
Deriving the physical phenomena of TOUGMA’s solution
Jean Luc Wendkouni TOUGMA jeanluctougma@outlook.fr1
Laboratoire de Physique et Chimie de l’Environnement a)

(Dated: 11 August 2022)Abstract

In this paper, we derive the physical phenomena that implies the second TOUGMA’s metric.Due to astrophysical
applications, the interest of studing the TOUGMA metric right now is to implement using a metric concrete the new
physical concepts that implies this metric
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I. INTRODUCTION

Relativistic astrophysics occupies a growing part in con-
temporary astronomy. raine, particularly in view of the large
amount of data generated are either cosmologi- ques, or in-
volve compact objects (black holes, neutron stars). In the both
cases, the theoretical basis of their study was general relativ-
ity. But TOUGMA have been given recently et unified equa-
tion of quantum langrangian and gravity, nommed Quantum
Relativity theory, published in 2021 by TOUGMA and all 1.

[(α−3)Ruv−
1
2

guvR](1+
2kLm

R
)−2k(α−3)guvLm = Tuv

(1)

It has resolved and one of solutions is given by:

ds2 =−[tan(− kLm

4(α −2)
[1− ln(1− r)])]2c2dt2

+
dr2

[tan(− kLm
4(α−2) [1− ln(1− r)])]2

+ r2(dθ
2 + r2sin2

θdϕ
2)+ rα−4dΩα−4 (2)

The gravitational field of bodies with spherical symmetry
is obviously of importance capital in astrophysics.To arrive
immediately at interesting applications of astrophysical in-
terest,we are going to study the physical concepts of this
TOUGMA’s metric.

II. METHODS

A solution of TOUGMA’s equation that can be defined by
the existence of a coordinate system (xu) = (ct,r,θ ,ϕ,Ωα−4),
called TOUGMA coordinates, such that the components guv
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of the metric tensor g are written there

ds2 =−[tan(− kLm

4(α −2)
[1− ln(1− r)])]2c2dt2

+
dr2

[tan(− kLm
4(α−2) [1− ln(1− r)])]2

+ r2(dθ
2 + r2sin2

θdϕ
2)+ rα−4dΩα−4 (3)

The first observation that we can made in view of (3) is
that the space-time (E,g) is static and spherically symmet-
ric.The metric components are clearly independent of t and,
∂⃗t .∂⃗t = −[tan(− kLm

4(α−2) [1− ln(1− r)])]2c2 < 0, and then that
∂t is time-like; , we conclude that spacetime is stationary.As
for the spherical symmetry, it is immediate because the com-
ponents guv given by (3).Moreover, the space-time described
by the TOUGMA metric is asymptotical 2 34

we have in effect if r=0

[tan(− kLm

4(α −2)
[1− ln(1− r)])]2 = [tan(− kLm

4(α −2)
)]2 (4)

that we are going to study the physicals phenomena of this
function in the next section. as limites we have:

lim
r→−∞

[tan(− kLm

4(α −2)
[1− ln(1− r)])]2 =+∞ (5)

and

lim
r→1

[tan(− kLm

4(α −2)
[1− ln(1− r)])]2 =+∞ (6)

A. Finding Radial Light Geodesics

Let us place ourselves in the frame of the TOUGMA co-
ordinates (xu) = (ct,r,θ ,ϕ,Ωn−4). A light geodesic is a
geodesic of zero length: we must therefore have along this
one

ds2 = guvdxudxv = 0 (7)
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On the other hand, if we assume the radial geodesic, then
dθ = 0 and dϕ = 0 = dΩn−4 along it.
It happens:

− [tan(− kLm

4(α −2)
[1− ln(1− r)])]2c2dt2

+
dr2

[tan(− kLm
4(α−2) [1− ln(1− r)])]2

= 0 (8)

− [tan(− kLm

4(α −2)
[1− ln(1− r)])]2c2dt2 =

− dr2

[tan(− kLm
4(α−2) [1− ln(1− r)])]2

(9)

[tan(− kLm

4(α −2)
[1− ln(1− r)])]2c2dt2 =

+
dr2

[tan(− kLm
4(α−2) [1− ln(1− r)])]2

(10)

[tan(− kLm

4(α −2)
[1− ln(1− r)])]cdt =

± dr

[tan(− kLm
4(α−2) [1− ln(1− r)])]

(11)

cdt = ± dr

[tan(− kLm
4(α−2) [1− ln(1− r)])]2

(12)

ct = ±
∫ r

r0

dr

[tan(− kLm
4(α−2) [1− ln(1− r)])]2

(13)

ct = ±[
4(α −2)(r−1)cos2(− kLm

4(α−2) [1− ln(1− r)])

kLm tan(− kLm
4(α−2) [1− ln(1− r)])

]rr0

(14)

ct =±[
4(α −2)(r−1)cos2(− kLm

4(α−2) [1− ln(1− r)])

kLm tan(− kLm
4(α−2) [1− ln(1− r)])

−
4(α −2)(r0 −1)cos2(− kLm

4(α−2) [1− ln(1− r0)])

kLm tan(− kLm
4(α−2) [1− ln(1− r0)])

] (15)

Due to the ±, we obtain two families of radial geodesics,
which can be classified as following 56:

• the outgoing geodesics, for which dr/dt > 0; their
equations are

ct =
4(α −2)(r−1)cos2(− kLm

4(α−2) [1− ln(1− r)])

kLm tan(− kLm
4(α−2) [1− ln(1− r)])

−
4(α −2)(r0 −1)cos2(− kLm

4(α−2) [1− ln(1− r0)])

kLm tan(− kLm
4(α−2) [1− ln(1− r0)])

(16)

• incoming geodesics, for which dr/dt < 0; their equa-
tions are

ct =
4(α −2)(r0 −1)cos2(− kLm

4(α−2) [1− ln(1− r0)])

kLm tan(− kLm
4(α−2) [1− ln(1− r0)])

−
4(α −2)(r−1)cos2(− kLm

4(α−2) [1− ln(1− r)])

kLm tan(− kLm
4(α−2) [1− ln(1− r)])

(17)

the physicals phenomena are going to be studied in the next
section

B. Orbits of material bodies

Let us now examine the mass bodies trajectories(orbits) of
m ≪ M around of the central body of the TOUGMA met-
ric. As we saw in § 2., these trajectories must be time-like
geodesics.If the subsequent trajectory deviates towards one of
the two hemispheres separated by this equator, this would rep-
resent a break in the spherical symmetry. Thus the particle
must remain in the plane and for a specific Ωα−4

θ =
π

2
(18)

and

Ωα−4 = cste (19)

From Kelling vectors we have:

ε =− c
m

χ⃗0 p⃗ =−c2
χ⃗0⃗v (20)

l =
1
m

χ⃗z p⃗ = c⃗χz⃗v (21)

that implies:

ε = c2 tan2(− kLm

4(α −2)
[1− ln(1− r)])

dt
dτ

(22)

l = r2sin2
θ

dϕ

dτ
(23)

the 5-components of the pentavector v⃗ are

v0 = tan−2(− kLm

4(α −2)
[1− ln(1− r)])

ε

c2 (24)

vθ = 0 (25)

vϕ =
l

cr2 (26)

vΩα−4 = 0 (27)
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by v⃗.⃗v =−1 the renormilization equation, it happends:

g00(v0)2 +grr(vr)2 +gθθ (vθ )2 +gϕϕ(vϕ)2

+gΩα−4(v
Ωα−4)2 =−1 (28)

− tan−2(− kLm

4(α −2)
[1− ln(1− r)])

ε2

c2

+ tan−2(− kLm

4(α −2)
[1− ln(1− r)])(vr)2 +

l2

c2r2 =−1 (29)

− ε2

c2 +(vr)2 =

− (
l2

c2r2 +1) tan2(− kLm

4(α −2)
[1− ln(1− r)]) (30)

1
2
(

dr
dτ

)2 =−1
2
[(

l2

c2r2 +1) tan2(− kLm

4(α −2)
[1− ln(1− r)])

− ε2

c2 ] (31)

Ve f f (r) =−1
2
[(

l2

c2r2 +1) tan2(− kLm

4(α −2)
[1− ln(1− r)])

− ε2

c2 ] (32)

the physicals phenomena of this are going to be studied in the
next section

III. RESULTS

Now, we are going to give the physicals phenomena of last
section equation. The firts is

[tan(− kLm

4(α −2)
)]2 (33)

Ploted it with Lm and α variables we have We can see in the
first figure that there is no universe forms with α ∈ [1,3], also
we can see the best possibility of universes formation accord-
ing quantum Lagrangian Lm. The next figure shown the prob-
ability of universe formation according Lm and α ∈ [1,100]

FIG. 1: alpha and Lm variables with α lower

FIG. 2: alpha and Lm variables with α upper

A. Radial Light Geodesics

We are going to represent the outgoing geodesic

• for lagrangian fields lower, we represent ct(r,α)

FIG. 3
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• for lagrangian fields upper, we represent ct(r,α)

FIG. 4

• for α = cste, we represent ct(r,Lm)

FIG. 5

FIG. 6

• for α = cste and Lm lower, we represent ct(r)

FIG. 7

• for α = cste and Lm grather, we represent ct(r)

FIG. 8

Now, we represent the incoming geodesic

• for lagrangian fields lower, we represent ct(r,α)

FIG. 9

• for lagrangian fields upper, we represent ct(r,α)
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FIG. 10

• for α = cste, we represent ct(r,Lm)

FIG. 11

• for α = cste and Lm lower, we represent ct(r)

FIG. 12

• for α = cste and Lm grather, we represent ct(r)

FIG. 13

B. Orbits of material bodies Geodesics

The potential equation is given by:

Ve f f (r) =−1
2
[(

l2

c2r2 +1) tan2(− kLm

4(α −2)
[1− ln(1− r)])

− ε2

c2 ] (34)

dVe f f (r)
dr

=−1
2
[(

l2

c2r2 +1)
kLm

4(α −2)(1− r)cos2(− kLm
4(α−2) [1− ln(1− r)])

− l2

c2r3 tan2(− kLm

4(α −2)
[1− ln(1− r)])] (35)

and the extremuns of Ve f f are given by 7:

0=−1
2
[(

l2

c2r2 +1)
kLm

4(α −2)(1− r)cos2(− kLm
4(α−2) [1− ln(1− r)])

− l2

c2r3 tan2(− kLm

4(α −2)
[1− ln(1− r)])] (36)

(
l2

c2r2 +1)
kLm

4(α −2)(1− r)cos2(− kLm
4(α−2) [1− ln(1− r)])

=

l2

c2r3 tan2(− kLm

4(α −2)
[1− ln(1− r)]) (37)

(
l2

c2r2 +1)
kLmc2r3

4l2(α −2)(1− r)
=

sin2(− kLm

4(α −2)
[1− ln(1− r)]) (38)

arcsin(

√
(

l2

c2r2 +1)
kLmc2r3

4l2(α −2)(1− r)
) =

− kLm

4(α −2)
[1− ln(1− r)] (39)
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4(α −2)
kLm

arcsin(

√
(

l2

c2r2 +1)
kLmc2r3

4l2(α −2)(1− r)
)

+1 =±ln(1− r) (40)

(1− r) =

exp(±[
4(α −2)

kLm
arcsin(

√
(

l2

c2r2 +1)
kLmc2r3

4l2(α −2)(1− r)
)+1])

(41)

r = 1

−exp(±[
4(α −2)

kLm
arcsin(

√
(

l2

c2r2 +1)
kLmc2r3

4l2(α −2)(1− r)
)+1])

(42)
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