

GSJ: Volume 9, Issue 4, April 2021, Online: ISSN 2320-9186
www.globalscientificjournal.com

Comparison between Quicksort, MergeSort and Insertion Sort

Dinesh Bajracharya Devika Acharya

dinacharya@gmail.com joniacharya81@gmail.com

Abstract

Sorting plays an important role in computer programs and human lives. Sorting of data is a time
intensive process. Several algorithms have been developed to sort list of data; each algorithm has its
own merits and demerits. QuickSort, MergeSort and Insertion Sort are three well-known and used
sorting algorithms. Quick sort and merge sort are based on the concept of divide and conquer and are
considered as the most efficient sorting algorithms. Insertion sort uses concept of arranging cards. This
research work compares these different sorting algorithms in terms of time complexity with the help of
programs written in JAVA language using different sizes list with varying nature of data.

Keywords: Quicksort, MergeSort, Insertion Sort, Java, Big-Oh

Introduction

Sorting is a method of arranging data in ascending or descending order. Arranging a large list data in
ascending order or descending order is time-intensive process. Several computer programs work on
sorted data; searching will be fast in sort list of data. Several sorting algorithms have been developed to
sort list (array) of data. These different algorithms have their own advantages and disadvantages. The
performance of these algorithms depends of size of the list to be sorted, nature of data in the list and is
measured in terms of time and space used by the algorithms while sorting the data. Some algorithms
are very fast at sorting data, some are not; some algorithms use more memory space, some don’t.

Among several purposed sorting algorithms: Quicksort, MergeSort and Insertion sorts are well-known.
This research article compares Quicksort, MergeSort and Insertion sort in terms of the time taken to
sort a list of data. The time taken by an algorithm to complete task is measured by counting the number
of key operations of the algorithm and space required by the algorithm is calculated by counting amount
of memory usemd by the algorithm during its execution.

The big-Oh notation is defined to specify the running time and space requirements of an algorithm in
terms of some parameter ‘n’ [5]. Big-Oh notation for Quicksort and MergeSort is O(nlogn) and O(n2) for
the Insertion sort, where n is the number of elements. Algorithms is O(nlogn) are every efficient
compared to algorithms with O(n2).

Objective of This research work

The objective of this research is to find out how the considered sorting algorithms: QuickSort, MergeSort
and Insertion Sort perform with the different datasets of different sizes and nature. The datasets consist
of sorted unique data, unsorted unique data and repeated unsorted data.

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2444

GSJ© 2021
www.globalscientificjournal.com

http://www.globalscientificjournal.com/
mailto:dinacharya@gmail.com

Method

To compare considered sorting algorithms following tasks were performed.

 Three different Java Programs were written: one for quicksort, second for mergesort and last
one for insertion sort.

 A JAVA program was developed to generate more than five hundred thousand random numbers
using Math.random() method and saved in two different the files, one with the sorted numbers
another with the unsorted numbers.

 Another set of data of size four hundred seventy-one thousand was created in MS Excel using
randbetween() function, this file contained lots of duplicate values.

 In the sorting program fourteen different sized (100, 200, 400, 800, etc.) arrays were created
and populated those arrays with the data from the files with the random numbers.

 All those arrays of different sizes were sorted using Quick Sort, Merge Sort and Insertion Sort
programs. The programs were run for several times. Time taken by to sort each array by each
sorting algorithm was tabulated, calculated average time taken by each algorithm.

 Discussion was written based on the experimental output and the literature reviews.

Theories

The sorting process includes comparisons, movements and swapping of elements of the list (array). The
elements are moved or swapped as necessary after comparing elements of the list with each other. It is
not necessary that the number of movements and the number of comparisons to be equal, these two
operations depend on the size of input (size of list), nature of data in the input. The number of
movements and comparisons play vital role in the calculation of the time complexity of the algorithms.

Time complexity of an algorithm is defined as the time taken by an algorithm to complete execution and
is expressed as a function of the size of a problem. “The limiting behavior of the complexity of an
algorithm with the increase in size of input is called the asymptotic time complexity.” The asymptotic
complexity of an algorithm determines the size of problems that can be solved by the algorithm. If an
algorithm processes ‘n’ number of input data in cn2 time, where c is some constant, then we say that the
time complexity of the algorithm is O(n2), “order of n2” [2].

Elements of the list are sorted by comparing elements of the list with each other. Knowing number of
comparisons is not possible, an approximate value is computed. The number of comparisons and
movements is approximated with the big-Oh notation by mentioning the order of magnitude of these
numbers, the order of magnitude can vary as the initial order of the data plays important role on that
magnitude[3]. Big-Oh notation provides the worst-case time-complexity for the algorithms, that is,
whatever the worst situation be the algorithm will not take more than specified amount of time to
complete execution. Following questions are important when calculating efficiency of sorting:

 How much time computer take to order ordered data?
 Does algorithm recognize that data is ordered or not?

Some sorting algorithms perform same number of operations regardless of the initial ordering of data,
some don’t. It is not necessary that number of movements and number of comparisons to be equal for
all the algorithms.

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2445

GSJ© 2021
www.globalscientificjournal.com

Quicksort

Quicksort is considered as one of the fastest sorting methods. Quicksort is based on the divide-and-
conquer paradigm. It consists of three-steps: Divide, Conquer, and Combine to sort an array A[p..r].

 Divide: Find any element (first, last, middle etc.) of the array A[1…r] and let the position of that
element be q. Divide array A into two sub arrays (partitions) A[p…q-1] and A[q+1…r] such that
elements less than or equal to element A[q] are stored in A[p..q-1] and elements greater than or
equal to element A[q] are stored in A[p + 1...r].

 Conquer: Sort the two subarrays (partitions) A[p..q-1] and A[q + 1...r] by recursive or non-
recursive calls to quicksort.

 Combine: The subarrays are sorted in place, no work needed to combine them. The entire array
is sorted.

The running time of quicksort is affected by the fact where the partitions created are of equal size or
not, the partitions depend on the element used for partitioning. If the partitions are even then the
quicksort runs asymptotically as fast as merge sort otherwise it can run asymptotically as slow as
insertion sort [7]. The initial ordering of the data also affects the performance of quicksort, quicksort
does not perform well with the sorted data. If already sorted sequence (list) with no duplicates and first
element is chosen as pivot, then the Quicksort would take a quadratic number of steps[2]. The Big-Oh
notation for quicksort is O(nlogn).

Insertion Sort

Insertion sort is an efficient algorithm for sorting a small sized lists or arrays. Insertion sort works the
way many people use to sort a hand of playing cards. Initially hand is empty, one card at a time is picked
and placed in its proper place by shifting other cards if necessary. Correct position of the card is found
by comparing the picked card with cards already in the hand.

The time taken by the Insertion sort depends on the input size, if the number of elements is very high
the insertion sort will be slow but if the number of elements is small then it will be fast. The worst-case
running time of insertion sort is O(n2) where n is the number of elements in the list to sort. If the list is
already sorted then insertion sort will be fast as movements of the elements are not done, only
comparison of data is done.

Merge Sort

A basic method to write good algorithm based on the divide-and-conquer paradigm is to divide a list into
approximately equal halves instead of unbalanced halves. Merge Sort divides list of equal sizes (Alfred V.
Aho, 2000). Mergesort algorithm nearly follows the divide-and-conquer paradigm. It operates as follows:

Divide: Divide the n-element list to two subsequences of size n/2.
Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences and get sorted list.

The running time of the merge sort is O(nlogn) where n is the size of list (array). The order of elements in
the list does not affect the running time of mergesort.

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2446

GSJ© 2021
www.globalscientificjournal.com

Related Works

Oladipupo has compared quicksort with merge sort and found Quick sort to be faster for smaller sized
arrays than merge sort and merge sort was faster for larger sized arrays [6]. An experiment was
performed to see which is the fastest sorting algorithm among considered six different algorithms:
Selection Sort, Insertion Sort, Merge Sort, Quick Sort, Bubble Sort, and Comparison Sort using a program
written in C++ with data set of random sequence of sizes 10000, 20000, and 30000. The result of the
experiment showed that the time taken by all the algorithms are similar for the smaller sized data sets,
but Quick Sort was very fast in sorting larger sized data sets than other sorting algorithm[4]. A
comparative study between median, heap and quick sort on the varying sized data set was performed
using program written in C language and found heap sort to be better than median sort and quick sort in
terms of space usage and taken required to sort data sets[1]. V.P. Kulalvaimozhi [8] has studied
performance analysis of several sorting algorithms (Bubble, Insertion, Selection, Quick, Merge, Heap,
Binary Tree, Shell, Address Calculation, Radix sort) using program developed in C++ language and found
Quick sort to the preferred one for the program which need very fast data sorting, and have also found
quick sort taking longer running time is some occasions.

Results and Discussion

The comparison between Quicksort, MergeSort and Insertion Sort was performed using JAVA programs.
Those JAVA programs were executed to sort different natured arrays with varying number of elements
and time taken to sort those different arrays with varying size were tabulated in table 1, 2, and 3
respectively. The tables show size of arrays, time (in nanoSeconds) taken by the sorting algorithms to
sort the arrays, name of sort algorithm (among three) which took longest time to sort array, comparison
between quicksort and mergesort and comparison between mergesort and insertion sort.

Table 1 Time taken by QS, MS, and IS to sort arrays of different sizes with unique ordered data

 Maximum Time taken

Runs Size QS MS IS
Among
three

Between MS
& IS

Between QS
& MS

1 100 217167 90300 6633 QS MS QS
2 200 919833 354900 20000 QS MS QS
3 400 5520800 551767 66500 QS MS QS
4 800 5394733 1174600 363100 QS MS QS
5 1600 8462300 1709867 209333 QS MS QS
6 3200 2187600 1807900 452867 QS MS QS
7 10000 19157933 3285100 575700 QS MS QS
8 20000 70421200 4932333 1363867 QS MS QS
9 40000 274845367 7470967 3352100 QS MS QS
10 80000 1350954067 12996133 2110367 QS MS QS
11 160000 5487292333 20252067 563300 QS MS QS
12 320000 22291074667 21436367 1042333 QS MS QS
13 400000 40991830800 23809067 814900 QS MS QS
14 471000 58209834933 46904967 310300 QS MS QS

Table 1 shows the time taken to sort list of number of different sizes by considered sorting algorithms.
For the list of sorted unique data of different sizes, both quicksort and merge sort are seen to

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2447

GSJ© 2021
www.globalscientificjournal.com

underperform compared to insertion sort. Merge sort took less time to sort all the data set compared to
the quicksort.

Table 2 Time taken by QS, MS, and IS to sort arrays of different sizes with unique unordered data

 Maximum Time taken

Runs Size QS MS IS
Among
three

Between
MS & IS

Between
QS & MS

1 100 39600 94633 82233 MS MS MS
2 200 242200 439100 788100 IS IS MS
3 400 347833 561167 2545100 IS IS MS
4 800 748633 997533 6693033 IS IS MS
5 1600 1234333 1816267 3651333 IS IS MS
6 3200 1517633 3358033 2381567 MS MS MS
7 10000 6317633 2578467 12817400 IS IS QS
8 20000 3485333 6704400 50206100 IS IS MS
9 40000 6842733 12410800 197061067 IS IS MS
10 80000 10424067 23007633 789233833 IS IS MS
11 160000 15409833 42087733 3177193133 IS IS MS
12 320000 30602000 39279100 3458826900 IS IS MS
13 400000 39095300 71526500 23521605300 IS IS MS
14 471000 45520467 86155567 34343372733 IS IS MS

Table 2 shows that Quicksort is very fast when the list is not sorted and values are unique. In only one
case (dataset with size 10000), quicksort was inferior than MergeSort, but for the remaining datasets
quicksort was found very efficient . For the unique data sets, insertion sort was found to be very slow
than quicksort and mergesort.

Table 3 Time taken by QS, MS, and IS to sort arrays of different sizes with unordered data with duplicates (more
than 30% repetitions)

 Maximum Time taken

Runs Size QS MS IS
Among
three

Between
MS & IS

Between
QS & MS

1 100 131800 81833.33 77066.66667 QS MS QS
2 200 794966.6667 604166.7 474466.6667 QS MS QS
3 400 3043500 573200 491300 QS MS QS
4 800 5171100 1029033 1090666.667 QS IS QS
5 1600 5489100 1413933 2627066.667 QS IS QS
6 3200 6485966.667 3315300 3005766.667 QS MS QS
7 10000 46644100 3417300 1487966.667 QS MS QS
8 20000 177853933.3 5331967 581000 QS MS QS
9 40000 805718200 10584400 977833.3333 QS MS QS
10 80000 3575455400 21256000 1774500 QS MS QS
11 160000 12150656833 26695300 715772100 QS IS QS
12 320000 12789312233 40157767 2601263700 QS IS QS
13 400000 13110925767 57453000 11959905233 QS IS QS
14 471000 13060171133 68823633 17281442133 IS IS QS

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2448

GSJ© 2021
www.globalscientificjournal.com

Table 3 shows that if the dataset contains lots of duplicate values, then the quicksort is slow compared
mergesort and insertion sort; Megresort is better than quicksort, and between merge sort and insertion
in some data sets merge sort is better, in other data sets insertion sort. Merge sort is found better than
Insertion sort for larger data sets.

Quicksort is considered as the best sorting algorithms, and most of the related articles considered for
this study also supported this fact. But the experimental result of this research work showed that quick
sort is better for unsorted list with unique values only; quicksort proved to be better than mergesort and
insertion sort for almost all the considered unsorted lists of different sizes with unique values. But for
ordered data set and data set with lots of duplications quicksort was found to be inefficient. For ordered
set of data, insertion sort was found better than quick sort and merge sort. For data set with duplicate
values with big size lists mergesort was found better than quicksort and insertion sort.

The performance of quicksort is affected by: choice of the pivot, and the initial ordering of the data. It is
difficult to get pivot which can distribute data evenly between two sub arrays; if the data is ordered then
the sublists are just to be created as pivots will be already in their respective places; and if there are
duplicates then there will be possibility of lots of data to hang near the pivot.

The measured time for sorting data by the considered algorithms will vary greatly from machine to
machine, from trial to trail even on the same machine as many other processes will be running in the
background sharing Central Processing Time (CPU) and the memory of the machine[5]. This fact is
necessary to consider while comparing algorithm.

Conclusion

The experimental results of this research work showed that quicksort is good for unsorted list with
unique values only for both small and large size lists. In case of sorted list, insertion sort was found
better than quicksort and mergesort and for list with duplicate values mergesort was found better for
larger arrays than quicksort and insertion sort. The nature and size of list have good affect over the
sorting algorithms and also in how is experiment conducted. There will be background processes sharing
CPU and main memory which will affect the time complexity of the algorithms.

References
[1] Adesina, O. (2013). A Comparative Study of Sorting Algorithms. African Journal of Computing &

ICT, 199 - 205.

[2] Alfred V. Aho, J. E. (2000). The Design and Analysis of Computer Algorithms. Singapore: Addison
Wesley Longman.

[3] Drozdek, A. (2001). Data Structures and Algorithms in Java. Singapore: Brooks/Cole Thomson
Learning.

[4] Khalid Alkharabsheh, I. A. (2013). Review on Sorting Algorithms A Comparative Study. Khalid
Suleiman Al-Kharabsheh, Ibrahim Mahmoud AlTurani, Abdallah Mahmoud Ibrahim AlTurani &
Nabeel Imhammed Zanoon International Journal of Computer Science and Security (IJCSS),
Volume (7) : Issue (3), 120 - 126.

[5] Michael T. GoodRich, R. T. (2014). Data Structures and Algorithms in Java. In R. T. Michael T.
GoodRich, Data Structures and Algorithms in Java (pp. 164 - 165). Wiley.

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2449

GSJ© 2021
www.globalscientificjournal.com

[6] Oladipupo, E. T. (2020). Comparative Study of Two Divide and Conquer Sorting Algorithms:
QuickSort and MergeSort. Procedia Computer Science, 2532-2540.

[7] Thomas H. Cormen, C. E. (2002). Introduction to Algorithms. Connaught Circus: Prentice-Hall of
India.

[8] V.P.Kulalvaimozhi, M. R. (2015). Performance Analysis of Sorting Algorithm. International
Journal of Computer Science and Mobile Computing, 291-306.

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2450

GSJ© 2021
www.globalscientificjournal.com

	References

