

GSJ: Volume 7, Issue 2, February 2019, Online: ISSN 2320-9186 www.globalscientificjournal.com

DESIGN OF NATURAL GAS TRANSMISSION PIPELINE

(A CASE STUDY OF A TYPICAL MARGINAL OIL AND GAS FIELD IN NIGER DELTA, NIGERIA)

¹UGWUNNA. A.D, ²APPAH D ³EVBUOMWAN B.O

¹ Centre for Gas, Refining and Petrochemicals, University of Port Harcourt, Port Harcourt, Nigeria

²Department of Petroleum and Gas Engineering, University of Port Harcourt, Port Harcourt, Nigeria

³ Department of Chemical Engineering, University of Port Harcourt, Port Harcourt, Nigeria

³Corresponding author: benson.evbuomwan@uniport.edu.ng

ABSTRACT

The natural gas transmission pipeline for a typical marginal oil and gas field in Niger delta has been designed. A secondary data of the field gas was obtained and empirical study was carried out to determine the nature of the gas. The gas flow rate, pressure, temperature was collated and used to design the gas pipeline.

Hydraulic design equations from ASME B31.8 and API 5L standard codes and specifications were used to estimate some of the parameters used in the design. The sizing, design pressure, collapse pressure, burst pressure, hydrotest pressure. Pipe diameter, schedule number and thickness etc were calculated using appropriate design equations. Aspen HYSYS version 8.8 (34.0.0.8909) software was used to carry out simulation of the process flow and it all converged.

Keywords: Pipeline, design, Natural Gas, Marginal Field.

Natural Gas due to its storage difficulties needs to be transported to its needed destination as soon as it is produced from the reservoir. There are a number of options for transporting natural gas energy from oil and gas fields to market (Guo Buoyan *et al.*, 2005). This includes: Pipeline Natural Gas (PNG), Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG) and Gas To Solid (GTS). Pipelines are connected pipes which are installed for the purpose of transmitting gases, liquids, slurries, etc., from sources of supply to one or more distribution center(s) or to one or more large-volume customer(s); a pipe installed to interconnect source(s) of supply to one or more distribution center(s) or to one or more distribution center(s) or to one or more large-volume customer(s); or a pipe installed to interconnect source(s) of supply. (Lyons W; 2011). Pipes are tube with a round cross section conforming to the dimensional requirements for nominal pipe size. An average of over 12,000 miles per year of newly constructed gas pipeline has been completed in the last decades; most of which are transnational. It is a common belief that if political instabilities and other variables are guaranteed, then pipelines use may be able to provide a long lasting solution for transportation of natural gas.

Marginal Field is an oil /gas field which is incapable of producing the desired net income that will trigger its development at a given point in time. However, if technical / economic conditions changes, such field may become commercially viable. It is usually associated with small pockets of hydrocarbons with a few years of plateau. Marginal fields have some issues or parameters that affects them. They include the following: Environmental concerns, political stability, access, remoteness etc. In short, marginal fields are oil and gas reserves usually too small for production to be economically viable for large oil companies. These fields are usually awarded to indigenous companies to explore, considering the size of the reserves.

Gas pipeline design is a process or plan to show the look and function of gas pipeline before it is constructed. The design consists mainly of four interrelated areas, that is, hydraulic design, mechanical design, geothermal design and operating/maintenance design (Mike Y, 2010). They are all geared towards figuring out suitable pipeline that will safely transport the fluid from the oil and gas field to the place of storage or utilization. Several codes and standards have been developed as a guide for the design, construction and operations of pipelines. The objectives of this codes and standards are to ensure the safety of the personnel and the general public by minimizing the risk of high pressure pipelines (Cult et al, 2008).

The properties and compositions of the gas must be determined in order to design an appropriate gas pipeline. Gas reservoir properties such as carbon contents, gas specific gravity, gas compressibility factor, gas viscosity, critical temperature and pressure, gas density, etc. must be determined to select the grade of the pipeline.

Pipeline route and profile survey is also required to ascertain the minimum and maximum elevation of the pipeline, to know if there will be creek/river crossing and to understand the environmental condition of such terrain.

In this paper, a case study of a typical marginal field will be undertaken to design a natural gas transmission pipeline. The terrain is fairly flat and accessible. A secondary data of the field gas will be obtained and empirical study will be carried out to determine the nature of the gas. The gas flow rate, pressure, temperature will be collated and used to design the gas pipeline.

METHODOLOGY

Data collection and analysis for pipeline design

A secondary data of the gas sample from the field were collected for analysis as shown below.

#	Compound	Mole Fraction (mole%)	Molecular Weight, g/mol				
1	Methane, C_1	86.61	16.04				
2	Ethane, C ₂	4.46	30.07				
3	Propane	2.67	44.10				
4	i-Butane, i-C ₄	1.88	58.12				
5	n-Butane, n-C ₄	1.61	58.12				
6	i-Pentane, i-C ₅	0.32	70.14				
7	n-Pentane, n-C ₅	0.16	72.15				
8	Hexane, C ₆	0.05	86.18				
8	CO_2	2.16	44.01				
9	H ₂ S	0.08	34.08				

Table 1: Gas composition

Gasline sales pressure, temperature and flowrate.

The flowing head pressure, temperature and flow rate from the sale line were measured with the aid of pressure gauges, temperature recorder and orifice meter respectively, and the following parameters were obtained.

- Inlet pressure = 1104 psi
- Inlet Temperature $=72.4^{\circ}F$
- Volumetric flow rate=35MSCF/D

Calculation of Gas Apparent Molecular Weight

Table 2: Gas apparent molecular weight computation

#	Compound	Mole Fraction	Molecular Weight,	$(Y_i \times M_i)$
		(Y_i)	M _i , g/mol	
1	Methane, C ₁	0.8661	16.04	13.8922
2	Ethane, C ₂	0.0446	30.07	1.3411
3	Propane	0.0267	44.10	1.1775
4	i-Butane, i-C ₄	0.0188	58.12	1.0927
5	n-Butane, n-C ₄	0.0161	58.12	0.9357
6	i-Pentane, i-C ₅	0.0032	70.14	0.2244
7	n-Pentane, n-C ₅	0.0016	72.15	0.1154
8	Hexane, C ₆	0.0005	86.18	0.0439
8	CO ₂	0.0216	44.01	0.9506
9	H_2S	0.0008	34.08	0.0273
Total		1.0000		19.8008

Where, Y_i = mole fraction, M_i = Molecular Weight

$$\begin{split} M_a &= (Y_i \: x \: M_i) = 19.8 \text{g/mol} \\ \text{The Apparent Molecular Weight of the gas =} 19.8 \text{g/mol} \end{split}$$

Determination of Gas Gravity (G)

$$G = \frac{Ma}{28.9625}$$
$$G = \frac{19.8008}{28.9625} = 0.68$$

Determination of Gas Deviation Factor, Z

Calculating the pseudo-critical temperature and pressure using the following correlation.

$$Pc = 677 + 15G-37.5G^{2}$$

= 677 + 15(0.68) - 37.5 (0.68)²
= 669.86 psi
Tc = 168+325G-12.5G²
= 168 + 325(0.68) - 12.5 (0.68)²
= 383.22°R

Calculating the pseudo-reduced temperature and pressure.

$$T_r = \frac{T}{T_c} = \frac{532.2^{\circ}R}{383.22^{\circ}R} = 1.39$$

$$P_r = \frac{P}{P_c} = \frac{1104psi}{669.86psi} = 1.6$$

Estimating the Z factor using Katz and Standing chart Z= f(Tpr and Ppr) = 0.88

Determination of Gas Density, p

$$PV = ZnRT$$
; but $n = \frac{m}{Ma}$
 $PMa = \rho ZRT$

$$\rho = \frac{PMa}{ZRT}$$

Where, R=10.73ft³psi/lbmol.^oR, substituting values into the above equation.

$$\rho = \frac{1104 \text{psi} \times 19.8 \text{g/mol}}{0.88 \times 10.73 \text{ft}^3 \text{psi/ibmol.}^{\,0} \text{R} \times 532.2^{\,0} \text{R}} = 4.4 \, \text{Ib/ft}^3$$

Determination of Gas Viscosity, **µ**

From the graph of temperature vs. molecular weight. At temperature of 72.4°F and Molecular Weight of 19.9

5.1

 $\mu_1=0.010$ cp. μ/μ_1 @ (Tpr and Ppr)= 1.21

 μ =1.21 x μ 1= 1.21 x 0.010= 0.0121cp

Pipeline sizing Determination of pipe diameter

Superficial velocity equation for sizing gas stream pipes is given as follows;

$$D = \sqrt{\frac{3.5 \times Qh \times TA}{PA}}$$

where D = Pipe Diameter, $Q_h = Flowing Capacity (MSCF/D)$ $T_A = Absolute Temperature$, $P_A = Absolute Pressure$ Where, $Q_h = 35MSCF$,

$$T_A = 72.2^{\circ}F + 460 = 532.2^{\circ}F$$
, $P_A = 1104 + 14.7 = 1,118.7Psia$

$$\mathbf{D} = \left[\frac{3.5 \times 35 \times 532.2}{1,118.7}\right]^{\frac{1}{2}} = 7.6$$

7.06'' + 1'' allowance= 8.06''. Therefore the pipe diameter = 8 inches (152.4mm)

Determination of Pipe Nominal Thickness

The nominal wall thickness can be calculated using the Barlow's equation.

$$t_{\rm NOM} = \frac{P_{\rm d} D}{2 \pounds_{\rm W} \eta \delta_{\rm Y} F_{\rm t}} + C_{\rm a}$$

Where;

t_{NOM}=Nominal wall thickness, mm, P_d= Design Internal pressure

C_a=Corrosion thickness allowance

 \pounds_w = Weld efficiency factor. It is 1.0 for seamless, Arc weld (SAW or DSAW)

 δ_v = Specified Minimum Yield strength, η = design Factor, which is 0.72 for pipeline.

 F_t = Temperature derating factor, which is 1 for temperature under 250°C

Let the Corrosion thickness allowance be 4.00mm

 $= \frac{1104\text{psi} \times 152.4\text{mm}}{2 \times 20,000\text{psi} \times 1 \times 0.72 \times 1} + 4.00\text{mm}$ = 5.842mm + 4.00mm = 9.84mm = 10mm

Determination of pipe schedule number.

S = 1000 x P/S

Where P= 1104 psig

S=20,000 psig, obtained from char

:. S=1000x1104/20,000 = 55.2, Approximately, 60.

From (Nominal Pipe sizes chart), 8" nominal size, schedule 60 has a thickness of 10.33mm which is in accordance with the calculated thickness using Barlow's equation.

Determination of Reynolds Number and frictional factors.

$$N_{\rm Re} = \frac{20 q h G}{\mu D} = \frac{20 \times 35 \times 0.68}{0.0121 \times 8}$$

= 4,917.355 Since N_{Re} > 2,100. The flow is turbulent.

Determination of delivery pressure p₂, using weymouth equation.

$$Q_{g} = 1.1d^{2.67} \left[\frac{P1^{2} - P2}{LZGT_{1}} \right]^{\frac{1}{2}}$$

Where, T₁= (72.4 +460)°R,= 532.4 °R, P1= 1104psi, P2=? d= 8"-2(0.3937) =7.213"
G = 0.68, L= 14 KM = 14 x 3280.84ft= 45,931.8ft, Z = 0.88, Q_{g} = 35MSCF
35 = 8^{2.67} $\left[\frac{1104^{2} - P2}{45,931.8 \times 0.88 \times 0.68 \times 532.4} \right]^{\frac{1}{2}}$
222,865.5801 = 1104² · P₂²

$$222,865.5801 = 1104^{2}$$
 F
P₂ = 997.972 = 988Psia

Determination of gas pipeline design pressures

 Maximum allowable pipeline operating pressure (MAOP)
 MAOP = 2 x f x SMYS x t/D = 2 x 0.72 x 60,000 Psi x 10mm/203.2mm = 4,251.969 psi

2. Pipeline Bursting Pressure (Bp)

3. Plastic collapse pressure, Py

- 4. Hydrotest pressure (H_T)
- $H_{p} = 1.25 \text{ x MAOP} = 1.25 \text{ x 4},251.969 \text{ psi} = 5,314.96 \text{ Psi}.$
- 5. Pressure drop, Dp
- $Dp = P_{I} P_{2} = 1104 998 = 106 Psia$

Figure 2: Process flow diagram(PFD) of the natural gas

	g Worksheet Performance Dynam	nics					
Worksheet		NC 1	NC 2				
Conditions	Malaco	IVU-1	NO-2				
Properties	Methane	0.8001	0.8001				
Composition	Ethane	0.0446	0.0446				
PF Specs	Propane	0.0267	0.0267				
Col 1710/2009	I-Butane	0.0188	0.0188				
	n-Butane	0.0161	0.0161				
	1-Pentane	0.0032	0.0032				
	n-Pentane	0.0016	0.0016				
	n-Hexane	0.0005	0.0005				
	CO2	0.0216	0.0216				
	H2S	0.0008	0.0008				
Figu	ire 3: Compo	osition pa	ge of the	natural gas			
Figu	ire 3: Compo	osition pa	ge of the	natural gas			
Figu	2.8km Performance Properties Dynamic	osition pa	ge of the	natural gas	NG-19		_
Figu	2.8km Performance Properties Dynamic r Summary	osition pa	ge of the	natural gas	NG-19	NC 10	ii
ble Gas Pipe: Pipe: ng Worksheet Heat Transfe Qverall HTC Overall HTC	2.8km Performance Properties Dynamic r Summary- mp	es	ge of the	natural gas	NG-19 Iments Dynamics Stream Name Vapour / Phase Fraction	NG-19 1.0000	Vapour Phi 1.00
Figu ble Gas Pipe: Pipe: mg Worksheet Heat Transfe Ambient Ter Overall HTC	2.8km Performance Properties Dynamic r Summary mp 3.1054 Btu	es 86.000 F whr-rt2-F	ge of the	natural gas	NG-19 Iments Dynamics Stream Name Vapour / Phase Fraction Temperature [F]	NG-19 1.0000 86.00	Vapour Phi 1.00 86
Figu ble Gas Pipe: Pipe- ng Worksheet Heat Transfe Ambient Ter Overall HTC	2.8km Performance Properties Dynamic r Summary mp 3.1054 Btu	es 86.000 F 1/hr-ft2-F	ge of the	natural gas	NG-19 Iments Dynamics Stream Name Vapour / Phase Fraction Temperature [F] Pressure [psia] Molar Flow [Ibmole/hrl]	NG-19 1.0000 86.00 1072 13.36	Vapour Ph 1.00 86 11
Figu ble Gas Pipe: Pipe- ng Worksheet Heat Transfe Ambient Ter Overall HTC	2.8km Performance Properties Dynamic r Summary mp 3.1054 Btu	es 86.000 F J/hr-ft2-F	ge of the	natural gas	NG-19 International Internatio	NG-19 1.0000 86.00 1072 13.36 264.6	
Figu ble Gas Pipe: Pipe- ng Worksheet Heat Transfe Ambient Ter Overall HTC	2.8km Performance Properties Dynamic r Summary mp 3.1054 Btu	es 86.000 F J/hr-ft2-F	ge of the	natural gas	NG-19 Stream Name Vapour / Phase Fraction Temperature [F] Pressure [psia] Molar Flow [lbm/e[/hr] Mass Flow [lbm/e[/hr] Sti Ideal Lig Vol Flow [lbm/e]/day]	NG-19 1.0000 86.00 1072 13.36 264.6 52.91	
Figu ble Gas Pipe: Pipe- ng Worksheet Heat Transfe Ambient Tel Overall HTC	2.8km Performance Properties Dynamic r Summary mp 3.1054 Btu	es 86.000 F Mrr-ft2-F	ge of the	natural gas Material Stream: Worksheet Attact Worksheet Attact Conditions Properties Composition Oil & Gas Feed Petroleum Assa K Value User Variables Notes Cost Parameteri	NG-19 Stream Name Vapour / Phase Fraction Temperature [F] Pressure [psia] Mase Flow [lbmdie/hr] Mase Flow [lbmdie/hr] Std Ideal Liq Vol Flow [barrel/day] Molar Enthalpy [Btu/lbmole] Molar Enthalpy [Btu/lbmole] Molar Enthalpy [Btu/lbmole]	NG-19 1.0000 86.00 1072 13.36 264.6 52.91 -3.741e=004 35.21	
Figu ble Gas Pipe: Pipe ng Worksheet Heat Transfe Ambient Tel Overall HTC	2.8km Performance Properties Dynamic r Summary mp 3.1054 Btu	es 86.000 F Whr-ft2-F	ge of the	natural gas Material Stream: Worksheet Attact Worksheet Attact Conditions Properties Composition Oil & Gas Feed Petroleum Assa; K Value User Variables Notes Cost Parameter Notes	NG-19 Stream Name Vapour / Phase Fraction Temperature [F] Pressure [pia] Molar Flow [Ibmole/hr] Mass Flow [Ibmole/hr] Mass Flow [Ibmole/hr] Std Ideal Liq Vol Flow [barrel/day] Molar Entropy [Btu/Ibmole] Molar Entropy [Btu/Ibmole] Molar Entropy [Btu/Ibmole] Heat Flow [Btu/Ibmole]	NG-19 1.000 86.00 1072 13.36 264.6 52.91 -3.741e-004 35.21 -3.741e-004	Vapour Ph 1.00 86 11 26 52 -3.741e+ -3.741e+ -3.745e+
Figu	2.8km Performance Properties Dynamic r Summary mp 3.1054 Btu	es 86.000 F	ge of the	natural gas Material Stream: Worksheet Attact Worksheet Attact Conditions Properties Composition Oil & Gas Feed Petroleum Asag K Value User Variables Notes Cot Parameter Normalized Yiel	NG-19 Stream Name Vapour / Phase Fraction Vapour / Phase Fraction Temperature [F] Pressure [psia] Molar Flow [lbmdle/hr] / Mase Flow [lb/hr] Std Ideal Liq Vol Flow [barrel/day] Molar Entropy [Btu/lbmole] Molar Entropy [Btu/lbmole] ds Heat Flow [Btu/h] Liq Vol Flow @Std Cond [barrel/day] Liq Vol Flow @Std Cond [barrel/day]	NG-19 1.0000 86.000 1072 13.36 264.6 52.91 -3.741e=004 35.21 -4.996e=005 2.154e=004 Perio 1	Vapour Ph 1.00 86 11 26 52 -3.741e = (3.741e = (2.154e + ()
Figu ble Gas Pipe: Pipe- ng Worksheet Heat Transfe Ambient Ter Overall HTC	Performance Properties Dynamic r Summary mp 3.1054 Btu	es 86.000 F 1/hr-ft2-F	ge of the	natural gas Material Stream: Worksheet Attack Worksheet Attack Worksheet Conditions Properties Composition Oil & Gas Feed Petroleum Assa K Value User Variables Notes Cost Parameters Normalized Yiel	NG-19 Iments Dynamics Stream Name Vapour / Phase Fraction Temperature [F] Pressure [psia] Molar Flow [lbmole/hr] // Mass Flow [lb/hr] Std Ideal Lig Vol Flow [barrel/day] Molar Entropy [Btu/Ibmole] Molar Entropy [Btu/Ibmole] Molar Entropy [Btu/Ibmole] Heat Flow [Burrel/day] Heat Flow [Btu/Thmole] Ulpackage Utility Type Utility Type	NG-19 1.0000 86.00 1072 13.36 264.6 5.291 -3.741e-004 35.21 -4.996e-005 2.154e+004 <i>Basis-1</i>	Vapour Ph 1.0 86 11 12 26 52 -3.741e+ 35 -4.996e+ 2.154e+
Figu	Performance Properties Dynamic r Summary mp 3.1054 Btu	es 86.000 F u/hr-ft2-F	ge of the	■ X Worksheet Atted Worksheet Atted Worksheet Atted Worksheet Atted Worksheet Conditions Properties Composition Oil & Gas Feed Ptroleum Assay K Value User Variables Notes Cost Parameters Normalized Yiel	NG-19 Stream Name Vapour / Phase Fraction Temperature [F] Pressure [Gia] Molar Flow [Ib/nd] Std Ideal Liq Voi Flow [Ibarel/day] Molar Entrapy [Btu/Ibmole] Molar Entropy [Btu/Ibmole] Molar Entropy [Btu/Ibmole] Heat Flow @Std Cond [barrel/day] Fluid Package Utility Type	NG-19 1.0000 86.00 1072 13.36 264.6 52.91 -3.741e+004 35.21 -4.996=005 2.154e+004 <i>Basie</i> -1	Vapour Ph 1.00 86 100 13 26 55 -3.741e+0 2.154e+0

Figure 4: Heat transfer coefficient sheet Figure 5: Nat. gas delivery condition

angin maanin	9 Worksheet	Performance	Dynamics				
Worksheet	Name			NG-1	NG-2	Q-1	
Conditions Properties Composition PF Specs	Vapour			1.0000	1.0000	<empty></empty>	
	Temperature [F]			68.00	72.40	<empty></empty>	
	Pressure [psia]			1072	1104	<empty></empty>	
	Molar Flow [lbmole/hr]		13.36	13.36	<empty></empty>		
	Mass Flow [lb/hr]		264.6	264.6	<empty></empty>		
	LiqVol Flow [barrel/day]			52.91	52.91	<empty></empty>	
	Molar Enthalpy [Btu/lbmole]			-3.765e+004	-3.761e+004	<empty></empty>	
	Molar Entropy [Btu/lbmole-F]			34.76	34.78	<empty></empty>	
	Heat Flow [Btu/hr]			-5.028e+005	-5.023e+005	431.5	
		-					

Figure 6: Initial condition sheet of the natural gas

RESULT AND DISCUSSIONS

Table 3: Summary of design parameters

#	PARAMETERS	VALUE/ UNITS
1	Flow capacity, Q	35MSCF/D
2	Inlet Pressure, P1	1104 Psi (7.61 Mpa)
3	Outlet Pressure, P2	1072. Psi (7.39Mpa)
4	Inlet Temperature, T	72.4°F
5	Delta (ΔP)	32psi(0.2Mpa)
6	Overall HTC	3.1054Btu/hr-ft ² .F
7	Compressor 1 power consumed	3.68HP
8	Compressor 2 power consumed	3.32HP
9	Gas Molecular Weight, Ma	19.8 g/mol
10	Gas Gravity, G	0.68
11	Gas Density, p	4.4Ib/ft3
12	Gas Viscosity, µ	0.0121CP
13	Gas Deviation factor, Z	0.88
14	Pipe Diameter, D	8" (203.2mm)
15	Pipe Thickness, t	0.394" (10mm)
16	Pipeline length, L	8.876 miles (14KM)
17	Reynolds number, N _{Re}	4,917.355
18	Pipeline Specified Minimum Yield Strength	60,000 psi (414 Mpa)
19	Pipeline Specified Ultimate Tensile Strength	75,000 psi (517 Mpa)
20	Pipeline Maximum Allowable Operating Pressure (MAOP)	4,251.96 Psi (29.32 Mpa)
21	Pipeline Hydro test Pressure	5,314.96 Psi(36.65 Mpa)
22	Schedule number	60

The gas sample from the marginal field showed that, it is predominantly made of methane gas (C_1) , the processed gas from the field is a dry gas hence, no fear for hydrate formation along the flow line. The calculated diameter is approximately 8 inches. according to ASME B31.3 pipe sizing. The pipeline wall thickness is estimated as 10mm, which is in compliance with ASME B31.8 code for 8", X-60 grade. The physical properties of the gas are gas apparent molecular weight (19.8g/mol), gas gravity (0.68), density(4.4Ib/ft³) and viscosity(0.0121CP). In other to specify the ordering of pipes, pipe joints are produced based on their pressure rating(that is, the amount of pressure) they can withstand, termed schedule number. The schedule number is a function of the pipe wall thickness. In this research, it was calculated as 60 and from pipe size chart, 8" nominal diameter and thickness of 10.33mm has a schedule of 60, which conformed to the calculated schedule number considering the allowable stress and operating pressures of the pipeline.

The Reynolds number which is used to predict the fluid pattern was calculated to be greater than 2100, an indication that the flow regime is turbulent. The design allowable pressure such as, the maximum allowable pressure, bursting pressure, collapse pressure and the hydro test pressure were calculated as 4,251.96, 8,858.26, 5,905.51 and 5,314.96psi respectively. The delivery pressure was calculated manually using Weymouth equation as 998psi , while the delivery pressure from the simulation is said to be 1072psi as shown in figure 5. For the purpose of precision, the simulated figure (1072psi) was considered in this design. Therefore, the pressure drop along the entire pipeline will be 32psia. Similarly, considering the Heat transfer from the simulation as 3.1054Btu/hr-ft².F as shown in figure 4. The coating material was assumed to be Epoxy coating of thickness of 5mm. The thermal conductivities of the steel pipe and epoxy coating are 45W/mK and 0.21W/mK respectively, as shown in table 3. The units were manually converted to W/m^oC so as to be consistent with the units in the software used for this design. From the full simulation report, the power consumed by the compressors at the Base Station and Booster station is said to be 3.68HP and 3.32HP respectively.

It is worthy to note that the Natural Gas Simulation processes converged. The conditions of the natural gas changes slightly as it leave each sections and fittings along the gas pipeline. For the purpose of clarity, different nomenclatures were used to represent the natural gas material streams as it enters and leaves each pipeline sections and fittings along the pipeline.

CONCLUSION

A gas transmission pipeline was designed using appropriate design equations from ASME and API codes/standard for calculating the appropriate diameter, wall thickness, schedule number, pressure ratings etc. Some of the design parameters calculated for are diameter 8", wall thickness, schedule number X-60, maximum allowable pressure, burst pressure and, delivery pressure . The gas properties and deviation factor was done using the appropriate equations. The designed pipeline was simulated using Aspen HYSYS version 8.8, and it all converged.

REFERENCES

- 1. American Society of Mechanical Engineers. (2016). Gas Transmission and Distribution Piping Systems: ASME Code for Pressure Piping, B31. 8. American Society of Mechanical Engineers.
- 2. API Standard manual (2004): Specification for line pipe
- 3. ASME B31.8 Manual(2016): Natural gas transmission and piping system
- 4. Cult and Feng, Q. (2008).Exploration on the Concept of Integrity Management for New Pipeline Design and Construction. Oil & Gas Storage and Transportation, 10, 003.
- 5. Guo Buoyan and Ali Ghalambor (2005): Natural gas Engineering Handbook. Gulf professional publishing, Houston Texas
- 6. Lyons, W. C., and Plisga, G. J. (2011). Standard handbook of petroleum and natural gas engineering. Elsevier.
- 7. Menon E.S (2005). Piping calculations manual. SYSTEK technologies Inc.
- 8. Mike Yoon (2010). Pipeline system design: Piping network. First edition
- 9. Otombosoba, O. H., &Dosunmu, A. (2016). Optimum Utilization of Natural Gas from Marginal Oil Fields in Nigeria. *International Journal of Innovative Research and Development*, 5(6).

