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Abstract 

Information about changes in land use/land cover 
(LULC) is very useful for local governments and urban 
planners in setting future plans for the sustainable 
development. The main objectives of this work were to 
study changes in LULC in two governorates located at 
the eastern region of Nile-delta in Egypt and to 
expecting their future changes using CA-Markov model. 
Accordingly, Landsat images were images collected at 
three time periods (1999, 2009 and 2019). These images 
were manipulated and analyzed for LULC and their 
changes in studied area. CA-Markov integrated 
approach was used to predict future changes in LULC 
within this area. In this context, Geographic 
information systems (GIS) and remote sensing 
methodology provide essential tools which can be 
applied in the analysis of land use change detection. 
Keywords: LULC, ERDAS, GIS, IDRISI, CA-Markov, 
Remote Sensing, Egypt. 
 

1. INTRODUCTION 
Land use and land cover change, as one of the key 

driving forces of global environmental change, Land 
use/land cover change has been reviewed from 
different perspectives in order to identify the drivers 
of land use/land cover change, their process and 
consequences. The rapid changes in land use and 
cover than ever before, especially in developing 
nations, are often characterized by widespread urban 
spreading, land destruction, or the transformation in 
agricultural land to shrimp farming resulting 
enormous cost to the environment [1]. This kind of 
changes deeply affects local and/or national climate, 
which will inevitably impact the global environment. 
Human induced changes in land cover for instance, 

affect the global carbon cycle, and lead to the rise in 
atmospheric carbon oxide [2]. It is therefore 
imperative to investigate the changes in land 
use/cover, so that its impact on terrestrial 
environment can be discerned, and sustainable land 
use planning can be formulated [3]. 

In Egypt, only approximately 4% of Egypt’s total 
area is agricultural land, and this area has one of the 
highest population densities in the world. The 
remaining 96% of the land is arid desert. Seen from 
this perspective, the need for reclamation of the 
desert appears inevitable in light of continued 
population growth and increased congestion in the 
long-settled lands in the Nile valley and the delta [4]. 
Remote sensing and its applications emerged in 
Egypt as early as the invention of this technology [5].  

For this purpose, the temporal dynamics of remote 
sensing data can play an important role in monitoring 
and analyzing land cover changes. Accurate and up-
to-date land cover change information is necessary to 
understanding and assessing the environmental 
consequences of such changes [6]. While remote 
sensing has the capability of capturing such changes, 
extracting the change information from satellite data 
requires effective and automated change detection 
techniques [7]. 

Digital change detection is the process of 
determining and/or describing changes in land cover 
and land-use properties based on co-registered multi-
temporal remote sensing data. The basic premise in 
using remote sensing data for change detection is that 
the process can identify change between two or more 
dates that is uncharacteristic of normal variation. 
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Numerous researchers have addressed the problem of 
accurately monitoring land-cover and land-use 
change in a wide variety of environments [8]. 

As such, Cellular Automata (CA)-Markov is a 
series of random values whose likelihood of 
occurrence in a given time interval is dependent on 
the values of the past. As a stochastic model, the CA-
Markov model is able to analyses the land cover and 
use images related to two time periods, so as to 
generate the transition probability matrix [9, 10].  

The Markov chain model component controls time 
dynamics between land-use categories via transition 
probabilities, while spatial dynamics are 
automatically guided by local rules defined by 
Cellular Automata (CA)-Markov spatial filters or 
potential transition maps, the matrix of transition 
probability generated by the Markov chain model is 
one of the entries in CA Model [11]. Therefore, the 
CA-Markov model successfully integrates the 
benefits of the Markov and CA models. The accuracy 
of spatial prediction can be modeled efficiently at the 
same time, and the prediction steps with the CA-
Markov model involve 1) the construction of the 
MCE-based suitability atlas; 2) the generation of the 
transfer matrix and the state of transition probability 
matrix by means of the Markov model; 3) the 
prediction of future land use using the CA model 
[12]. 
The aims of the this study are to produce a land use/ 
land cover map and Future prediction of Area Study 
by using GIS and Remote Sensing. 
 

2. MATERIALS AND METHODS 
   2.1. DESCRIPTION OF STUDY AREA 
Cover the area study two governorates from Egypt, 
which Ismailia and Sharkia. It is located between 
these coordinates 31° 15' 25.068" E to  32° 48' 
30.238" E and  30° 9' 44.788" N and 31° 6' 31.831" 
N. It is bordered by North Sinai governorate from the 
East, Gharbia governorates from the West, Suez and 
Qalyubia governorates from the South and Port Said 
and Manzala Lake from the North (Fig.1). 

 
Fig 1. Location map of the studied area. 

 

2.2. LANDSAT DATA 
Landsat images were used in this study to evaluate 

land use/cover changes over three periods of time 
(1999, 2009 and 2019). The studied area is located in 
only one Landsat image (path 176, row 39). Three 
images were used to study the spatial and temporal 
changes in agricultural lands at Ismailia and Sharkia 
governorates in Egypt, during 1999, 2009 and 2019. 
Landsat data were downloaded for free from the earth 
explorer website established by the United States 
Geological Survey, http://earthexplorer.usgs.gov/. 
The studied images were acquired during the winter 
season. The acquisition dates and type of sensor are 
represented in table 1.  
Table 1 Type of sensor, acquisition date, path, row 
and source of the studied Landsat images. 

Type of sensor Acquisition date Path/Row Source 

Landsat 8 (OLI) 13/03/2019 176/39 USGS 

Landsat 5 (TM) 13/02/2009 176/39 USGS 

Landsat 5 (TM) 06/03/1999 176/39 USGS 

 
2.3. ATMOSPHERIC AND GEOMETRIC CORRECTIONS 
      Atmospheric and radiometric corrections were 
carried out on the three studied Landsat images to 
minimize the atmospheric interferences by using 
ERDAS software package (ver. 2015). All images 
were projected to have the same projection (UTM, 
Zone 36N, Datum WGS 1984). A false color 
composite of the studied images is illustrated in 
figures 2, 3 and 4. 

  
Fig. (2). False color composite of the 

studied Landsat 5 image in 1999. 
Fig. (3). False color composite of the 

studied Landsat 5 image in 2009. 

 
Fig. (4). False color composite of the studied Landsat 8 image in 2019. 

 
2.4. MAXIMUM LIKELIHOOD SUPERVISED CLASSIFICATION  
    Maximum likelihood supervised classification is 
the most commonly used land use/ cover 
classification algorithm worldwide. It is based on the 
assumption that the training data statistics in each 
spectral band are normally distributed. It considers 
that the distances towards class means and it 
calculates the variance-covariance matrix for each 
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class. In this method the supervised classification 
begins with defining the areas that will be used as 
training sites for the different land cover classes [13]. 
They also require a large training data set which can 
be very costly and generally not possible to add 
incrementally to the training data while training the 
classifier. A minimum of 15 samples was selected for 
each class. Ideally, the number of pixels selected 
should be more than 10 times as many pixels as there 
are bands in the image to be classified [14]. This was 
made with several training sites for the more training 
site selected, the better the results gained.  Table 2 
shows a description of LULC classification scheme. 
Table 2. Land Use/Land Cover Classification 
Scheme. 
Class Description 
Crop 
Land 

Areas cultivated with annual crops, vegetables, or fruit. 
These crops are mainly irrigated by water from the river 
Nile and/or ground water. Most of the cultivated areas are 
newly reclaimed. 

Urban 
Area 

Includes construction activities along the coastal dunes 
(summer resorts) as well as sporadic houses of the 
Bedouins within the local villages and some 
governmental buildings.  

Water Includes all water bodies in the studied area 
Sand 
Dunes 

Include hills of loose sand built by aeolian processes or 
the flow of water  

Sabkha Sabkha is an Arabic name for a salt-flat ordinarily found 
nearby sand dunes. The low-lying sabhka is a landscape 
of sand cemented into a fragile crust by the alkaline 
minerals of a high water table.  

Bare 
Land 

Land areas of exposed soil surface as influenced by 
human impacts and/or natural causes.  

Fish 
Farms 

Water pools that are used for growing fish.  

 

2.5. ACCURACY ASSESSMENT  
    Accuracy Assessment was carried out on the 
LULC classification images in 1999, 2009 and 2019.  
This was to evaluate the accuracy of each of the 
assigned LULC class. The classified image was 
matched with a variety of data such as aerial 
photographs and high resolution satellite image for 
the 2019 images. Four types of accuracy were 
calculated for each classified image, which are: 1. 
producer’s accuracy; 2. user’s accuracy, 3. overall 
accuracy; and Kappa coefficient as described by 
Campbell and Wynne [15]. 
2.6. CHANGE DETECTION ANALYSIS 

Change detection analyses identify and 
measure variations between images of the same scene 
at different times. The classified images of the three 
studied dates were used to quantify and calculate the 
area of each LULC and detect changes that happened 
in it. This analysis is very helpful in recognizing 
various changes that took place in the different 
classes of LULC including the increase and/ or 
decrease in agricultural land and urban areas. 
2.7. LULC CHANGE PREDICTION 

CA-Markov is a strong approach for 
predicting changes in LULC. It is recommended 
because it out performs compared to other methods 
[16, 17, 18]. It can also predict two-way transitions 
between LULC classes [19]. Simulation and future 
land use change prediction were conducted in 
IDRISI-Selva software environment. Predictions of 
future LULC change using a CA-Markov model 
occurred in three steps: 1) applying the Markov chain 
analysis to the 1999, 2009, and 2019 LULC maps for 
calculating transition matrices; 2) calculating 
transition potential maps of LULC; and 3) application 
of the CA model to the transition matrices and the 
transition potential maps to predict the spatial 
distribution of LULC. 

 
3. RESULTS AND DISCUSSIONS 

3.1. Changes in land use/land cover classification 
within the studied area  

Maximum likelihood supervised classification was 
carried out to evaluate land use/cover in the studied 
area in 1999, 2009 and 2019. It was executed using 
the ArcGIS 10.4 software package. There were seven 
land use / cover in the studied area. They are crop 
lands, urban areas, water, sand dunes, Sabkha, bare 
land and fish farms.  

The study area has witnessed increased crop land 
and urban land change in different LULC. The results 
of the accuracy assessment of the classified imageries 
of the year’s 1999, 2009, and 2019 indicates that the 
land use changes have been accurately identified and 
extracted during the classification, which is also 
confirmed by the overall accuracies and Kappa 
accuracy (Table 3). 
Table 3 Accuracy assessments of classified LULC 
maps for the years 1999, 2009, and 2019. 
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Crop Land 94.69 87.11 94.63 86.61 96.15 87.72 
Urban Area 72.22 79.59 71.70 76.00 75.00 85.71 

Water 78.95 88.24 77.78 82.35 100.00 88.89 
Sand Dunes 89.55 98.36 89.39 96.72 89.86 98.41 

Sabkha 78.26 78.26 77.27 73.91 90.00 78.26 
Bare Land 80.85 91.57 80.22 89.02 81.91 91.67 
Fish Farms 72.22 61.90 72.22 60.47 72.97 77.14 

Overall 
accuracy 86.00 84.20 88.40 

Kappa 
accuracy 0.81 0.82 0.84 

 

The areas and percentages of the studied LULC 
classes are represented in Table 4. Also, the spatial 
distribution of these classes within the studied area is 
illustrated in figures 5, 6 and 7. Crop land areas were 
increased over the studied period of time from 
4056.24 km2 (39.79%) in 1999 to 4986.95 km2 
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(48.91%) in 2019. This increase in crop lands could 
be attributed to the increase in land reclamation and 
cultivation projects in this area. Urban areas were 
also increased from 1999 to 2019. These areas were 
about 375.14 km2 (3.68%) in 1999 and 809.41 km2 
(7.94%) in 2019. This increase in urban areas could 
be due to the constant increase in population 

On the other hand, sand dune areas were decrease 
from 1763.58 km2 (17.30%) in 1999 to 1424.12 km2 
(13.97%) in 2019. This could be attributed to the 
stabilization of these sand dunes and using them in 
urban or agricultural activities. Bare lands were 
decreased from 2833.97 km2 (27.80%) in 1999 to 
2041.90 km2 (20.03%) in 2019. This also could be 
attributed to the conversion of these areas into urban 
areas. Fish farms were also decreased from 725.83 
km2 (7.12%) in 1999 to 480.14 km2 (4.71%) in 2019. 
Some of these areas were converted into crop lands.  

There wasn’t significant increase in both water and 
Sabkha areas during this period of time. Water areas 
were about 201.85 km2 (1.98%) in 1999 and 193.68 
km2 (1.90%) in 2019. Sabkha areas were about 
237.53 km2 (2.33%) in 1999 and 258.94 km2 (2.54%) 
in 2019 
Table 4: Areas and percentages of land use/land 
cover within the studied area in 1999, 2009 and 2019. 

LULC 
Type 

1999 2009 2019 

Area 
(km2) % Area 

(km2) % Area 
(km2) % 

Crop 
Land 4056.24 39.79 4404.89 43.21 4985.95 48.91 

Urban 
Area 375.14 3.68 726.87 7.13 809.41 7.94 

Water 201.85 1.98 197.76 1.94 193.68 1.90 

Sand 
Dunes 1763.58 17.30 1600.47 15.70 1424.12 13.97 

Sabkha 237.53 2.33 405.72 3.98 258.94 2.54 

Bare 
Land 2833.97 27.80 2269.21 22.26 2041.90 20.03 

Fish 
Farms 725.83 7.12 589.22 5.78 480.14 4.71 

 10194.14 100.00 10194.14 100.00 10194.14 100.00 

 
 

 
Fig 5. Spatial distribution of Land use/land 
cover classes within the studied area in 1999 

 
Fig 6. Spatial distribution of Land use/land 
cover classes within the studied area in 2009 

 
Fig 7. Spatial distribution of Land use/land cover classes within the studied area in 2019 

 

3.2. Markov chain matrix of LULC  
3.2.1. Transition probabilities matrix from 1999 to 2009  
    The transition probability matrix for the period 
from 1999 to 2009 was calculated using CA-Markov 
as shown in Table 5. This transition probability 
matrix gives the future probability percentage of land 
use change during this period of time. It shows that 
about 12% of crop lands are expected to change into 
urban areas. At the same time, about 29% of urban 
areas are expected to be converted in to crop lands. 
This table also shows that about 14.5 % of bare land 
is expected to be converted into crop land and 11.4% 
of it is expected to be transit into urban area. Also, 
about 36% of fish farms are expected to be converted 
into crop lands.  
Table5. Markov chain matrix of LULC transition probabilities 
from 1999 to 2009 
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Crop 
Land 0.790 0.123 0.000 0.001 0.012 0.024 0.050 

Urban 
Area 0.288 0.564 0.001 0.001 0.007 0.031 0.109 

Water 0.002 0.005 0.813 0.000 0.034 0.005 0.142 

Sand 
Dunes 0.026 0.019 0.000 0.736 0.046 0.171 0.004 

Sabkha 0.099 0.042 0.003 0.024 0.590 0.140 0.102 

Bare 
Land 0.145 0.114 0.000 0.034 0.075 0.611 0.021 

Fish 
Farms 0.358 0.086 0.007 0.001 0.043 0.017 0.489 

 
3.2.2. Expected Transition matrix from 1999 to 2009  
    Table 6 shows the expected transition in areas for 
each land use/cover class from 1999 to 2009.  It 
indicates that about 540.58 km2 of crop lands are 
expected to be converted to urban area, whereas 
about 209.26 km2 are expected to be converted from 
urban area to crop land. Also, about 328.81 km2 of 
bare land and 210.77 km2 of fish farms are expected 
to be changed into crop land. About 258.40 km2 of 
bare land are expected to be converted into urban 
area.  
Table 6 Expected transition in areas (km2) from 1999 to 2009  
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Crop 
Land 3476.3 540.58 0.02 3.83 54.38 107.22 220.25 

Urban 
Area 209.26 409.56 0.61 0.61 5.16 22.25 78.62 

Water 0.33 0.91 162.03 0.00 6.65 1.06 27.98 

Sand 
Dunes 41.30 29.58 0.00 1179.0 73.22 273.55 5.57 

Sabkha 40.38 16.96 1.15 9.94 239.57 56.78 41.30 

Bare 
Land 328.81 258.40 0.23 76.16 170.16 1385.7 48.48 

Fish 
Farms 210.77 50.45 4.26 0.57 25.52 9.84 287.15 

Total 4307.2 1306.4 168.29 1270.1 574.66 1856.4 709.34 
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3.2.3. Transition probabilities matrix from 2009 to 2019  
The transition probability matrix for the period from 
2009 to 2019 was calculated using CA-Markov as 
shown in Table 7. This transition probability matrix 
gives the future probability percentage of land use 
change during this period of time. It shows that about 
13% of crop lands are expected to change into urban 
areas. At the same time, about 42.5% of urban areas 
are expected to be converted in to crop lands. This 
table also shows that about 21.5 % of bare land is 
expected to be converted into crop land. Also, about 
33% of fish farms are expected to be converted into 
crop lands.  
Table 7. Markov chain matrix of LULC transition probabilities 
from 2009 to 2019 
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Crop 
Land 0.793 0.128 0.000 0.000 0.003 0.043 0.033 

Urban 
Area 0.424 0.406 0.001 0.000 0.003 0.110 0.057 

Water 0.009 0.000 0.786 0.000 0.045 0.005 0.155 

Sand 
Dunes 0.028 0.002 0.001 0.720 0.024 0.223 0.002 

Sabkha 0.326 0.019 0.012 0.016 0.338 0.231 0.059 

Bare 
Land 0.214 0.023 0.000 0.044 0.033 0.680 0.006 

Fish 
Farms 0.329 0.072 0.012 0.000 0.045 0.031 0.512 

 
3.2.4. Expected Transition matrix from 2009 to 2019  
Table 8 shows the expected transition in areas for 
each land use/cover class from 2009 to 2019. It 
indicates that about 620.04 km2 of crop lands are 
expected to be converted to urban area, whereas 
about 255.91 km2 are expected to be converted from 
urban area to crop land.  Also, about 479.39 km2 from 
bare land to crop land and 157.89 km2 of fish farms 
are expected to be changed into crop land. About 49 
km2 of bare land are expected to be converted into 
urban area.  
Table 8 Expected transition in areas (km2) from 2009 to 2019  
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Crop 
Land 3943.9 620.04 0.36 0.92 13.27 214.75 165.05 

Urban 
Area 255.91 239.05 0.31 0.11 1.98 66.38 34.15 

Water 1.72 0.01 153.71 0.00 8.68 0.96 30.12 

Sand 
Dunes 40.12 2.71 0.80 1061.1 34.76 317.09 3.04 

Sabkha 84.41 4.68 3.19 4.26 87.74 60.02 15.21 

Bare 
Land 479.39 49.00 0.68 102.32 73.45 1524.0 13.56 

Fish 
Farms 157.89 33.83 5.55 0.02 21.55 14.94 245.68 

Total 4963.4 949.33 164.59 1168.8 241.43 2198.1 506.82 

 
 
 
 

3.3. Predicted LULC in 2019 and 2030  
The land use/ cover maps for 1999 and 2009 were 

used to predict the LULC map in 2019 using the CA-
Markov model. The LULC map in 2019 was 
predicted at moderate accuracy (Kappa standard 
index= 0.80 and the kappa location index= 0.89). 
Similarly, the LULC maps for 2009 and 2019 were 
used to predict the expected changes in LULC class 
in 2030. Data in Table 9 show the area and its 
percentage for each land use/cover class in both 2019 
and 2030 and the expected differences between them. 
These data indicate that the most significant increase 
is expected to be in urban areas, whereas the 
significant decrease is expected to be in sand dunes. 
There were no significant expected differences in the 
other land use/ cover classes in 2030. These results 
also indicate that the increase in crop land due to land 
reclamation projects doesn’t cover the transition of 
current crop lands into urban areas. The predicted 
LULC map of the studied area in 2019 and 2030 is 
illustrated in Fig. 8 and 9. 
Table 9 Predicted LULC in 2019 and 2030 

LULC 
Type 

2019 2030 Net difference 

Area 
(km2) % Area 

(km2) % Area 
(km2) % 

Crop 
Land 4985.95 48.91 4964.99 48.70 -20.96 -0.21 

Urban 
Area 809.41 7.94 949.33 9.31 139.92 1.37 

Water 193.68 1.90 164.59 1.61 -29.09 -0.29 

Sand 
Dunes 1424.12 13.97 1168.82 11.47 -255.3 -2.5 

Sabkha 258.94 2.54 241.43 2.37 -17.51 -0.17 

Bare 
Land 2041.90 20.03 2198.16 21.57 156.26 1.54 

Fish 
Farms 480.14 4.71 506.82 4.97 26.68 0.26 

Total 10194.1
4 100.00 10194.1

4 100.00 0 0 

 
Fig. 9. Predicted land use/ cover in 2030 

using CA-Markov model. 
 

Fig. 8. Predicted land use/ cover in 
2019 using CA-Markov model. 

 

 
4. CONCLUSION 

It could be concluded that CA-Markov model 
could help in predicting future expected changes in 
LULC. It was observed that the most significant 
changes in LULC within the studied area were in 
crop lands and urban areas.  Urban areas were 
increased over time due to the consistent increase in 
population. Crop land areas were also increased over 
time; however this increase doesn’t match their 
decrease due to urban encroachment. Accordingly, 
the final results show no evident increase in the total 
area of crop lands. Part of bare lands was converted 
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into both crop land and urban areas. Also, fish farms 
were changed into crop lands. Finally, these results 
help in directing future expansion and development 
in urban areas towards bare lands in the studied area. 
This is to sustain the existing crop lands to meet the 
needs of the increasing population for food, fiber and 
fuel. 
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