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Abstract 

The paper examines derivation of Advection-Diffusion equation with a mixed Derivative using 
law of Conservation, Product rule of calculus and Dercy’s law .Advection-Diffusion parameters 
have been assigned on the basis of whether they are Decaying or Exponential.Taylor series 
expansion is used to generate the Equation. Control volume on control surface is used to simplify 
the analysis.   
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Introduction 

Use of Advection – Diffusion equation in various fields of science like transport of heat, 
sediment, ground water and surface flow pollutants are fully sufficient for researchers to show 
interest in deriving this equation. Many researchers like Bear [1] tried to propose analytical 
solutions for these types of equations, but in recent years researchers like Beny [2] have shown 
more interest thereby introducing numerical solutions to these kinds of equations. As noted 
earlier, most of the researchers showed interest to present numerical solutions for Advection – 
Diffusion Equation instead of analytical solutions. 

Brief review of work done by attention to the data was done by Carnahan [4] who developed an 
algorithm to solve fully conservative, high resolution Advection – Diffusion Equation in 
irregular geometries. In this algorithm they developed Finite Volume Method to solve this 
equation. Bobenko [3] in order to numerically integrate the semi – discrete equation arising 
arising after the spatial discretization of Advection – Reaction – Diffusion Equation applied two 
variable step linearly implicit Runge – Kutta methods of order 3 amd 4 equations. 

Chapra [5] used the Euclerian – Lagrangian localized adjoin method on non – uniform time steps 
and unstructured meshes to solve the Advection – Diffusion Equation. Doyo [9] tried to develop 
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an algorithm by second and third order accuracy with finite with finite – difference method to 
solve the convection – diffusion equation. In this algorithm they used to counter error 
mechanism to reduce numerical dispersion. One of the researchers that tried to solve Advection 
– Diffusion Equation in implicit condition is Douglas [8]. He solved the equation with Finite 
Difference Method by using the upwind and Crank – Nicolson schemes. 

Properties of numerical schemes 

Many techniques are available for numerical simulation work and in order to quantify how well a 
particular numerical technique performs in generating a solution to a problem, there are four 
fundamental criteria that can be applied to compare and contrast different methods. The concepts 
are accuracy, consistency, stability and convergence. The method of Finite Difference Method is 
one of the most valuable methods of approximating numerical solution of Partial Differential 
Equations (PDEs). Before numerical computations are made, these four important properties of 
finite difference equations must be considered. 

(a) Accuracy: Is a measure of how well the discrete solution represents the exact solution of 
the problem. Two quantities exist to measure this, the local or truncation error, which 
measures how well the difference equations match the differential equations, and the 
global error which reacts to the overall error in the solution. This is not possible to find 
unless the exact solution is known.  

(b) Stability: A finite difference scheme is stable if the error made at one time step of the 
calculation do not cause the errors to be magnified as the computations are continued. A 
neutrally stable scheme is one in which errors remain constant as the computation are 
carried forward. If the errors decay are eventually damp out, the numerical scheme is said 
to be stable. If on the contrary, the errors grow with time the numerical scheme is said to 
be unstable. 

(c) Consistency: When a truncation error goes to zero, a finite difference equation is said to 
be consistent or compatible with a partial differential equation. Consistency requires that 
the original equations can be recovered from the algebraic equations. Obviously this is a 
minimum requirement for any discretization.  

(d) Convergence: A solution of a set of algebraic equations is convergent if the approximate 
solution approaches the exact solution of the Partial Differential Equations (PDEs) for 
each value of the independent variable. For example, as the mesh sizes approaches zero, 
the grid spacing and time step also goes to zero.  

Lax had proved that under appropriate conditions a consistent scheme is convergent if and only 
if it is stable. According to 𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐿𝐿𝐸𝐸𝑡𝑡𝐸𝐸𝑅𝑅𝑡𝑡 𝑇𝑇ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 which states that “given 
a properly posed linear initial value problem and a finite difference approximation to it that 
satisfies the consistency condition, stability is the necessary and sufficient condition for 
convergence” 

Initial and Boundary condition 

Limit conditions are important in solving the (3+1) dimension advection-diffusion contaminant 
concentration equation. They are decided by actual geographical information and initial 
contaminant concentration of the boundaries. There are mainly two approaches to obtain the 
initial conditions, Dehghan[7]. One is to set the real approximate pollutant concentration as 
initial condition and the other is to set zero concentration as initial condition. The latter is viewed 
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as the ideal circumstance. The expression for initial conditions of the equation can therefore be 
given as: 

𝐶𝐶(𝐿𝐿,𝑡𝑡, 𝑧𝑧, 𝑡𝑡0) = 𝑆𝑆𝑅𝑅𝐸𝐸(𝐿𝐿 + 𝑡𝑡 + 𝑧𝑧)                                                                                          (1) 

𝐶𝐶(𝐿𝐿,𝑡𝑡, 𝑧𝑧, 𝑡𝑡0) = 0                                                                                                                   (2) 

In general, there are three boundary conditions for Advection-Diffusion equations, Dehghan[7]: 
Dirichlet condition (the concentration boundary), Neuman condition (the concentration gradient 
boundary) and Cauchy condition (the concentration boundary and the concentration gradient 
boundary specified at the same time). Considering the calculation efficiency we will choose the 
ideal boundary condition ie the Dirichlet condition, giving the boundary condition as: 

 

The Fundamental equation 

Consider a unit volume of saturated porous media. Such a volume is called a control 

volume. The boundaries of the element are called control surfaces. The law of 

conservation of mass for a steady state flow requires that the rate at which fluid is 

entering the control volume is equal to the rate at which fluid is leaving the control 

volume for a steady flow. 

 Net rate of flow = Inflow - Outflow = 0 (3) 

For purposes of analysis, consider the rate at which groundwater enters the control volume 

per unit surface area to consist of three components namely ρVx, ρVy, ρVz, where ρ is the 

density of water and Vx is the velocity of water perpendicular to the x axis, Vy is the velocity 

of water perpendicular to the y axis and Vz is the velocity of water perpendicular to the z axis. 

These are the apparent velocities of ground water flow entering the control volume through 

control surfaces perpendicular to the x, y and z coordinate axes. Mass flow rate is the mass of 

a substance which passes through a media per unit of time. Sometimes, mass flow rate is 

termed as mass flux or mass current. The flow rate is defined by the limit as explained by 

Drazin[10], 

𝑡𝑡 = lim∆𝑡𝑡→0 = ∆𝑡𝑡
∆𝑡𝑡

= 𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡

    (4) 

ie the flow of mass m through a surface per unit time. Since mass is a scalar quantity, the 

mass flow rate (time derivative of mass) is also a scaler quantity. The change in mass is 
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the amount that flows after crossing the boundary for some time duration, not the initial 

amount of mass at the boundary minus the final amount at the boundary, since the change 

in the mass flowing through the area would be zero for steady flow. Mass flow rate can be 

calculated by the Douglas [8] 

 m = ρV (5) 

(i) ρ = Density of water 

(ii) V = Volume flow rate 

Using Taylor series approximation, the rate at which ground water leaves the control 

volume in the x-direction can be written as 

(𝜌𝜌𝜌𝜌𝐿𝐿 + ∆𝐿𝐿) = 𝜌𝜌𝜌𝜌𝐿𝐿 +
𝜕𝜕
𝜕𝜕𝐿𝐿

(𝜌𝜌𝜌𝜌𝐿𝐿)∆𝐿𝐿 +
1
2
𝜕𝜕2

𝜕𝜕𝐿𝐿2 (𝜌𝜌𝜌𝜌𝐿𝐿)∆𝐿𝐿2 +
1
6
𝜕𝜕3

𝜕𝜕𝐿𝐿3 (𝜌𝜌𝜌𝜌𝐿𝐿)∆𝐿𝐿3 +
1

24
𝜕𝜕4

𝜕𝜕𝐿𝐿4 (𝜌𝜌𝜌𝜌𝐿𝐿)∆𝐿𝐿4

+ ⋯                                                                                                                                  (6) 

 

If we make the size of the control volume small and neglect higher order terms (ie those 

involving ∂2,∂3etc) and because we have chosen a unit control volume (∆x = ∆y = ∆z = 1), the 

rate at which ground 

water leaves the control volume is 𝜌𝜌𝜌𝜌𝐿𝐿 + 𝜕𝜕
𝜕𝜕𝐿𝐿

(𝜌𝜌𝜌𝜌𝐿𝐿). The net rate of inflow in the x-direction 
will be given by 

Net rate of inflow in the x- direction=Rate of inflow in the x-direction-Rate of outflow in the x-
direction 

 𝜌𝜌𝜌𝜌𝐿𝐿 − �𝜌𝜌𝜌𝜌𝐿𝐿 + 𝜕𝜕
𝜕𝜕𝐿𝐿

(𝜌𝜌𝜌𝜌𝐿𝐿)� = −𝜕𝜕
𝜕𝜕𝐿𝐿

(𝜌𝜌𝜌𝜌𝐿𝐿) (7) 
The net rate of inflow in the y-direction is then given as, 

Net rate of inflow in the y-direction=Rate of inflow in the y-direction-Rate of outflow in the y-
direction 

 𝜌𝜌𝜌𝜌𝑡𝑡 − �𝜌𝜌𝜌𝜌𝑡𝑡 + 𝜕𝜕
𝜕𝜕𝑡𝑡
�𝜌𝜌𝜌𝜌𝑡𝑡�� = −𝜕𝜕

𝜕𝜕𝑡𝑡
�𝜌𝜌𝜌𝜌𝑡𝑡� (8) 

The net rate of inflow in the z-direction is then given as, 

GSJ: Volume 9, Issue 8, August 2021 
ISSN 2320-9186 397

GSJ© 2021 
www.globalscientificjournal.com



Net rate of inflow in the z- direction=Rate of inflow in the z-direction-Rate of outflow in the z-
direction 

 𝜌𝜌𝜌𝜌𝑧𝑧 − �𝜌𝜌𝜌𝜌𝑧𝑧 + 𝜕𝜕
𝜕𝜕𝑧𝑧

(𝜌𝜌𝜌𝜌𝑧𝑧)� = −𝜕𝜕
𝜕𝜕𝑧𝑧

(𝜌𝜌𝜌𝜌𝑧𝑧) (9) 

Because the net rate of inflow for the entire control volume must be equal to zero if the 

law of conservation of mass is to be satisfied, we can then write, 

 −𝜕𝜕
𝜕𝜕𝐿𝐿

(𝜌𝜌𝜌𝜌𝐿𝐿)− 𝜕𝜕
𝜕𝜕𝑡𝑡
�𝜌𝜌𝜌𝜌𝑡𝑡� −

𝜕𝜕
𝜕𝜕𝑧𝑧

(𝜌𝜌𝜌𝜌𝑧𝑧) = 0 (10) 

If we assume that the ground water density ρ is a constant(ie the fluid is incompressible), 

we can use product rule to evaluate a typical term in equation (7), (8) and (9) to have 

 −𝜕𝜕
𝜕𝜕𝐿𝐿

(𝜌𝜌𝜌𝜌𝐿𝐿) = −�𝜌𝜌 𝜕𝜕𝜌𝜌𝐿𝐿
𝜕𝜕𝐿𝐿

+ 𝜌𝜌𝐿𝐿
𝜕𝜕𝜌𝜌
𝜕𝜕𝐿𝐿
� = −𝜌𝜌 𝜕𝜕𝜌𝜌𝐿𝐿

𝜕𝜕𝐿𝐿
 (11) 

 −𝜕𝜕
𝜕𝜕𝑡𝑡
�𝜌𝜌𝜌𝜌𝑡𝑡� = − �𝜌𝜌 𝜕𝜕𝜌𝜌𝑡𝑡

𝜕𝜕𝑡𝑡
+ 𝜌𝜌𝑡𝑡

𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡
� = −𝜌𝜌 𝜕𝜕𝜌𝜌𝑡𝑡

𝜕𝜕𝑡𝑡
 (12) 

 −𝜕𝜕
𝜕𝜕𝑧𝑧

(𝜌𝜌𝜌𝜌𝑧𝑧) = −�𝜌𝜌 𝜕𝜕𝜌𝜌𝑧𝑧
𝜕𝜕𝑧𝑧

+ 𝜌𝜌𝑧𝑧
𝜕𝜕𝜌𝜌
𝜕𝜕𝑧𝑧
� = −𝜌𝜌 𝜕𝜕𝜌𝜌𝑧𝑧

𝜕𝜕𝑧𝑧
 (13) 

Because the ground water density appears outside the derivative, it cancels from the three 

equations. Now, 

 −𝜕𝜕𝜌𝜌𝐿𝐿
𝜕𝜕𝐿𝐿

− 𝜕𝜕𝜌𝜌𝑡𝑡
𝜕𝜕𝑡𝑡

− 𝜕𝜕𝜌𝜌𝑧𝑧
𝜕𝜕𝑧𝑧

= 0 (14) 

The apparent ground water velocities are given by Darcy’s Law as 

 𝜌𝜌𝐿𝐿 = −𝐾𝐾𝐿𝐿
𝜕𝜕𝐶𝐶
𝜕𝜕𝐿𝐿

 (15) 

𝜌𝜌𝑡𝑡 = −𝐾𝐾𝑡𝑡
𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

                                          (16)    

     𝜌𝜌𝑧𝑧 = −𝐾𝐾𝑧𝑧
𝜕𝜕𝐶𝐶
𝜕𝜕𝑧𝑧

                                              
(17) 

Where Kx, Ky, and Kz are the advection coefficients and C is the concentration. 

Substituting equation (15), (16) and (17) into equation (14) respectively we arrive at the 

saturated flow equation 

 𝜕𝜕
𝜕𝜕𝐿𝐿
�−𝐾𝐾𝐿𝐿

𝜕𝜕𝐶𝐶
𝜕𝜕𝐿𝐿
� + 𝜕𝜕

𝜕𝜕𝑡𝑡
�−𝐾𝐾𝑡𝑡

𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡
� + 𝜕𝜕

𝜕𝜕𝑧𝑧
(−𝐾𝐾𝑧𝑧

𝜕𝜕𝐶𝐶
𝜕𝜕𝑧𝑧

) (18) 
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Because the component of advection coefficient is independent of position for a particular 

direction, we can further simplify equation (18) using product rule. 

 𝜕𝜕
𝜕𝜕𝐿𝐿
�𝐾𝐾𝐿𝐿

𝜕𝜕𝐶𝐶
𝜕𝜕𝐿𝐿
� = 𝐾𝐾𝐿𝐿

𝜕𝜕2𝐶𝐶
𝜕𝜕𝐿𝐿 2 + 𝜕𝜕𝐶𝐶

𝜕𝜕𝐿𝐿
. 𝜕𝜕𝐾𝐾𝐿𝐿
𝜕𝜕𝐿𝐿

= 𝐾𝐾𝐿𝐿
𝜕𝜕2𝐶𝐶
𝜕𝜕𝐿𝐿 2 (19) 

 𝜕𝜕
𝜕𝜕𝑡𝑡
�𝐾𝐾𝑡𝑡

𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡
� = 𝐾𝐾𝑡𝑡

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑡𝑡 2 + 𝜕𝜕𝐶𝐶

𝜕𝜕𝑡𝑡
. 𝜕𝜕𝐾𝐾𝑡𝑡
𝜕𝜕𝑡𝑡

= 𝐾𝐾𝑡𝑡
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑡𝑡 2 (20) 

 𝜕𝜕
𝜕𝜕𝑧𝑧
�𝐾𝐾𝑧𝑧

𝜕𝜕𝐶𝐶
𝜕𝜕𝑧𝑧
� = 𝐾𝐾𝑧𝑧

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑧𝑧 2 + 𝜕𝜕𝐶𝐶

𝜕𝜕𝑧𝑧
. 𝜕𝜕𝐾𝐾𝑧𝑧
𝜕𝜕𝑧𝑧

= 𝐾𝐾𝑧𝑧
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑧𝑧 2  (21) 

Finally if  𝐾𝐾𝐿𝐿 ≠ 𝐾𝐾𝑡𝑡 ≠ 𝐾𝐾𝑧𝑧and the media is anisotropic then, 

 𝐾𝐾𝐿𝐿
𝜕𝜕2𝐶𝐶
𝜕𝜕𝐿𝐿 2 + 𝐾𝐾𝑡𝑡

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑡𝑡 2 + 𝐾𝐾𝑧𝑧

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑧𝑧 2 = 𝑓𝑓(𝐿𝐿, 𝑡𝑡, 𝑧𝑧, 𝑡𝑡) (22) 

Diffusion at the interface of the x-y plane 

As water enters the control volume from x into the y plane, we can use the product rule of 

calculus to evaluate a typical term in the equation for diffusion at this interface Bobenko 

[3] 

 𝜕𝜕
𝜕𝜕𝐿𝐿
�𝐾𝐾𝐸𝐸 . 𝜕𝜕𝐶𝐶

𝜕𝜕𝑡𝑡
� (23) 

 𝐾𝐾𝐸𝐸
𝜕𝜕2𝐶𝐶
𝜕𝜕𝐿𝐿𝜕𝜕𝑡𝑡

+ 𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

. 𝜕𝜕𝐾𝐾𝐸𝐸
𝜕𝜕𝐿𝐿

= 𝐾𝐾𝐸𝐸
𝜕𝜕2𝐶𝐶
𝜕𝜕𝐿𝐿𝜕𝜕𝑡𝑡

 (24) 

Putting together equation (22) and (24) and also taking into account diffusion on the x and 

y plane from Drazin[10] 

 𝐾𝐾𝐿𝐿
𝜕𝜕2𝐶𝐶
𝜕𝜕𝐿𝐿 2 + 𝐾𝐾𝑡𝑡

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑡𝑡 2 + 𝐾𝐾𝑧𝑧

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑧𝑧 2 + 𝐾𝐾𝐸𝐸

𝜕𝜕2𝐶𝐶
𝜕𝜕𝐿𝐿𝜕𝜕𝑡𝑡

+ 𝑀𝑀𝐿𝐿
𝜕𝜕𝐶𝐶
𝜕𝜕𝐿𝐿

+ 𝐿𝐿𝑡𝑡
𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

= 𝐶𝐶𝑡𝑡  (25) 
where Kx, Ky, Kz, Kv, Mx, and Ly are funtions of x, y, z and t or can be a constant. Equation 

(25) can hence be written as 

𝑓𝑓1(𝐿𝐿,𝑡𝑡, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕
2𝐶𝐶

𝜕𝜕𝐿𝐿 2 + 𝑓𝑓2(𝐿𝐿,𝑡𝑡, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕
2𝐶𝐶

𝜕𝜕𝑡𝑡 2 + 𝑓𝑓3(𝐿𝐿,𝑡𝑡, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕
2𝐶𝐶
𝜕𝜕𝑧𝑧 2 + 𝑓𝑓4(𝐿𝐿,𝑡𝑡, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕2𝐶𝐶

𝜕𝜕𝐿𝐿𝜕𝜕𝑡𝑡
+ 𝑓𝑓5(𝐿𝐿,𝑡𝑡, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕𝐶𝐶

𝜕𝜕𝐿𝐿
+

𝑓𝑓6(𝐿𝐿,𝑡𝑡, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

= 𝐶𝐶𝑡𝑡                                                                                                                  (26) 

Conclusion 

The first four parameters of diffusion will influence diffusivity and the last two parameters 
are functions of underground fluid transport (Advection).The parameters of diffusion and 
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advection will be assigned to the fundamental equation alternately on the basis of whether 
they are exponential or decaying. Eventually the equation will examine the influence of 
alternating exponential and decaying diffusion and advection parameters of the model 
equation on underground water quality.  
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