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 ABSTRACT:  

Generative Adversarial Networks (GANs) have gained significant attention as an effective method for creating high-quality synthetic data, 

helping to overcome challenges related to limited and imbalanced datasets in machine learning applications. This research investigates the 

use of GAN-driven data augmentation to improve the performance of image classification models, with particular emphasis on enhancing 

generalization and addressing class imbalance issues. A GAN model, consisting of a generator and a discriminator, was designed to 

generate realistic synthetic images derived from the NIH Chest X-Ray dataset. These synthetic images were integrated with the original 

dataset to form an augmented dataset, which was then used to train a Convolutional Neural Network (CNN) classifier. A comparative 

evaluation was conducted between CNN models trained solely on the original dataset and those trained on the augmented dataset to assess 

the impact of GAN-based augmentation. The findings indicate that the inclusion of GAN-generated images leads to improved classification 

accuracy, especially for minority classes, and increases the overall robustness of the model. This study demonstrates the practical potential 

of GANs in addressing data scarcity challenges in medical imaging and related fields, with the models developed using popular deep 

learning libraries such as PyTorch and TensorFlow.  

KEYWORDS: Generative Adversarial Networks (GANs), Data Augmentation, Image Classification, Class Imbalance, NIH Chest X-ray 

Dataset, Convolutional Neural Network (CNN), Synthetic Data Generation, Medical Imaging, Deep Learning, Thoracic Disease Detection  

1. INTRODUCTION:  

 In machine learning, the performance of classification models is 

highly dependent on the quality, quantity, and diversity of the 

training data. In image classification tasks, challenges such as 

limited datasets and class imbalance frequently lead to models 

that overfit, exhibit bias, and fail to generalize effectively to 

unseen data. This issue is particularly pronounced in domains like 

medical imaging, where acquiring large, annotated datasets is 

often difficult due to privacy concerns, resource constraints, and 

the need for expert labelling. 

Traditional data augmentation techniques—such as random 

rotations, flipping, scaling, and cropping—are commonly used to 

increase dataset diversity and improve model generalization. 

However, because these techniques can only provide a limited 

amount of variety without creating essentially new data samples, 

they are frequently insufficient when dealing with extremely 

complicated datasets or severe class imbalance. More sophisticated 

data augmentation techniques that can produce diverse and realistic 

synthetic data are therefore becoming more and more necessary. 

Generative Adversarial Networks (GANs) have become a highly 

effective approach for generating synthetic data, providing valuable 

solutions to challenges such as data scarcity and class imbalance in 

machine learning. A typical GAN architecture comprises two 

neural networks—the generator and the discriminator—that are 

trained together in an adversarial setup. The generator is 

responsible for producing realistic synthetic images, while the 

discriminator works to differentiate between authentic and 

generated samples. Through this competitive interaction, GANs 

learn to generate high-quality synthetic images that not only mimic 

the original data distribution but also enhance diversity within the 

dataset. 

This study investigates the use of GAN-based data augmentation to 

enhance image classification performance, with a particular focus 

on addressing class imbalance and improving model robustness. A 

GAN architecture was developed and trained on the NIH Chest X-

Ray dataset to generate synthetic images that complement the 

original dataset. The augmented dataset was subsequently utilized 

to train a Convolutional Neural Network (CNN), a widely adopted 

deep learning model for image classification tasks. The study 

evaluates and compares the classification performance of CNN 

models trained on the original dataset versus those trained on the 

GAN-augmented dataset.  

By leveraging popular deep learning platforms like PyTorch and 

TensorFlow, this research demonstrates the effectiveness of GAN-

generated data in improving classification accuracy, particularly for 

underrepresented classes. The findings highlight the potential of 

GANs as a practical solution for mitigating data scarcity and 

enhancing model generalization in medical imaging and other 

domains where data acquisition is challenging.

 

Figure 1: Workflow of the data augmentation process: The original dataset is expanded by applying a sequence of transformation functions (TF₁ to TF ₗ), including 

techniques like rotation and flipping, often informed by human expert guidance. This augmented dataset, enriched with diverse  variations, is then utilized to train a 

deep learning model, enhancing its generalization capability and improving predictive accuracy.
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2. PROBLEM STATEMENT:  

In machine learning and deep learning, the performance and 

generalization capability of models are highly dependent on 

the quality, quantity, and diversity of training data. However, 

acquiring large-scale, diverse datasets in real-world 

applications presents significant challenges, particularly in 

specialized domains such as medical imaging, autonomous 

systems, and remote sensing. These challenges include: 

● Data Scarcity: Limited availability of annotated data 

due to privacy concerns, ethical restrictions, and the 

need for expert labelling, especially in medical and 

healthcare domains. 

● Class Imbalance: Unequal representation of classes 

within datasets leads to biased learning, causing models 

to underperform on minority or rare classes. 

● High Cost of Data Collection and Annotation: 

Acquiring and labelling high-quality datasets is often 

time-consuming, labour-intensive, and expensive. 

● Limited Data Diversity: Traditional data 

augmentation methods—like rotation, flipping, and 

scaling—provide only modest variability and 

frequently fall short in representing the complex, real-

world variations essential for effective model training. 

As a result, these constraints can hinder a model’s capacity 

to generalize to new, unseen data, leading to: 

● Decreased classification accuracy, particularly for 

underrepresented classes. 

● Increased risk of overfitting due to insufficient or 

imbalanced training data. 

● Dependence on extensive manual intervention or costly 

data acquisition pipelines. 

To address these challenges, this research explores the use of 

Generative Adversarial Networks (GANs) for data augmentation 

in image classification tasks. GANs have demonstrated the 

capability to generate high-fidelity artificial data that closely 

mirrors the statistical characteristics of the original dataset. By 

leveraging GAN-generated synthetic images, the study aims to 

mitigate data scarcity, address class imbalance, and improve the 

overall diversity of training data. This method holds promise for 

improving model robustness and classification accuracy, especially 

in fields where obtaining data is inherently challenging. 

 

3. METHODOLOGY  

 This section outlines the methodology used to develop and 

evaluate the proposed Generative Adversarial Networks (GAN) 

based data augmentation framework to improve the performance of 

Convolutional Neural Network (CNN) classifiers for thoracic 

disease detection using the NIH Chest X-ray dataset. The process 

includes data preparation, GAN model design and training, dataset 

augmentation, CNN classifier development, and evaluation. 

 

3.1 Dataset Preparation 

The NIH Chest X-ray Dataset is a publicly available collection of 

112,120 frontal-view chest X-ray images from 30,805 patients, 

annotated with 14 disease labels such as Atelectasis, Cardiomegaly, 

Effusion, Infiltration, Mass, Nodule, Pneumonia, and 

Pneumothorax. Images are in grayscale and have a resolution of 

1024 × 1024 pixels. 

3.1.1 Data Selection and Preprocessing 

● Image Resizing: All images were resized to 128 × 128 

pixels to reduce computational complexity while 

maintaining sufficient detail for disease detection tasks. 

● Normalization: Pixel values were normalized to a range 

of [-1, 1] to ensure compatibility with the GAN's 

generator output, which uses the tanh activation 

function. 

● Dataset Split: The dataset was split into:  

o Training Set: 80% 

o Validation Set: 10% 

o Test Set: 10% 

Stratified sampling was used to make sure that the 

distribution of disease labels was preserved across splits. 

 

3.1.2 Class Imbalance Handling 

The dataset suffers from significant class imbalance, with 

several disease categories being underrepresented. To 

address this, a GAN model was trained to generate artificial 

chest X-ray images for these minority classes, thereby 

balancing the dataset and reducing potential bias during 

CNN training. 

3.2 Generative Adversarial Network (GAN) 

A simple GAN architecture was implemented, which 

consists of a generator and a discriminator, developed using 

an adversarial learning process. The GAN was specifically 

tasked with generating realistic chest X-ray images for the 

underrepresented disease classes in the dataset. 

3.2.1 Generator: 

● Input: A 100-dimensional noise vector sampled from a 

standard normal distribution. 

● Architecture: Fully connected and upsampling layers, 

followed by convolutional layers to generate a 128 × 

128 grayscale image. 

● Activation:  

o Intermediate layers use LeakyReLU 

activation. 

o Output layer uses tanh to produce images 

scaled to [-1, 1]. 

3.2.2 Discriminator: 

● Input: A 128 × 128 grayscale image (either real or 

generated). 

● Architecture: Convolution-based layers followed by 

fully connected layers, acting as a dual-class 

classification system. 

● Activation:  

o Intermediate layers use LeakyReLU. 

o Final layer utilises sigmoid activation in order to output a 

probability indicating whether the image is real or fake. 

3.3 Training Details 

● The GAN was trained on selected disease classes where 

data scarcity was most significant. 

● Both generator & discriminator were trained iteratively:  

o Discriminator trained to differentiate between real 

and generated images. 

o Generator trained to deceive and mislead the 

discriminator. 

● Loss Function: Binary Cross-Entropy loss was used for 

both networks. 

● Epochs: The GAN was trained for 5000 epochs with a 

batch size of 64. 

● Output: A set of synthetic chest X-ray images 

representing the minority disease classes. 

3.4 Dataset Augmentation 
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Following GAN training, synthetic images were generated and 

appended to the training dataset to balance class representation. 

● For each underrepresented class, synthetic images were 

added until a target ratio of samples was reached, aiming for 

a more uniform class distribution. 

● The augmented dataset contained both original real images 

and GAN-generated synthetic images, resulting in a more 

balanced training dataset. 

3.5 CNN Classifier for Thoracic Disease Classification 

3.5.1 Model Architecture 

A Convolutional Neural Network (CNN) was utilised for multi-

label classification of thoracic diseases. 

● Input Layer: Accepts 128 × 128 grayscale images. 

● Convolutional Blocks: Each block includes:  

o Convolutional layers with ReLU activation 

o Batch Normalization 

o MaxPooling layers for spatial reduction 

● Fully Connected Layers:  

o Dense layers with dropout regularization to prevent 

overfitting 

● Output Layer:  

o A fully connected layer comprising 14 sigmoid neurons, 

each representing a disease label. 

o Sigmoid activation allows multi-label predictions 

where each disease label can be independently 

predicted. 

3.5.2 Training Details 

The model was trained with a loss function suitable for 

multi-label classification and optimized using an adaptive 

learning algorithm. Training was carried out over 100 

epochs with a batch size of 64, including early stopping 

based on validation performance to prevent overfitting. In 

addition to advanced data augmentation, basic techniques 

such as rotation, flipping, and zooming were applied to 

enhance generalization. 

3.6 Evaluation Metrics 

The performance of the CNN classifier was evaluated on 

both the original sample dataset and the augmented dataset 

(original + GAN-generated images). 

3.6.1 Quantitative Metrics 

● Accuracy 

● Precision, Recall, and F1-Score (per class and 

overall) 

● Area Under the ROC Curve (AUC-ROC) for each 

disease label to assess classification performance 

across imbalanced classes. 

3.6.2 Qualitative Analysis 

A visual inspection of the GAN-generated images was 

performed to verify the clinical realism and anatomical 

correctness of synthetic chest X-rays. 

 

3.7 Implementation Details 

The implementation was carried out using Python, with 

TensorFlow and the Keras API for deep learning. Image 

processing was handled through OpenCV and PIL, while 

data manipulation and analysis were supported by NumPy 

and Pandas. Visualization of results was performed using 

Matplotlib and Seaborn. The experiments were conducted in 

a GPU-enabled Google Colab environment with 15 GB of 

RAM. The dataset used was the NIH Chest X-ray Dataset, 

publicly available online.

 

 
Figure 2: Examples of data augmentation techniques applied to an original image. Various transformations such as horizontal and vertical flips, rotations (+45° and 

-45°), blurring, brightness adjustment, noise addition, darkening, grayscale conversion, and cropping are shown. These augmentation methods enhance dataset 

diversity, improving model robustness and generalization during training. 

 

4. IMPLEMENTATION:  

 4.1 NIH Chest X-ray Dataset: A Case 

Study on GAN-Based Data 

Augmentation in Medical Imaging. 

The NIH Chest X-ray dataset serves as the primary case study for 

this research. It comprises over 100,000 frontal-view chest X-ray 

images labelled with 14 distinct disease categories, including 

pneumonia, tuberculosis, and various other pulmonary conditions. 

The dataset is commonly used as a reference for testing and 

validating deep learning approaches in medical image analysis. The 

images, typically at a resolution of 1024×1024 pixels, are 

accompanied by annotations indicating the presence or absence of 

specific diseases. The dataset is divided into training and test 

subsets, facilitating model development and evaluation. 

Despite its scale and diversity, the NIH Chest X-ray dataset 

presents several challenges. A significant issue is the imbalanced 

distribution of disease categories. Certain conditions are 

overrepresented, while others have relatively few labelled 

instances, resulting in class imbalance. Moreover, the limited 

availability of high-quality, labeled data for rare diseases hinders 

the ability of deep learning models to generalize across all classes. 

This challenge highlights the need for data augmentation methods 

that can address class imbalance and increase dataset diversity. 

4.2 Application of Generative Adversarial Networks 

(GANs) 

This project employs Generative Adversarial Networks (GANs) to 

mitigate the aforementioned challenges. GANs have demonstrated 

remarkable success in generating realistic synthetic data across 

various domains, including medical imaging. In this study, GANs 
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were utilized to generate synthetic chest X-ray images that augment 

the original NIH dataset, thereby improving data diversity and 

addressing class imbalance. 

4.2.1 Generator Network 

The generator network was trained to produce high-fidelity 

synthetic chest X-ray images from random noise vectors. 

Through adversarial training, the generator progressively 

learned to replicate the visual characteristics of real chest X-

rays, capturing subtle diagnostic features relevant to 

diseases such as pneumonia and tuberculosis. The objective 

was to produce synthetic images that cannot be 

differentiated from real images, thereby enriching the 

dataset with diverse examples representative of 

underrepresented disease categories. 

4.2.2 Discriminator Network 

The discriminator was concurrently trained to classify chest 

X-ray images as either genuine or artificially generated. The 

adversarial feedback provided by the discriminator enabled 

the generator to improve its output iteratively. This 

adversarial training process continued until the generator 

was capable of generating slightly realistic images that the 

discriminator could no longer reliably distinguish from 

authentic samples. 

4.3 GAN Training Process 

The GAN model was trained over 15,000 epochs. Throughout the 

process, the quality of the generated images was regularly assessed 

using both visual inspection and quantitative metrics. As training 

progressed, the synthetic images showed notable improvements in 

visual realism and diagnostic relevance. These images were 

carefully curated and validated to ensure their effectiveness for data 

augmentation. 

4.4 Data Augmentation and Model Training 

Following the successful generation of synthetic images, a total of 

20,000 high-quality synthetic chest X-rays were integrated into the 

original training dataset, resulting in an augmented dataset 

comprising 120,000 images. The augmented dataset contained a 

more balanced representation of various disease categories, 

particularly addressing the underrepresentation of rare conditions. 

A Convolutional Neural Network (CNN) classifier was then trained 

on both the original and the GAN-augmented datasets to assess the 

impact of synthetic data augmentation on chest X-ray image 

classification performance. 

4.5 Experimental Results and Insights 

The CNN trained on the augmented dataset demonstrated 

consistent improvements across key performance metrics, 

particularly in accuracy. Initially, both models—trained on the 

original sample dataset and the augmented dataset—performed 

similarly during the early epochs. However, as training progressed, 

the model trained with augmented data began to outperform the 

original. Specifically, the augmented model achieved a peak 

accuracy of 98%, compared to 92% for the model trained solely 

on the original sample dataset. 

This improvement highlights the efficacy of GAN-based data 

augmentation in enhancing model generalization and reducing 

overfitting. While the original dataset model showed signs of 

plateauing and slight fluctuations in accuracy, indicating potential 

overfitting, the augmented model exhibited a steady increase in 

accuracy over time. The inclusion of GAN-generated synthetic data 

provided diverse and balanced examples, which contributed to 

improved learning and better generalization to unseen test data. 

 
Figure 3: Accuracy comparison between a CNN model trained on the original sample dataset and one trained on combined augmented and original dataset. The model 

using only original data shows fluctuating accuracy with signs of overfitting, whereas the model incorporating augmented data demonstrates a consistent improvement 

in accuracy over epochs, ultimately achieving higher overall performance. 

4.6 Key Findings 

The case study demonstrates several critical insights into the 

usage of GANs for data augmentation in medical imaging: 

1. Enhanced Model Accuracy: The CNN trained on the 

augmented dataset achieved a significantly higher accuracy, 

demonstrating the positive impact of synthetic data on 

classification performance. 

2. Reduction in Overfitting: The augmented dataset mitigated 

the issue of overfitting observed in models trained exclusively 

on the original data. As a result, the model became more 

reliable and stable. 

3. Effective Synthetic Data Generation: The GAN 

successfully generated realistic chest X-ray images that 

contributed valuable information to the training dataset. 

4. Addressing Data Scarcity and Imbalance: By augmenting 

the dataset with synthetic examples of underrepresented 

diseases, GANs effectively addressed data scarcity and 

improved dataset balance. 

5. Improved Generalization: The model exhibited enhanced 

generalization to previously unseen data, reducing bias and 

increasing its applicability in real-world clinical scenarios. 

6. Scalability and Applicability: The methodology employed in 

this study is scalable and can be extended to other domains 

within medical imaging, such as MRI or CT scan datasets, as 
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well as other applications facing data scarcity and class 

imbalance issues. 

8  

Figure 4: Comparison of augmented and processed chest X-ray images for two conditions—Effusion and Infiltration. The augmented images (left column) are 

pixelated versions generated through data augmentation techniques to increase data diversity. The processed images (right column) represent the preprocessed, 

higher-quality images used for model training and evaluation. This contrast illustrates how augmentation alters image features while preserving key diagnostic 

patterns. 

CONCLUSION  

This research highlights the effectiveness of Generative 

Adversarial Networks (GANs) for data augmentation in 

medical imaging. By generating realistic synthetic images, 

GANs address data scarcity and enhance the performance of 

diagnostic models. Results demonstrate improved accuracy 

in detecting conditions such as Atelectasis, Effusion, and 

Infiltration. Despite challenges like maintaining image 

quality and computational demands, GAN-based 

augmentation presents a promising approach for developing 

robust and scalable AI solutions in healthcare. 
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