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ABSTRACT 
 
Object detection is a subfield of computer vision that is currently heavily based on machine learning. For the past 
decade, the field of machine learning has been dominated by so-called deep neural networks, which take advantage 
of improvements in computing power and data availability. A subtype of a neural network called a convolutional 
neural network (CNN) is well-suited for image-related tasks. The network is trained to look for different features, 
such as edges, corners and color differences, across the image and to combine these into more complex shapes. 

For project, we reviewed the current literature on convolutional object detection and tested the implement ability of 
one of the methods. We found that convolutional object detection is still evolving as a technology, despite 
outranking other object detection methods. By virtue of free availability of datasets and pre-trained networks, it is 
possible to create a functional implementation of a deep neural network without access to specialist hardware. Pre-
trained networks can also be used as a starting point for training new networks, decreasing costly training time. 
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1. Introduction 
 

There is a huge amount of image data in the world, and the rate of growth itself is increasing. Before around 2012, a 
dataset was considered relatively large if it contained 100+ images or videos. Now, datasets exist with numbers 
ranging in the millions. Many of these images are stored in cloud services or published on the Internet. Over 1.8 
billion images were uploaded daily to the most popular platforms, such as Instagram and Facebook. 
 
We need to have some effective ideas about its contents to manage all of this data. Automated processing of image 
contents is useful for a wide variety of image-related tasks. For computer systems, this means crossing the so-called 
semantic gap between the pixel level information stored in the image and the human understanding of the same 
images. Computer vision attempts to bridge this cap. Object detection from repository of images is challenging task 
in the area of computer vision 
 
1.1 Problem Statement 
 
Image files that contain different objects can be automatically identified. This is one of the basic problems of 
computer vision and this is called Object detection. Many problems in computer vision were saturating on their 
accuracy before a decade. However, with the rise of deep learning techniques, the accuracy of these problems 
drastically improved. As we will demonstrate, convolution neural networks are currently the state-of-the-art solution 
for object detection. The main task of this project is to develop and test object detection system for images based on 
convolution neural network. 
 
1.2 Applications 
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Object detection methods frequently use extracted features and learning algorithms to recognize instances of an 
object or images belonging to an object category. Some applications of Object detection are listed below: 

 Face detection 
 Vehicle Detection 
 Tracking objects 
 People counting 
 Scan recognition 

 
2.1 MACHINE LEARNING 
 
Different learning algorithms are used in computer vision applications. So before working with image related 
works, we are going to have a brief look at basics of machine learning. Machine learning [1] is an application 
of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from 
experience without being explicitly programmed. Machine learning focuses on the development of computer 
programs that can access data and use it learn for themselves. The process of learning begins with 
observations or data, such as examples, direct experience, or instruction, in order to look for patterns in data 
and make better decisions in the future based on the examples that we provide. The primary aim is to allow 
the computers learn automatically without human intervention or assistance and adjust actions accordingly. 
 
In the last few years, deep convolution neural network learning has proved the outstanding performance in the field 
of image classification, machine learning and pattern recognition. Above all existing model, CNN is one of the most 
popular models and has been providing the state-of-the-art detection accuracy on object detection, segmentation, 
human activity analysis, image super resolution, object recognition, scene understanding, tracking and image 
captioning. For task of image classification CNN is outperforms above all the previous classification method. CNN 
extract feature from the image by a series of operations.  
 
2.1.1 TYPES 
 
Supervised learning involves somehow modeling the relationship between measured features of data and 
some label associated with the data; once this model is determined, it can be used to apply labels to new, 
unknown data. This is further subdivided into classification tasks and regression tasks: in classification, the 
labels are discrete categories, while in regression, the labels are continuous quantities. We will see examples 
of both types of supervised learning in the following section. 

Unsupervised learning involves modeling the features of a dataset without reference to any label, and is often 
described as "letting the dataset speak for itself." These models include tasks such as clustering and dimensionality 
reduction. Clustering algorithms identify distinct groups of data, while dimensionality reduction algorithms search 
for more succinct representations of the data. 
 
2.1.2 FEATURES EXTRACTION 
 
In general, feature extraction starts from an initial set of measured data and builds derived values (features) intended 
to be informative and non-redundant, facilitating the subsequent learning and generalization steps, and in some 
cases leading to better human interpretations. Often, it is impractical or impossible to use the full-dimensional 
training data directly. Rather, detectors are programmed to extract interesting features from the data, and these 
features are used as input to the machine learning algorithm [5]. 

In the past, the feature detectors were often hand-crafted. The problem with this approach is that we do not always 
know in advance, which features are interesting. The trend in machine learning has been towards learning the 
feature detectors as well, which enables using the complete data. 
 
2.1.3 GENERALIZATION 
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A machine learning algorithm[5] is used to fit a model to data. Once training is over, the model is unleashed upon 
new data and then uses what it has learned to explain that data. Now here's where problems can emerge. If we 
overstrain the model on the training data, then it will be able to identify all the relevant information in the training 
data, but will fail miserably when presented with the new data. We then say that the model is incapable 
of generalizing, or that it is over fitting the training data. The performance of the algorithm can be evaluated from 
the quality and quantity of errors. A loss function, such as mean squared error, is used to assign a cost to the errors. 
The objective in the training phase is to minimize this loss. 
 
2.2 NEURAL NETWORKS 
 
Neural networks are a popular type of machine learning model. A special case of a neural network called the 
convolutional neural network (CNN) is the primary focus of this thesis. Before discussing CNNs, we will discuss 
how regular neural networks work [4]. 
 
2.2.1 ORIGINS 
 
An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological 
nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of 
the information processing system. It is composed of a large number of highly interconnected processing elements 
(neurons) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is 
configured for a specific application, such as pattern recognition or data classification, through a learning process. 
Learning in biological systems involves adjustments to the synaptic connections that exist between the neurons. 
This is true of ANNs as well. 
 
Even though the inspiration from biology is apparent, it would be misleading to overemphasize the connection 
between artificial neurons and biological neurons or neuroscience. The human brain contains approximately 100 
billion neurons operating in parallel. Artificial neurons[4] are mathematical functions implemented on more-or-less 
serial computers. Research into neural networks is mostly guided by developments in engineering and mathematics 
rather than biology. 
 

 
 

Figure 2.1: An artificial neuron 
 
An artificial neuron based on the McCulloch-Pitts model is shown in Figure 2.1. The neuron receives m input 
parameters xi. The neuron also has m weight parameters wi. The weight parameters often include a bias term that 
has a matching dummy input with a fixed value of 1. 
The inputs and weights are linearly combined and summed. The sum is then fed to an activation function ƒ() that 
produces the output ŷ of the neuron: 

𝑦𝑦� = 𝑓𝑓 ��(𝑤𝑤𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑥𝑥𝑖𝑖) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� 

The neuron is trained by carefully selecting the weights to produce a desired output for each input. 
 
2.2.2 MULTI-LAYER NETWORKS 
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A multi-layer neural network is composed of one input layer, one or more layers of hidden layers and one final layer 
called output layer. Every layer except output layer includes a bias neuron and is fully connected to the next layer. 
The input layer usually merely passes data along without modifying it. Most of the computation happens in the 
hidden layers. 
 The output layer converts the hidden layer activations to an output, such as a classification When an ANN has two 
or more hidden layers, it is called a deep neural network (DNN). In this project, we will mostly discuss fully 
connected networks and convolutional networks [6]. 
 
 
2.2.3 BACK-PROPAGATION 
 
The back-propagation algorithm provides a simple and effective solution to solve the weights iteratively. The 
classical version uses gradient descent as optimization method. Gradient descent can be quite time-consuming and is 
not guaranteed to find the global minimum of error, but with proper configuration works well enough in practice.  
In the first phase of the algorithm, an input vector is propagated forward through the neural network. Before this, the 
weights of the network neurons have been initialized to some values, for example small random values.  
The received output of the network is compared to the desired output (which should be known for the training 
examples) using a loss function. The gradient of the loss function is then computed. This gradient is also called the 
error value. When using mean squared error as the loss function, the output layer error value is simply the difference 
between the current and desired output. 
 
The error values are then propagated back through the network to calculate the error values of the hidden layer 
neurons. The hidden neuron loss function gradients can be solved using the chain rule of derivatives. Finally, the 
neuron weights are updated by calculating the gradient of the weights and subtracting a proportion of the gradient 
from the weights. This ratio is called the learning rate; the learning rate can be fixed or dynamic. After the weights 
have been updated, the algorithm continues by executing the phases again with different input until the weights 
converge. 
 
2.2.4 ACTIVATION FUNCTION 
 
Activation functions are really important for an Artificial Neural Network [3] to learn and make sense of something 
really complicated and non-linear complex functional mappings between the inputs and response variable. They 
introduce non-linear properties to our network. Their main purpose is to convert an input signal of a node in an 
ANN to an output signal. That output signal now is used as an input in the next layer in the stack. 
In artificial neural network we apply mostly RELU (not compulsory we can use different activation function) 
activation function which replaces the all negative values to 0 and remains same with the positive values. 

 
Figure 2.2: ReLu activation function 

 
In the past, nonlinear functions like tanh and sigmoid were used, but researchers found out that relu layers work far 
better because the network is able to train a lot faster (because of the computational efficiency) without making a 
significant difference to the accuracy. 
 
For multi-class classification problems, the softmax activation function is used in the output layer of the network: 
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𝑓𝑓(𝑥𝑥) =
𝑒𝑒𝑥𝑥

∑ 𝑒𝑒𝑥𝑥𝐾𝐾
𝑘𝑘=1

 

The softmax function takes a vector of K arbitrarily large values and outputs a vector of K values that range 
between 0..1 and sum to 1. The values output by the softmax unit can be utilized as class probabilities [4]. 
  
2.3 COMPUTER VISION  
 
Computer vision deals with the extraction of meaningful information from the contents of digital images or video. 
This is distinct from mere image processing, which involves manipulating visual information on the pixel level. 
Applications of computer vision include image classification, visual detection, 3D scene reconstruction from 2D 
images, image retrieval, augmented reality, machine vision and traffic automation [5]. 
 
2.3.1 OBJECT DETECTION 
 
Object detection is one of the classical problems of computer vision and is often described as a difficult task. In 
many respects, it is similar to other computer vision tasks, because it involves creating a solution that is invariant to 
deformation and changes in lighting and viewpoint. It involves both locating and classifying regions of an 
image.[6]. 
 
Low-level visual features of an image, such as a saliency map, may be used as a guide for locating candidate 
objects. The location and size is typically defined using a bounding box, which is stored in the form of corner 
coordinates. Using a rectangle is simpler than using an arbitrarily shaped polygon, and many operations, such as 
convolution, are performed on rectangles in any case. The sub-image contained in the bounding box is then 
classified by an algorithm that has been trained using machine learning. The boundaries of the object can be further 
refined iteratively, after making an initial guess [5] [7]. 
 
2.4 CONVOLUTION NEURAL NETWORKS 
 
Convolutional neural network (CNN or convnet) are very similar to ordinary Neural Networks.  Each neuron 
receives some inputs, performs a dot product and optionally follows it with a non-linearity. A simple convnet for 
CIFAR-10 classification could have the architecture [INPUT - CONV - RELU - POOL - FC]. 
There are four main operations in the convnet. Figure shown the basic CNN architecture for classification where the 
first portion describe as the feature extraction part and the next portion describe as the classification part. 

 
Figure 2.3:Basic CNN Architecture 
 
2.5 BASIC CNN ARCHITECTURE 
 
Convolution neural network is a sequence of layers, and every layer of a convnet transforms one volume of activations to 
another through a differentiable function. We use three main types of layers to build convnet architectures: 
 

 Convolution Layer 
 Pooling Layer 
 Fully connected layer 

 
2.5.1 CONVOLUTION LAYER 
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The Convolution layer is the core building block of a Convolutional Network that does most of the computational 
heavy lifting. It performs the convolution operations over the input volumes.  
Given a two-dimensional image, I , and a small matrix, K of size h x w which we assume encodes a way of 
extracting an interesting image feature, we compute the convolved image, I*K, by overlaying the kernel on top of 
the image in all possible ways, and recording the sum of elementwise products between the image and the filter[3]. 

(𝐼𝐼 ∗ 𝐾𝐾)𝑥𝑥𝑥𝑥  = ��𝐾𝐾𝑖𝑖𝑖𝑖 ∗  𝐼𝐼𝑥𝑥+𝑖𝑖−1,𝑦𝑦+𝑗𝑗−1

𝑤𝑤

𝑗𝑗=1

ℎ

𝑖𝑖=1

 

 
2.5.2 Pooling and stride 
 
Stride can be defined as the number of pixels by which slide is functional for filter matrix over the input matrix. 
When the stride is 1 the filters move one pixel at a time. And for the value of the stride is 2, the filters jump 2 pixels 
at a time. Having a larger value of stride may cause to problem smaller feature maps. As the convolutional layer 
does, the pooling layer also has small window (kernel). Applying the small window across images, the pooling layer 
conducts statistical process. The computation of the output shape after the pooling layer can be represented as the 
same as the convolutional layer. There are two well-used pooling layers; average pooling layer and max pooling 
layer. Max-pooling simply outputs the maximum value within a rectangular neighborhood of the activation map 
[3][8]. 
 
2.5.3 FULLY CONNECTED LAYER 
 
The fully-connected layer contains neurons which are directly connected to the neurons in the two adjacent layers, 
without being connected to any layers within them. This is analogous to way that neurons are arranged in traditional 
forms of ANN. The fully connected (FC) layer in the CNN represents the feature vector for the input. This feature 
vector/tensor/layer[8]  holds information that is vital to the input. 
 
Steps in the training process of CNN 
 
Step 1: Initialize all filters and parameters/weights with random values. 
Step 2: The network takes a training images as input, goes through the forward propagation step (convolution, Relu 
and pooling operations along with forward propagation in the fully connected layer) and finds the output 
probabilities for each class. 
Step 3: Calculate the total error at the output layer 
 Total error = ∑ ½ (target probability –output probability)2 
Step 4: Use Back propagation to calculate the gradients of the error with respect to all weights in the network and 
use gradient descent to update all filter values / weights and parameter values to minimize the output error. 
Step 5: Repeat steps 2-4 with all images in the training set. 
 
2.6 DATA AUGMENTATION AND DROPOUT 
 
An over fitting model (neural network or any other type of model) can perform better if learning algorithm processes 
more training data. While an existing dataset might be limited, for some machine learning problems there are 
relatively easy ways of creating synthetic data. For images some common techniques include translating the picture a 
few pixels, rotation, scaling [3]. 
 
At each training iteration a dropout layer randomly removes some nodes in the network along with all of their 
incoming and outgoing connections. Dropout can be applied to hidden or input layer. 
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Figure 2.4: Dropout Example 

 
The nodes become more insensitive to the weights of the other nodes (co-adaptive), and therefore the model is more 
robust. If a hidden unit[9] has to be working well with different combinations of other hidden units, it’s more likely to 
do something individually useful. 
 
3.1 Development tools and libraries 
 
We used python programming language along with necessary development tools and different useful machine 
learning/deep learning libraries [10]. Python is a great general-purpose programming language on its own, but with 
the help of a few popular libraries it becomes a powerful environment for scientific computing. We choose python 
to build our model because python has many highly developed deep learning libraries which helps us building this 
object detection model easily and more accurate. List of used python deep learning libraries and development tools 
are given below: 
Python libraries for deep learning: 

1) Numpy 
2) Tensorflow 
3) Keras 
4) Matplotlib 

Development tools: 
1) Google Colab 
2) Jupyter notebook 

 
3.1.1 Numpy 
 
Numpy is a library for the Python programming language, adding support for large, multi-
dimensional arrays and matrices, along with a large collection of high-level basic and 
advancedmathematical functions to operate on these arrays. Besides its obvious scientific uses, numpy can also be 
used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows 
numpy to seamlessly and speedily integrate with a wide variety of databases [11]. 
 
3.1.2 Tensorflow 
 
Tensorflow is an open source software library for high performance numerical computation. Its flexible architecture 
allows easy deployment of computation across a variety of platforms (cpus, gpus, tpus), and from desktops to 
clusters of servers to mobile and edge devices. Originally developed by researchers and engineers from the Google 
Brain team within Google’s AI organization, it comes with strong support for machine learning and deep learning 
and the flexible numerical computation core is used across many other scientific domains [12]. 
 
3.1.3 Keras 
 
Keras is a high-level library that’s built on top of Theano or Tensorflow. It provides a scikit-learn type API (written 
in Python) for building Neural Networks. Developers can use Keras to quickly build neural networks without 
worrying about the mathematical aspects of tensor algebra, numerical techniques, and optimization methods. The 
key idea behind the development of Keras is to facilitate experimentations by fast prototyping. The ability to go 
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from an idea to result with the least possible delay is a key to good research. This offers a huge advantage for 
scientists and beginner developers alike because they can dive right into Deep Learning without getting their hands 
dirty with low-level computations. The rise in the demand for Deep Learning has resulted in the rise in demand of 
people skilled in Deep Learning [13]. 
 
3.1.4 Matplotlib 
 
Matplotlib is a Python package for data visualization. It allows easy creation of various plots, including line, 
scattered, bar, box, and radial plots, with high flexibility for refined styling and customized annotation. The 
versatile artist module allows developers to define basically any kind of visualization. For regular usage, 
Matplotlib offers a simplistic object-oriented interface, the pyplot module, for easy plotting. Besides generating 
static graphics, Matplotlib also supports an interactive interface which not only aids in creating a wide variety of 
plots but is also very useful in creating web-based applications [14]. 
3.2 Development tools 
 
3.2.1Google colabrotory/colab 
 
For training model with large scale dataset requires good hardware configuration, so we have to use Google 
Colab. Google Colab is a free cloud service. Google Colab is a Google product for machine learning/ deep learning 
researchers and developers. It provides free GPU (Graphics processor unit) that very useful when we have to work 
for large scale dataset. It reduces the computational cost [15]. 
 
3.2.2 Jupyter Notebook 
 
The Jupyter Notebook is an open-source web application that allows to create and share documents that contain live 
code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical 
simulation, statistical modeling, data visualization, machine learning, and much more. It is a great tool for 
exploratory data analysis and widely used for data scientists [16]. 
 
4.1 Model design and Implementation 
 
In this method, at first we trained our model using convolution neural network with CIFAR 10 Dataset. CIFAR 10 
datasets contains 10 unique data-classes. So this model is train only for this 10 objects. Our dataset image dimension 
is 32x32. We use different convolution layer to extract data from input and train to fit the model. 
 
4.1.1 Dataset description 
 
In this paper, we used CIFAR-10 dataset to train the model. The CIFAR-10 dataset consists of 60000 32x32 colour 
images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. Here are 
the classes in the dataset, as well as 10 random images from each: 

 
Figure 4.1: CIFAR-10 Dataset 
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The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains 
exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in 
random order, but some training batches may contain more images from one class than another. Between them, the 
training batches contain exactly 5000 images from each class 
[17]. 
 
 
 
 
 
 
 
 
4.2 The network 
 
We trained a deep CNN with four convolutional layers and two 
fully connected layers. The first convolutional layer had 32 32 32 
lters, the second one had 64 16 16 lters, and the last one had 128 
4 4 lters.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 4.1 Different layer and their dimensions used on this project 
 
In all the convolutional layers, we have a stride of size 1, batch normalization, dropout, max-pooling and relu as the 
activation function. The hidden layer in the first FC layers had 80 neurons. In FC layer, same as in the convolutional 
layers, we used batch normalization, dropout and relu. Also we used Softmax as our loss function. Table 4.1 shows 
the architecture of this deep network. 
 
4.3 Results 
 
To show the performance of the deep CNN model, we plotted the loss history and the obtained accuracy for the 
model. Figures 4.2 and 4.3 exhibit the results. As seen in Figure 4.2, the deep network validation accuracy is 
78.71%. 

Layer(type) Output Shape 
conv2d_1  ( 32, 32, 32) 
max_pooling2d_1 (32,16,16) 
dropout_1 ( 32, 16, 16) 
conv2d_2 (32, 16, 16) 
max_pooling2d_2 (32, 16, 16) 
dropout_2 (64, 8, 8) 
conv2d_3 (128, 8, 8) 
max_pooling2d_3 (128, 4, 4) 
dropout_3 (128, 4, 4) 
flatten_1 (2048) 
dense_1 (80) 
dropout_4 (80) 
dense_2 (10) 
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Figure 4.2: Accuracy of training and validation data set 

 
Figure 4.3: Loss history of training and validation data set 

4.4 Confusion matrix 
 
A confusion matrix is a table that is often used to describe the performance of a classification model (or "classifier") 
on a set of test data for which the true values are known. The confusion matrix itself is relatively simple to 
understand, but the related terminology can be confusing. 
 
We computed the confusion matrices for our deep CNN. Table 4.2 presents the visualization of the confusion 
matrices. As demonstrated, the deep network results in higher true predictions for most of the labels. 
 
Null Airplane automobile bird cat deer dog frog house Ship truck 
Airplane 599   5  74  98  55   14  12   9 117  17 
automobile 16 738  12  65   9   26   7   6  40  81 
Bird 31   0 523 168 136   86  33  14   9   0 
Cat 10   1  31 652  90  175  19  15   5   2 
Deer 6   0  34 132 717   55  16  31   9   0 
Dog 5   1  17 233  53  661  10  15   4   1 
Frog 2   1  39 157 105   48 637   3   7   1 
House 6  0  14  97 103   96   5 637   5   1 
Ship 41   7  28  84  19   18   6   4 783  10 
truck 25  28   8  77  29   27   5  19  59 723 
 

Table 4.2: Confusion Matrix for object detection system 
 
 
In the future work, we would like to plan to use more advanced network that will be helpful to train deep 
architectures and allow us to investigate the accuracy of our object detection system. Image localization was left 
outside the scope of the paper due to not having GPU.  
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