DATA MINING CLASSIFICATION TECHNIQUES ON THE ANALYSIS OF STUDENT’S PERFORMANCE.

Adelaja Oluwaseun Adebayo ¹, Mani Shanker Chaubey ²

Department of System Programming,
South Ural State University,
Chelyabinsk, Russia.
E-mail: ¹ adelouluwaseun553@gmail.com, ² manichaubey80@yahoo.com

Abstract

Data mining involves the searching of large information of the data or records to discover patterns and utilize these patterns in the prediction the future events. In most educational sectors such as high schools, polytechnics and universities; classification technique is a vital analytical mechanism in prediction of various levels of accuracy. Classification is one of the methods in data mining for categorizing a particular group of items to targeted groups. Main goal of classification is to predict the nature of an items or data based on the available classes of items. Construction of the classification model always defined by the available training data set. In this paper we will only discuss about the classification algorithms, although there are different types of algorithms available in data mining for the prediction of the future strategy for a business. The decision tree classification technique utilized in this work focused mainly on data of the student’s performance obtained in a high school during a quiz using the KNIME tool.

Keywords: KNIME, Data mining, Classification, Student’s performance, decision tree and Prediction.
1. Introduction

Classification is a process of determining classes of given objects based on their characteristics, where semantic of classes are known beforehand. Typical applications of data mining classification are: Credit or Loan Approval- if a client is the safe or risky; Spam detection- If a message is valid or suspicious; what treatment applies to a patient- If Treatment A is suitable or Treatment B is more preferable or Treatment C is ideal?; Web-page categorization- which category a web page belongs business, entertainment or education. Data mining is one important field that focuses on discovering the data set properties and also an analytical step of knowledge discovery in databases (KDD). Educational Data mining (EDM) is an important aspect of research that has assisted in the predicting of useful information obtained from the educational database which yields to an improvement in the performance and also enhances the possibilities of a better understanding of the students to have a better assessment of their learning process [1]. The modeling of user knowledge, user behavior and user experience is applied to EDM which is an aspect of data mining [2]. Classification is a process of assigning new entities to existing defined class by examining the entities features. Classification makes decision from unseen cases by building of past decisions [3]. Educational data mining uses many techniques such as k-nearest neighbor, linear regression analysis, naïve Bayes, neural networks, support vector machines, decision trees and many others [4]. The KNIME analytics platform which is open source software for creating data science applications and services; intuitive, open and continuously integrating new developments, it makes understanding data, designing data science workflows and reusable components accessible to everyone. KNIME integrates various components from machine learning and data mining via its modular pipelining concepts of data [5].

1.1. Requirements of the Classification Techniques.

The basic requirements of classification techniques includes the construction of the model and the model usage. These requirements are defined explicitly.

1.2. Construction of the model

Every sample of an object is assigned to a predefined class label. These objects or subset data are also known as training data set. Constructed models are always based on the training sets which represents as classification rule or decision trees. The building of models with good generalization capability is a key objective of the learning algorithm, for instance models that accurately predict the class labels of previously unknown records. The general approach to solving a problem using the classification terminology is illustrated in Fig.1:
1.3. Model Usage

- Classification of unknown objects is performed based on the constructed model.
- Resultant class label compare with the class label of test sample.
- Calculate the percentage of test sample and accuracy of model should be compare with training sample.
- There are always differences between the test sample data and training sample data.

1.4. Prediction and Classification

Prediction involves the search for the hidden patterns or the existing knowledge from the available historical data. For instance, the detection any fraudulent transaction from a person credit card, we simply analyze any extraordinary pattern from the person transaction historical data. Other typical applications of prediction include target marketing and medical diagnosis such that the predicting of suitable and best medicine for a patient based on patient medical history. Classification is a technique in data mining of generally known structure to apply to new data. Basic data mining tasks are depicted in Fig.2:
2. Decision Tree

The concept used in this work for the classification technique of the student’s mark is the decision tree. Decision tree is a tree-like structure where the internal node contains splits and splitting attributes [3]. It represents test on the attribute. Decision trees are usually constructed from the training data set while the test data set is used to test or validate the accuracy of the decision tree [8]. Decision tree is a flowchart-like tree structure which has the following features [9]: (1) each internal node also referred to as the non-leaf node denotes a test on an attribute; (2) each branch represents an outcome of the test; (3) each leaf node or terminal node holds class label; (4) topmost node of the tree is the root node. The decision usually consists of the nodes that form a rooted tree, which means the directed tree with a node called root that has no incoming edges [10]. Decision tree model is depicted in Fig.3:

Figure.2: Basic Data Mining tasks [7].

Figure.3: Typical Model of a Decision Tree.
2.1. Related Work

Research was carried out with multiple performance indicators such as "the marks for the previous semester"; "Test grades"; "Performances of the students in a seminar"; "Assignment"; "Students attendance"; "Practical Laboratory work"; "Students general proficiency" and "their concluding semester results" on a group of 50 students who enrolled in a particular course program for 4 years which ranges between 2007 through 2011 [11]. ID3 decision tree algorithm was used for the decision tree and also they employed the if-then rules which will help the teachers and also the students for a better prediction of the student performances at the end of the semester. The authors decided to select the ID3 decision tree for their data mining techniques on the student's performance analysis in the course based on the reason that is one of the simplest decision tree learning algorithm. The author's goal of this research was focused at the ease in the identification of students who required special attention to drastically reduce the failure rate and adopt strategic steps for the next semester to prevent the reoccurrence of failure in their performance [11].

In the article [12], these authors conducted data mining research by the naïve Bayes classification method on some sample data of student’s group in the Post Graduate Diploma in Computer Application (PGDCA) in Dr. R.M.L. Awadh University, Faizabad, India. The naïve Bayes classification method (which is a probability classification technique that assumes that all attributes in a dataset are unique and independent from each other), they adapted was to analyze, classify, also to make predictions of the student’s score who performed brilliantly and those who are performed below standard. The research aim was to be able to predict and classify the student’s grades in the following year based on their performance in previous years, and this research was productive to the both the students and the teaching staff in the improvement of their future education.

In the article [13], a research conducted with sample of datasets based on the performance of 300 students which consists of 225 males and 75 females studying in a college affiliated to Punjab University of Pakistan. The simple linear regression analysis method was adopted in this work and it stated that factors like mother’s education and student’s family income were highly correlated with the academic performance of students.

In the article [14], the authors carried out a research using the model of decision tree to predict the final grades of students who had studied C++ programming languages as a course in Yarmouk University, Jordan in the year 2005. The ID3, C4.5 and the naïve bayes classification methods were implemented. The outcome of the result proved that the decision tree model had the better prediction than any other models.
In the article [15], the authors performed a comparative analysis to test multiple decision tree algorithms on dataset of educational performance of students for the purpose of classification. The research aim was to select the most suitable decision tree algorithms and how it can easier be utilized on this dataset. The Classification and Regression Tree (CART) decision method worked accurately and predicted without errors. They concluded that it is advisable to run test on the dataset with multiple classifiers at the first instance and after select the most précised results in order to decide the best classification method for any sample of dataset [15].

In article [16], the authors described data mining software that allows users to analyze dataset of distinct dimensions, group them and make summary of the relationships which were predicted and identified during the process of mining.

In the article [17], the C4.8 classification algorithm was applied to the database of student academic performance for the prediction and the faculty of information technology and computer science, Nile Valley University is the case study.

3. **Implementation.**

KNIME tool is used in the implementation of this research work. The classification method was implemented to build a workflow that reads the school marks data from the file uploaded in KNIME; to build a decision tree and display the results. The input data is named “result.csv” file, where each records denotes some of the student’s result of the quiz, including their answers of the students, the remarks of the teacher and the final marks. A file reader (which reads the result.csv) was created as a node and then results of the student in the quiz were imported via the path to the tool KNIME as shown the Fig.4

![Image of result.csv imported path to the File reader.](https://www.globalscientifcjournal.com)
After the process of importing the result into the file reader, the file reader node is configured and shows the yellow indicator which symbolizes that the data set is read by the node A. This is shown in Fig.5:

![Figure 5: The Configured File Reader.](image)

The file reader is then executed and the indicator color changes from yellow to green which means it is ready to be linked to another node. Figure 6 shows this:

![Figure 6: The activated File Reader.](image)
The class column named “FINAL RESULT” is examined and a new node B named the color Manager is created and it is used to distinguish the each results obtained in the class column. At this point, the color manager is just configured and not executed yet. Fig.7 show the categorize mark in the class column “FINAL RESULT” with distinct color identifier

![Figure.7: The configured Color Manager.](image)

The color manager is then activated and it changes to green color as shown in Fig. 8:

![Figure.8: The activated color Manager.](image)
The Decision tree learner is the used to classify these marks obtained. The decision tree learner uses decision tree as a predictive model to go from observations about an item (represented in the branches) to conclusions about the item's target value (represented in the leaves). It is one of the predictive modeling approaches used in statistics, data mining and machine learning. In the decision tree learning process, the datasets are classified by submitting it to a series of test that determines the class label the sample to produce an organized hierarchical structure called a decision tree [18]. The Decision tree learner is creates as node C and linked to the node B as shown in Fig. 9:

![Figure 9: Decision Tree Learner configured to classify Final_Result.](image)

The decision tree learner is activated based on the class column it is required to classify. This is shown in Fig.10:

![Figure 10: The Activated Decision Tree learner.](image)
Node D is finally created and named as the decision tree to image. The decision tree to image is node repository that learns the decision tree on the data set and applies the model on a new data set, whereby the distribution is previewed as images such as histogram depiction or any other pictorial representation [19]. The PMML reader of the decision tree learner node on the right side is connected to the PMML reader of the left side of the Decision Tree to image. PMML reader is a model that provides numerous ways to represent multiple models within one PMML file. This node reads any model from a file and connects the output port to a model input port of any model requiring node [20]. The workflow for the decision tree model is completed and we can easily analyze the final result with the help the decision tree. Fig. 11 shows the complete workflow model to generate the decision tree of the student’s mark.

![Diagram of the decision tree model](image)

Figure.11: The Activated Decision tree to image.

4. Results

From the implementation of the workflow, the results of our decision tree is obtained by the classification of the final_result class column. The decision tree is divided into four level as shown in Figure 12-15.
Figure 12: Decision Tree (1st Level).

Figure 13: Decision Tree (2nd Level).
Figure 14: Decision Tree (3rd Level).

Figure 15: Decision Tree (4th Level).
Histograms for each tree based on their classification were also generated; this saved us the stress of plot histogram for the entire decision tree model. This is shown in Figure 16 through Figure 19.

Figure. 16. Decision Tree with Histogram (1st Level).

Figure. 17. Decision Tree with Histogram (2nd Level).
Figure. 18. Decision Tree with Histogram (3rd Level).

Figure. 19. Decision Tree with Histogram (4th Level).
The Decision Tree Learner (Node C) also plot pie-charts for the list of scores obtained in the class column Final_Result.

![Decision Tree View](image)

Figure 20: Pie-Charts for each Decision Tree View.

Conclusion

From the data mining classification techniques implemented in this work by the decision tree method, we concluded that KNIME is one of the best tools for classifying and also performing other analysis such as clustering on samples of dataset. The results calculated the student’s correlation for those on the greater performance and those on the lower performance. We also perform multiple testing by using two classes named Class 8A and 8B as samples. This research will help the teacher and the students to easily predict the future performance based on their previous one in the quiz. In future experiments, we will measure the compressibility of each classification model and use data with more detailed information about the students such as student’s profile and curriculum of other courses. By doing this, we can easily measure the data quantity and quality and determine its effect the performance of the algorithms.
Acknowledgement

The authors wish to say a big thanks to South Ural State University, Chelyabinsk, Russia for providing the necessary tools that were required for the readings used in this research.

References:

