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Abstract— Knee arthroscopy is a form of minimally 

invasive surgery (MIS) in which an arthroscope and a surgical 

tool is inserted into the knee through small incisions. Every 

year, about four million of these surgeries are done across the 

world, at a total cost to the global healthcare system of $15 

billion USD. This study evaluates existing and innovative knee 

injury detection methods using Stanford's MRNet Dataset. All 

of the strategies are deep learning-based, and the outcomes of 

transfer learning and a deep residual network created from the 

ground up are contrasted. This paper also takes use of certain 

MRI data characteristics, such as employing a fixed number of 

slices or 2D images from each of the axial, coronal, and sagittal 

planes, as well as merging the three planes into a single multi-

plane network. More adaptable designs are also shown, which 

may benefit in the development and training of MRI-

processing models. The developed model achieved the average 

accuracies of 95%, 96%, and 89% for abnormal, ACL tear, 

and Meniscal tear respectively on the axial, coronal, and 

sagittal planes.  

Keywords— MRI, Knee-Injuries, Transfer learning, Deep 

Learning 

I. INTRODUCTION  

 
   Knee arthroscopy is a type of minimally invasive 

surgery (MIS) that involves inserting an arthroscope and a 
surgical instrument into the knee through tiny incisions. 
More than four million of these operations are performed 
worldwide each year, at a total cost to the global healthcare 
system of $15 billion USD[1]. The sophisticated surgical 
approach has the potential to produce unexpected femoral 
cartilage injury as well as additional postoperative problems 
such as hemarthrosis. Robotics and medical imaging 
advancements have the potential to eliminate these surgical 
restrictions and increase the accuracy, stability, and precision 
of knee surgery operating procedures. Following an initial 
phase in which an improved image of the intraarticular knee 
anatomy is created, it is conceivable to imagine the 
development of stand-alone robotic assistance instruments to 
automate the whole surgical operation and, ultimately, 
improve patient outcomes. 

In this work, we use deep learning algorithms to 
automatically assess whether a patient has a ligament rupture 
using the MRNet dataset, a publicly available collection of 
knee MRI images. Some are well-known and well-described, 
while others are brand-new and presented here for the first 
time. The rest of this paper explains how we employed 
several deep learning algorithms on this dataset. At the time 
of writing, our findings were best-in-class, and the essay 
explains why our algorithms perform so well on this sort of 
classification challenge. The following are the important 
lessons to remember: 

i) In this section, the recommended methodologies will   
be described in depth, and the quantitative and qualitative 
experimental findings will be presented. 

  ii) Too much or too little data augmentation can be 
harmful to performance, but a correctly calibrated 
augmentation policy can provide significant performance 
improvements. 

  iii) Using VGG-Net, we calculate accuracy on all three 
planes (Axial, Coronal, and Sagittal). 

II. LITERATURE REVIEW 

 
David Azcone, et al.  (2020): Using Stanford's MRNet 

knowledge unit, this research compares and contrasts 
existing and novel strategies for detecting knee injuries. All 
of our points of view are based on deep learning, and They 
compare the results of transfer learning with a deep residual 
network developed from the ground up. They also improve 
several MRI data properties by, for example, employing a 
predetermined number of thin, broad bits or 2d pictures from 
each of the axial, coronal, and sagittal planes, as well as 
integrating the three planes into one multi-plane network. 
Overall, utilising the most recent deep learning buildings and 
structure design and data method of producing more 
thoroughly researched designs, They produced a 
performance of 93.4% AUC on the say for specific data . 
More adaptable structures and buildings are now available, 
which may aid in the creation and training of MRI-
processing models. They observed that transfer learning and 
a carefully adjusted data augmentation thoroughly crafted 
design were crucial in selecting the optimal way to execute a 
play[2]. 

Maria Antico, et al.  (2020): Knee arthroscopy is a 
difficult minimally invasive procedure that might result in 
femoral cartilage damage, postoperative problems, or both. 
The imaging system should produce a real-time full picture 
of the surgical site to enable the robotic system to maneuver 
autonomously in the knee joint. With fivefold cross-
validation, the system was assessed using the expert labels as 
ground truth, with each fold being trained and tested on 
average with 15 640 and 6246 tagged pictures, respectively. 
Between two experts (interobserver) and each expert 
(intraobserver), percent agreement values of 0.89 and 0.93 
were reached, respectively. These findings demonstrate that 
the first crucial step in the development of automatic US 
image capture and interpretation systems for autonomous 
robotic knee arthroscopy is feasible[1]. 

Zhaoye Zhou, et al. (2018): To present and evaluate a 
novel knee joint tissue segmentation approach that uses a 
deep convolutional neural network (CNN), a 3D fully 
connected conditional random field (CRF), and 3D simplex 
deformable modelling to increase efficiency and accuracy. 
For segmenting all knee joint structures, the suggested 
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segmentation approach performed well. The femur, tibia, 
muscle, and other unspecified tissues were among the four 
tissue categories with a high mean Dice coefficient over 0.9. 
Joint effusion and Baker's cyst were the only tissue types 
with a mean Dice coefficient between 0.7 and 0.8. The 
average symmetric surface distance of most musculoskeletal 
tissues was less than 1mm[3]. 

Artjoms Suponenkovs, et al. (2017):  The challenge of 
automated knee-joint soft tissue detection is becoming 
increasingly important as the number of persons with knee-
joint disorders rises. This work explores the difficulty of soft 
tissue identification in magnetic resonance imaging for this 
reason (MRI). Although MRI is effective for presenting soft 
tissue in the knee, it is rare for a clinician to be able to view 
all of the information needed in MRI data. Soft tissue 
identification and analysis in the knee joint are quite useful, 
especially in the early stages of osteoarthritis (OA). It 
permits therapy to begin sooner, reducing the risk of tissue 
damage. As a result, the above-mentioned issues are the 
focus of this study[4]. 

Alexander D.Orsi, et al. (2014): This work used a three-
dimensional model of the knee joint to evaluate which knee 
joint motion schemes result in ACL injury, as well as to 
investigate the different forms of concurrent injuries 
associated with each motion scheme. The correlations 
between knee joint orientation and different tissue failures 
were investigated, and susceptibility spectrums for knee 
injuries were generated. The posterolateral bundle was 
shown to be more prone to rupture than the anteromedial 
bundle. The average varus angular displacement after ACL 
failure was 46.6 percent less than the average valgus angular 
displacement. Articular cartilage damage was observed prior 
to ACL collapse in all valgus scenarios[5]. 

Chen-Hen Tsai et al. (2020): For knee injury analysis, 
magnetic resonance imaging (MRI) is an extensively used 
imaging technique. Its ability to capture three-dimensional 
knee structure makes it a useful tool for radiologists looking 
for potential tears in the knee. Automated methods for 
patient triage are becoming a real need to better deal with the 
ever-increasing workload of musculoskeletal (MSK) 
radiologists, decreasing delays in the reading of pathological 
cases. The Efficiently-Layed Network (ELNet), a 
convolutional neural network (CNN) architecture optimized 
for early knee MRI diagnosis for triage, is presented in this 
paper. Unlike previous techniques, we train ELNet from the 
ground up rather than using a transfer-learning method. 
While using a single image stack (axial or coronal) as input, 
the suggested method is quantitatively and qualitatively 
validated and compares favorably to state-of-the-art MRNet. 
In addition, despite the lack of localization information 
during training, we show that our model can find tears in the 
knee. Finally, the suggested model is incredibly lightweight 
(less than 1MB), making it simple to train and use in real-
world clinical situations[6]. 

Nicholas Bien et al. (2018): The preferred method for 
diagnosing knee injuries is magnetic resonance imaging 
(MRI). However, interpreting knee MRI takes time and is 
subject to diagnostic error and variability. An automated 
system for interpreting knee MRI could help clinicians 
prioritise high-risk patients and make diagnoses. Deep 
learning methods are well suited for modelling the complex 
relationships between medical images and their 
interpretations because they can automatically learn layers of 

features. In this study, we developed a deep learning model 
for detecting general abnormalities as well as specific 
diagnoses (ACL tears and meniscal tears) on knee MRI 
exams. We then assessed the impact of providing clinical 
experts with the model's predictions during interpretation. 
From the Clinical Hospital Centre Rijeka in Croatia, we also 
got a public dataset of 917 tests with sagittal T1-weighted 
series and classifications for ACL injury. We discovered no 
significant differences between the model's performance and 
that of unassisted general radiologists in detecting anomalies 
using a 2-sided Pearson's chi-squared test with multiple 
comparisons adjustment. The lack of surgical ground truth 
and the limited size of the panel of clinical experts are the 
study's principal shortcomings. From both internal and 
external datasets, our deep learning model can quickly 
generate correct clinical pathology classifications of knee 
MRI scans. Furthermore, our findings back up the claim that 
deep learning models can help clinical specialists perform 
better during medical imaging interpretation. More research 
is needed to prospectively validate the model and assess its 
value in the clinical context[7]. 

III. PROBLEM FORMULATION 

 
How to build a deep learning architecture to improve 

classification performance on a collection of MRI images of 
the knee is a common topic in the study. On the other hand, 
MRI interpretation of the knee takes time and is prone to 
diagnostic error and variability. While reading the materials, 
I realized that they are attempting to improve their work 
performance. I'm also going to work on enhancing our 
system's performance. 

 

IV. METHODOLOGY & EXPERIMENTATION 

 

A. MRNET DATASETS 

 
A total of 1,370 knee MRI tests were done at Stanford 

University Medical Centre for the MRNet dataset. The 
dataset comprises 1,104 abnormal examinations (80.6 
percent), with 319 (23.3 percent) ACL tears and 508 (37.1 
percent) meniscal tears; labels were extracted manually from 
clinical reports. In this study, the most prevalent 
justifications for knee MRI exams were acute and chronic 
pain, follow-up or preoperative assessment, and 
injury/trauma. Examinations were carried out using GE 
scanners (GE Discovery, GE Healthcare, Waukesha, WI) 
equipped with a standard knee MRI coil and a routine non-
contrast knee MRI protocol that included the following 
sequences: coronal T1 weighted, coronal T2 with fat 
saturation, sagittal proton density (PD) weighted, sagittal T2 
with fat saturation, and axial PD weighted with fat saturation. 
A 3.0-T magnetic field was employed in 775 (56.6 percent) 
of the tests, whereas the rest used a 1.5-T magnetic field[8]. 

MRNet is a CNN-based model trained on the MRNet 
dataset that translates a 3-dimensional MRI sequence to a 
probability in order to predict anomalies in knee MRI tests.  
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                           Fig.1 MRNet architecture [9] 

B. Computer Vision Using Deep Learning 

 
The scientific discipline of computer vision (CV) outlines 

how machines perceive the meaning of pictures and movies. 
Computer vision algorithms examine certain criteria in 
photos and videos and then apply interpretations to tasks that 
need prediction or decision-making. Deep learning 
algorithms are now the most widely utilised in computer 
vision. This article examines the many applications of deep 
learning in computer vision. You'll learn about the benefits 
of employing convolutional neural networks (CNNs), which 
have a multi-layered design that allows neural networks to 
focus on the most important aspects of a picture. 

Convolutional neural networks (CNN) are used in 
modern computer vision techniques, and they give a 
significant performance boost over classic image processing 
algorithms. CNN's are multi-layered neural networks that are 
used to reduce input and calculations to the most relevant set 
over time. The data entered is then compared to known data 
in order to identify or categorize it. CNN's are commonly 

employed for computer vision applications, but they may 
also be utilized for text and audio analytics. 

Deep learning methods have made it possible to create 
more accurate and complicated computer vision models. The 
usage of computer vision applications is becoming 
increasingly valuable as these technologies advance. 

C. VGG architecture 

VGG stands for Visual Geometry Group, and it is a 
multilayer deep Convolutional Neural Network (CNN) 
architecture. The term "deep" refers to the number of layers 
in VGG-16 or VGG-19, which have 16 or 19 convolutional 
layers respectively. The VGG architecture serves as the 
foundation for cutting-edge object recognition models. The 
VGG-Net, which was created as a deep neural network, 
outperforms baselines on a variety of tasks and datasets in 
addition to ImageNet. Let’s understand the architecture with 
the help of example: - 

 

               Fig.2 Example of VGG architecture 

The VGG model, often known as VGGNet, is a 
convolutional neural network model introduced by A. 
Zisserman and K. Simonyan of the University of Oxford that 
supports 16 layers. In ImageNet, the VGG16 model achieves 
about 92.7 percent top-5 test accuracy. ImageNet is a 
collection with about 14 million photos divided into over 
1000 categories. It was also one of the most popular models 
submitted to the 2014 ILSVRC. It makes considerable gains 
over AlexNet by replacing big kernel-sized filters with 
numerous 33 kernel-sized filters one after the other. The 
VGG16 model was trained over many weeks using Nvidia 
Titan Black GPUs. As previously stated, the VGGNet-16 has 
16 layers and can categorize photos into 1000 different item 
categories, such as keyboards, animals, pencils, and mice. In 
addition, the model features a 224-by-224 picture input size. 
The VGG19 model (also known as VGGNet-19) has the 
same principle as the VGG16 model, with the exception that 
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it supports 19 layers. The numbers 16 and 19 represent the 
number of weight layers in the model (convolutional layers). 
VGG19 thus has three additional convolutional layers than 
VGG16[10]. 

D. Process 

We propose and analyze designs for training networks 
and outputting the probability of an ACL tear, meniscal tear, 
or other abnormalities on a patient's knee. The Resnet feature 
extractor and other layers put on top of the basic MRNet 
architecture were replaced with a more current design such 
as VGG-Net. For a number of classes, we changed the final 
layer to output a probability rather than a one-hot softmax 
vector. We utilized VGG-Net with pre-trained weights and 
transfer learning. Transfer learning functions as a good 
regulariser even when the pre-trained domain is considerably 
different, and the low-level characteristics learned on the 
original assignment appear to operate well in reality. We 
repeat the picture three times, once for each RGB channel, to 
guarantee the input dimensions are consistent with the pre-
learned weights from Resnet, similar to how MRNet was 
trained. Furthermore, similar to MRNet, we input the slices 
in batches of one size and compute the maximum value of all 
the slices as the final probability before backpropagation 
tunes the weights. We utilize the SGD optimizer and cross-
entropy loss, with loss scaled inversely proportionate to the 
number of samples in the dataset for that class. Because these 
networks are prone to overfitting, we also used data 
augmentation strategies and added a number of new image 
transformations, such as adjusting the contrast of an image 
by a random factor, applying random gamma adjustment, 
and randomly adjusting the brightness of the image, or 
randomly cropping the image. 

The network training was made significantly quicker by 
not having to repeat the pictures three times, one for each 
channel, and by being able to train them in batches without 
having to compute the maximum of all probability forecasts, 
as discussed in this section. The data augmentation policy 
was the same as the previous technique, but without the 
three-channel transformations: Random Brightness, Contrast 
Limited Adaptive Histogram Equalization, and Random 
Brightness Contrast. We still calculated a probability for 
each patient and plane and used a Logistic Regression 
classifier to train each task, which included ACL injury, 
meniscal tear, and abnormalities. If we consider that the 
default slicing approach supplied is done vertically, we also 
cut the collection of photos or slices horizontally for each 
patient and for each task as an experiment. We used those 
inputs to train models, but the results were not as good as 
with vertical slicing. On the MRNet Dataset, we use image 
processing and a variety of transfer learning methods. When 
we used Vgg-Net on the MRNet dataset after that, we 
obtained incredible accuracy. We obtained model 
performance for an ACL tear, meniscal tear, and 
abnormalities in the axial plane, coronal plane, and sagittal 
plane. And the graph of performance is previously stated 
below: - 

 

 

 

 

a) Examining the model's performance for 

abnormalities in the axial, coronal, and sagittal planes. 

 

 

   Fig.3 Abnormalities on axial, coronal, & sagittal planes 

       

      Calculating the Average accuracy:- 

Abnormalities on Axial Plane (Xa)= 97% 

Abnormalities on Coronal Plane (Ya)= 96% 

Abnormalities on Sagittal Plane (Za)= 93% 

      Avg.= (Xa+Ya+Za)/3 

              = (97+96+93)/3 

              = 95.33% 

On the axial, coronal, and Sagittal Planes, the average 
accuracy for Abnormalities is 95.33%. 

b) Examining the model's performance for an ACL 

tear in the axial, coronal, and sagittal planes. 

 

          Fig.4 ACL-Tear on axial, coronal, & sagittal planes 
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    Calculating the Average accuracy:- 

    ACL tear on Axial Plane (Xacl)= 98% 

    ACL tear on Coronal Plane (Yacl)= 94% 

    ACL tear on Sagittal Plane (Zacl)= 97% 

      Avg.= (Xacl+Yacl+Zacl)/3 

              = (98+94+97)/3 

              = 96.33% 

On the axial, coronal, and Sagittal Planes, the average 
accuracy for ACL tear is 96.33%. 

c) Examining the model's performance for an 

meniscal tear in the axial, coronal, and sagittal planes. 

 

   Fig.5 Meniscal-Tear on axial, coronal, & sagittal planes 

    Calculating the Average accuracy:- 

    Meniscal tear on Axial Plane (Xme)= 89% 

    Meniscal tear on Coronal Plane (Yme)= 89% 

    Meniscal tear on Sagittal Plane (Zme)= 89% 

      Avg.= (Xme+Yme+Zme)/3 

              = (89+89+89)/3 

              = 89% 

On the axial, coronal, and Sagittal Planes, the average 
accuracy for Meniscal tear is 89%. 

V. RESULTS 

We acquire improved accuracy for Abnormalities, ACL-
tear, and Meniscal-tear of the knee on the axial, coronal, and 
sagittal planes after comparing the different transfer learning 
techniques we received when I utilized Vgg-Net on the 
MRNet dataset. 

 

                            Fig.6 Comparison Table  

On the axial, coronal, and sagittal planes, the average 
accuracies are 95%, 96%, and 89%, and the average 
validation accuracies are 77%, 73%, and 67% for 
Abnormalities, ACL-tear, and Meniscal-tear, 
respectively. The bar chart below illustrates this:- 

                        Fig.7 Bar Chart for showing results 

VI. CONCLUSIONS & FUTURE WORKS 

We discussed how to construct a deep learning 
architecture to increase classification performance on a 
dataset of MRI images of knees in this research. We 
developed, designed, and trained a set of deep learning 
models to predict the likelihood of an ACL tear, meniscus 
tear, or abnormal exam on a knee based on an MRI, and we 
used deep learning and CNN techniques on the MRNet 
dataset and benchmark. We had pictures from three planes 
for that: axial, coronal, and sagittal, as radiologists normally 
analyze an MRI from several perspectives and we reached 
the model's optimum performance. 

As, in medical domain the accuracy of the results are of 
utmost importance. In the future, we would like to increase 
the accuracy of the classification by increasing the dataset 
variety and improving network architecture. 

This research will also be converted to a product by 
deploying it in the cloud and networking with various 
hospitals, doctors and patients. 

GSJ: Volume 10, Issue 5, May 2022 
ISSN 2320-9186 792

GSJ© 2022 
www.globalscientificjournal.com



VII. REFERENCES 

 
[1] Antico M, Vukovic D, Camps SM, et al. Deep Learning for US Image 

Quality Assessment Based on Femoral Cartilage Boundary Detection 
in Autonomous Knee Arthroscopy. IEEE Trans Ultrason Ferroelectr 
Freq Control. 2020;67(12):2543-2552. 
doi:10.1109/TUFFC.2020.2965291 

 

[2]  MRI evaluation of knee cartilage - Scientific Figure on 
ResearchGate. Available from: 
https://www.researchgate.net/figure/Classification-of-chondral-
lesions-of-the-knee-Axial-MRI-A-to-C-and-sagittal-MRI-
D_fig7_262700413 [accessed 26 Nov, 2021] 

 

[3] Zhou, Zhaoye & Zhao, Gengyan & Kijowski, Richard & Liu, Fang. 
(2018). Deep Convolutional Neural Network for Segmentation of 
Knee Joint Anatomy. Magnetic Resonance in Medicine. 80. 
10.1002/mrm.27229. 

 

[4] A. Suponenkovs, Z. Markovics and A. Platkajis, "Knee-joint tissue 
recognition in magnetic resonance imaging," 2017 IEEE 30th 
Neumann Colloquium (NC), 2017, pp. 000041-000046, doi: 
10.1109/NC.2017.8263280. 

 
[5] A. D. Orsi et al., "Investigating the effects of knee joint motion 

schemes on knee joint injury: A finite element analysis," 2014 40th 
Annual Northeast Bioengineering Conference (NEBEC), 2014, pp. 1-
2, doi: 10.1109/NEBEC.2014.6972895. 

 

[6] Tsai, Chen-Han & Kiryati, Nahum & Konen, Eli & Mayer, Arnaldo 
& Eshed, Iris. (2020). Knee Injury Detection using MRI with 
Efficiently-Layered Network (ELNet).    

 
[7] Bien, Nicholas, et al. "Deep-learning-assisted diagnosis for knee 

magnetic resonance imaging: development and retrospective 
validation of MRNet." PLoS medicine 15.11 (2018): e1002699. 

 

[8]  MRNet: A Dataset of KneeMRs and Competition for Automated 
Knee MR Interpretation [Online]. Available: 
https://stanfordmlgroup.github.io/competitions/mrnet/ 

 

[9] Stanford ML Releases MRNet Knee MRI Dataset [Online]. 
Available: https://medium.com/syncedreview/stanford-ml-releases-
mrnet-knee-mri-dataset-9f44d7621131 

 
[10] VGG Very Deep Convolutional Networks (VGGNet) - What you 

need to know [Online]. Available: https://viso.ai/deep-learning/vgg-
very-deep-convolutional-
networks/#:~:text=VGG%20stands%20for%20Visual%20Geometry,g
round%2Dbreaking%20object%20recognition%20models. 

 

 
 

       

GSJ: Volume 10, Issue 5, May 2022 
ISSN 2320-9186 793

GSJ© 2022 
www.globalscientificjournal.com

https://stanfordmlgroup.github.io/competitions/mrnet/
https://medium.com/syncedreview/stanford-ml-releases-mrnet-knee-mri-dataset-9f44d7621131
https://medium.com/syncedreview/stanford-ml-releases-mrnet-knee-mri-dataset-9f44d7621131
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/#:~:text=VGG%20stands%20for%20Visual%20Geometry,ground%2Dbreaking%20object%20recognition%20models
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/#:~:text=VGG%20stands%20for%20Visual%20Geometry,ground%2Dbreaking%20object%20recognition%20models
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/#:~:text=VGG%20stands%20for%20Visual%20Geometry,ground%2Dbreaking%20object%20recognition%20models
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/#:~:text=VGG%20stands%20for%20Visual%20Geometry,ground%2Dbreaking%20object%20recognition%20models



