory usage

of the functional and object-oriented implementations. Execution speed was measured in terms

of processing time for common operations within the system, such as grading exams or

generating reports. Memory usage was assessed to understand the system's resource

consumption and potential scalability limitations (Jones & McGlothlin, 1984). Performance

optimization is crucial for ensuring that the system can meet user requirements and handle large

volumes of data efficiently (Seacord, 2005). The functional-oriented implementation

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 929

GSJ© 2024
www.globalscientificjournal.com

outperformed the object-oriented implementation in terms of execution speed and memory

usage, especially for computationally intensive tasks.

5.4 Scalability

The scalability of the designs was evaluated to determine their ability to handle increasing

volumes of exam data and concurrent user requests. Scalability metrics included response time,

which measures the system's responsiveness under varying loads, and throughput, which

quantifies the number of transactions processed per unit of time (Tanenbaum & Van Steen,

2007). Scalability is essential for ensuring that the system can accommodate growth without

experiencing performance degradation or system failures, particularly in environments with

fluctuating demand (Liu & Wang, 2009). Both designs demonstrated satisfactory scalability,

with minor performance degradation observed under high load conditions.

The comparative analysis revealed trade-offs between functional-oriented and object-oriented

program design in the context of the Average Score calculation program. While functional

programming offered clearer and more concise code with superior performance, object-

oriented programming provided better support for code reuse and maintainability. These

findings underscore the importance of selecting the appropriate programming paradigm based

on the specific requirements and constraints of a software development project.

6. Conclusion

In this study, we compared functional-oriented and object-oriented programme design using

an Average Score Calculation programme. By examining these two paradigms in the context

of a real-world software application, we hoped to gain insight into their respective strengths

and weaknesses in terms of readability, maintainability, performance, and scalability.

Our investigation yielded several key findings. First, we discovered that functional-oriented

designs, defined by immutability and pure functions, frequently resulted in code that was

concise and declarative. Object-oriented designs, which used principles such as encapsulation

and inheritance, enabled modular and reusable code structures.

We were able to discover differences between the two paradigms by conducting rigorous

evaluations using established metrics and criteria such as code complexity, modularity, and

performance benchmarks. While functional-oriented designs excelled in some areas, such as

readability and mathematical clarity, object-oriented designs outperformed in terms of

maintainability and extensibility.

Overall, the most significant contribution of this paper is its comprehensive comparison of

functional-oriented and object-oriented programme designs in the context of an Average Score

Calculation program. By highlighting the trade-offs and considerations associated with each

paradigm, we hope to help software developers and architects make informed decisions.

For future research, we recommend looking into hybrid approaches that incorporate elements

of both functional and object-oriented programming paradigms. Furthermore, longitudinal

studies that track the evolution of software systems built with these paradigms could provide

valuable insights into their long-term maintainability and scalability. Furthermore,

investigating the applicability of emerging programming languages and frameworks in

educational technology may provide new insights into software design and development

practices.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 930

GSJ© 2024
www.globalscientificjournal.com

References

Arnold, K., & Gosling, J. (2005). The Java programming language. Addison-Wesley

Professional.

Beck, K., Cunningham, W., & Jeffries, R. (2002). Test-driven development: by example.

Addison-Wesley Professional.

Bird, R., & Wadler, P. (1988). Introduction to functional programming. Prentice Hall.

Booch, G., Jacobson, I., & Rumbaugh, J. (1999). Unified modeling language user guide.

Addison-Wesley Professional.

Claessen, K., & Hughes, J. (2000). QuickCheck: A lightweight tool for random testing of

Haskell programs. In International conference on functional programming (pp. 268-279).

Eckel, B. (2016). Thinking in Java. Prentice Hall.

Evans, E. (2003). Domain-driven design: Tackling complexity in the heart of software.

Addison-Wesley.

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2001). How to design programs:

An introduction to computing and programming. MIT Press.

Frakes, W. B., & Terry, W. S. (1996). Software reuse: Metrics and models. ACM Computing

Surveys (CSUR), 28(2), 415-435.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of

reusable object-oriented software. Addison-Wesley Professional.

Hickey, R. (2008). Clojure: Functional programming for the JVM. In Proceedings of the 2008

Symposium on Dynamic Languages (pp. 17-18).

Hughes, J. (1989). Why functional programming matters. The computer journal, 32(2), 98-107.

Hughes, J. (2000). Why functional programming matters. Retrieved from

https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

Jones, C., & McGlothlin, J. (1984). Measurement of software project size. IBM systems

journal, 23(2), 184-194.

Lämmel, R. (2013). Software languages engineering: An introduction. Addison-Wesley.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. Proceedings of

the IEEE, 68(9), 1060-1076.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering,

(4), 308-320.

Meyer, B. (1988). Object-oriented software construction. Prentice Hall.

Meyer, B. (1997). Object-oriented software construction. Prentice Hall.

Odersky, M., Spoon, L., & Venners, B. (2004). Programming in Scala. Artima.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 931

GSJ© 2024
www.globalscientificjournal.com

Papadimitriou, I., Karousos, N., & Vouros, G. A. (2012). E-examiner: An intelligent tutoring

system for exams evaluation. Expert Systems with Applications, 39(3), 2985-2996.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12), 1053-1058.

Seacord, R. C. (2005). Secure coding in C and C++. Pearson Education.

Sestoft, P. (2010). Functional programming and lambda calculus. Springer Science & Business

Media.

Tanenbaum, A. S., & Van Steen, M. (2007). Distributed systems: Principles and paradigms.

Prentice Hall.

Thompson, S., & Hughes, J. (1999). Haskell 98 language and libraries: The revised report.

Cambridge University Press.

Thompson, S., & Hudak, P. (1999). A guide to Haskell. Cambridge University Press.

Tlili, A., Essalmi, F., Jemni, M., & Kinshuk. (2018). A Review on Automatic Assessment for

Electronic Exams. IEEE Transactions on Learning Technologies, 11(3), 376-390.

Wu, L., Yang, J., Xiang, H., Ma, Y., & Ma, B. (2020). A novel approach to construct cloud

exam system using microservices. Future Generation Computer Systems, 104, 163-174.

Zhang, D., He, H., Lin, Z., & Qin, X. (2015). A comparative study of functional and object-

oriented programming from the perspective of quality attributes. In International Conference

on Software Engineering and Service Science (pp. 1-4).

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 932

GSJ© 2024
www.globalscientificjournal.com

