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                                      ABSTRACT 

Two-Level Quantum System 

Two-level quantum systems play a significant role in quantum mechanical processes like 

quantum computers and quantum information systems. In particular, the evolution of two-

level system under the influence of driven fields is of great importance. Unfortunately, the 

exact solutions due to non commutability of quantum operator are hard to come by, and 

approximations usually have to be made. Barns et al. (2012) showed that a single general 

axis driven term and its corresponding evolution operator is determined by a single real 

function which is restricted to obey some initial conditions and experimental constraints. Any 

function satisfying these restrictions produced an exact analytical solution. We reproduced 

their result, which allows us to systematically find an unlimited number of analytically 

solvable control fields and present exact analytical formulas for the corresponding evolution 

operators. 

Messina et al. (2014) showed that general exact solvable Hamiltonian and its corresponding 

evolution operator is determined by a single real function which is restricted to obey some 

constraints and initial conditions. Any function that satisfies these conditions and constraints 

generates exact solvable Hamiltonians and its corresponding evolution operator. 
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                                Introduction 

1.1 Quantum Two-Level System 

In quantum mechanics a two-level system (𝑎𝑙𝑠𝑜 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑡𝑤𝑜 − 𝑠𝑡𝑎𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚)isa 

quantum system that can exist in any quantum superposition of two independent quantum 

states. The Hilbert Space describing such a system in two dimensions. Any two-level 

quantum systems can also be seen as a quantum bit(𝑄𝑢𝑏𝑖𝑡). 

Two-level system is the simplest quantum system that is of interest, since the dynamic of one 

level system is trivial. The mathematical frame work required for the analysis of quantum 

two-level system is that of linear differential equation and linear algebra of two dimensional 

space. As a result, the dynamic of a two-level system can be solved analytically without 

approximation. The generic behavior of the system is that the amplitude of wave function 

oscillates between the two levels.  The quantum two-level system or a collection of such 

systems exhibit all the challenges and subtle futures for which the quantum theory is 

notorious. The two-level system can’t be used as a description of absorption or decay 

because such process requires coupling to a continuum. Such processes involve exponential 

decay of amplitude, but the solution of quantum two-level system is oscillatory. Examples of 

two-level system are the polarization state of a photon, the spin of an electron etc. 

Modern researchers of the quantum world want to implement quantum concepts and theories 

to make a quantum computer which can solve problems in small time easily, which would 

take a long time on a classical computer. For instant, however it is not so easy to apply such 
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concepts and theories. To implement quantum mechanical concepts, we need to use quantum 

mechanical devices and circuits. The fabrication of such devices is complicated but possible. 

Some quantum mechanical devices are already made by scientists, such as Josephson 

junctions which can used as an artificial two-level system (this device is fabricated 

classically, but it behaves like a quantum mechanical device), superconducting quantum 

interference device (𝑆𝑄𝑈𝐼𝐷) and semi-conductor quantum dots, etc. 

The building block of quantum computers is a quantum bit or qubit. A qubit is different from 

classical bit. Classically a bit is represented by a two state system, like 0 or 1 strictly and a 

physical example of such system is a charging and discharging of a capacitor. There is no 

state which is in intermediate state or superposition of these two states. But quantum 

mechanically, it is quite strange because quantum mechanics is probabilistic. In quantum 

mechanics we have two state |0⟩ and |1⟩ as well as the superposition
|0⟩+|1⟩𝑒𝜄𝜑

2
 of these states. 

The implementation of the superposition of the two-level system is quite difficult to achieve. 

The idea of quantum two-level system with just two relevant quantum states is used to 

represent a family of physical system. For example, two-level systems have been used to 

describe spin and atomic collision. Moreover, some mesoscopic systems achieve in 

superconducting quantum circuits [1] and superconductor quantum dots can implemented as 

two-level system effectively. 

Other examples of quantum two-level system are the spin- ½ particles in a magnetic field, the 

path of a photon in a beam splitter, the polarization of a photon etc. Quantum two-

levelsystems exist in a quantum superposition of two independent quantum states. These 
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two-level quantum systems allow simple confirmation of non-classical predictions of 

quantum mechanics and form the basis of quantum information. 

 

1.2 The Driven TLS 

A two-level system driven by an external field is known as driven two-level system. Driven 

two-level systems have great importance in the implementation of quantum computing. 

Driven field can control the two-level system and is thus very important for qubit control 

processes. When a two-level system interacting with a bath (environment) and the qubit 

states lose their coherence, then we can use driven fields to control this system. When an 

external field applied to a two-level system, the Hamiltonian has explicit time dependence. 

But unfortunately, the finding of evolution operator for a time dependent Hamiltonian is 

highly non-trivial. This is simply because the Hamiltonian at different times dose not 

commute, leading to the time ordering problems. We now study the driven two-level system 

in detail. 

1.3 Approximate Solution of Quantum TLS 

      Using Perturbation Theory 

 

The driven TLS is one of the very few non-trivial time dependent problems whose dynamic 

can be solved for analytically. In this system we consider only two levels represented as |0〉 

and |1〉. The Hamiltonian for this system can be expressed as the sum of the unperturbed part 

denoted as 𝐻0 and a time-defendant perturbation part, V(𝑡). Where the term V(𝑡) is time 
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dependent perturbation part of the Hamiltonian. The state of the system can be described as a 

superposition of these two states. Thus, at any given moment in time the state of a system can 

be written as; 

                                  |Ѱ〉 = 𝐶0(𝑡)𝑒
−𝑖𝐸0𝑡/ħ |0〉 + 𝐶1(𝑡)𝑒

−𝑖𝐸1𝑡/ħ |1〉                                          (1.3.1) 

This is the linear combination of both these states. If the Hamiltonian doesn’t depend on time 

then 𝐶0 𝑎𝑛𝑑 𝐶1 are constant and all the evolution is curried by the 𝑒−𝑖𝐸𝑡/ħ factor. 

The time dependence in 𝐶0 𝑎𝑛𝑑 𝐶1 is due to the time dependent perturbation V(𝑡). 

Now the time dependent Schrodinger equation is 

                                     H|Ѱ〉 = 𝑖ħ |Ѱ̇〉 

                                   (𝐻0 +  𝑉(𝑡))|Ѱ〉 = 𝑖ħ |Ѱ̇〉                                                                        (1.3.2) 

 

Where V(𝑡) is some time dependent perturbation or driven to move the system from |0〉  to 

|1〉. Use Eq. (1.3.1) in Eq. (1.3.2) we get 

 

=˃ 𝐶0 (𝐻0 +  𝑉(𝑡))|0⟩𝑒−𝑖𝐸0𝑡/ħ + 𝐶1 (𝐻0 +  𝑉(𝑡)|1⟩𝑒−𝑖𝐸1𝑡/ħ = 𝑖ħ 
𝑑

𝑑𝑡
 (𝐶0(𝑡)𝑒

−𝑖𝐸0𝑡/ħ|0⟩ 

                                                                                                            + 𝐶1(𝑡)𝑒
−𝑖𝐸1𝑡/ħ|1⟩) 
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=˃                    𝐶0 (𝐻0 +  𝑉(𝑡))|0⟩ 𝑒−
𝑖𝐸0𝑡

ħ  + 𝐶1 (𝐻0 +  𝑉(𝑡)|1⟩𝑒−
𝑖𝐸1𝑡

ħ  = 𝑖ħ  [ 𝐶0̇ |0⟩ +𝐶0|0⟩ (−
𝑖𝐸0

ħ
)] 

                                                                                          𝑒−
𝑖𝐸0𝑡

ħ  + 𝑖ħ[ 𝐶1̇|1⟩ + 𝐶1|1⟩(−𝑖𝐸1/ħ) ] 𝑒−
𝑖𝐸1𝑡

ħ  

We cancel the static terms on both sides that lead to 

        𝐶0𝑉(𝑡)|0⟩𝑒
−𝑖𝐸0𝑡/ħ+𝐶1 𝑉(𝑡) |1⟩𝑒

−𝑖𝐸1𝑡/ħ= 𝑖ħ[ 𝐶0̇ |0⟩𝑒
−𝑖𝐸0𝑡/ħ+𝐶1̇|1⟩𝑒

−
𝑖𝐸1𝑡

ħ ]                  (1.3.3) 

Apply 〈0| on both side 

       𝐶0〈0|𝑉(𝑡)|0⟩𝑒
−𝑖𝐸0𝑡/ħ +𝐶1〈0|𝑉(𝑡) |1⟩𝑒

−𝑖𝐸1𝑡/ħ = 𝑖ħ [ 𝐶0̇ 〈0|0⟩𝑒
−
𝑖𝐸0𝑡

ħ + 𝐶1̇〈0|1⟩𝑒
−
𝑖𝐸1𝑡

ħ  ] 

        𝐶0〈0|𝑉(𝑡) |0⟩𝑒−𝑖𝐸0𝑡/ħ +𝐶1〈0|𝑉(𝑡) |1⟩𝑒
−𝑖𝐸1𝑡/ħ = 𝑖ħ𝐶0̇𝑒

−𝑖𝐸0𝑡/ħ                                     (1.3.4) 

We define 

       𝑉00(t) = 〈0|𝑉(𝑡) |0⟩and 𝑉01(t) = 〈0|𝑉(𝑡) |1⟩ 

Calculating for𝐶0 we get 

        𝐶0̇ = 
−𝑖

ħ
 [𝐶0𝑉00(t) + 𝐶1𝑉01(t)𝑒−𝑖(𝐸1−𝐸0)𝑡/ħ]                                                                        (1.3.5) 

If we apply〈1| on both side of Eq. (1.3.3), it turns out 

       𝐶1̇= 
−𝑖

ħ
  [𝐶1𝑉11(𝑡) + 𝐶0𝑉10(𝑡)𝑒

𝑖(𝐸1−𝐸0)𝑡/ħ]                                                                          (1.3.6) 

Usually define ħ𝜔0 =𝐸1 − 𝐸0 .The Eq. (1.3.5) and Eq. (1.3.6) are coupled ordinary 

differential equations, we can only solve this exactly in special cases. One special case is 

given below. 
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(1)    Solve for V (t) with 𝑉00(t) = 𝑉11(𝑡) = 0 and  𝑉10(𝑡) = 
𝑈10

2
𝑒−𝑖𝜔𝑡 , 𝑉01(t) = 

𝑈01

2
𝑒−𝑖𝜔𝑡 

With the boundary conditions𝐶0(0) = 1,𝐶1(0) = 0 

 

This is a typical kind of situation in which𝑈10, 𝑈01are the potentials required for the 

transition of the system with the driving frequency 𝜔 . 

For this typical case the Eq. (1.3.5) and Eq. (1.3.6) becomes 

 

                                𝐶0̇ = 
−𝑖

ħ
𝐶1𝑉01(t) 𝑒−𝑖(𝜔0)𝑡                                                                            (1.3.7) 

                                   𝐶1̇= 
−𝑖

ħ
𝐶0𝑉10(𝑡)𝑒

𝑖(𝜔0)𝑡                                                                               (1.3.8) 

Plugging the value of 𝑉10(𝑡)𝑎𝑛𝑑𝑉01(t) then Eq. (1.3.7) and Eq. (1.3.8) becomes, 

                               𝐶0̇ = 
−𝑖

ħ

𝑈01

2
𝑒−𝑖(𝜔0+𝜔)𝑡𝐶1                                                                             (1.3.9) 

                                  𝐶1̇= 
−𝑖

ħ

𝑈10

2
𝑒𝑖(𝜔0−𝜔)𝑡𝐶0                                                                              (1.3.10) 

(1.3.10) =>𝐶1̈ = 
−𝑖

ħ

𝑈10

2
𝑒𝑖(𝜔0−𝜔)𝑡   [𝑖(𝜔0 − 𝜔)𝐶0 + 𝐶0̇] 

                               𝐶1̈ =  𝑖(𝜔0 − 𝜔)
−𝑖

ħ

𝑈10

2
𝑒𝑖(𝜔0−𝜔)𝑡𝐶0+

−𝑖

ħ

𝑈10

2
𝑒𝑖(𝜔0−𝜔)𝑡

−𝑖

ħ

𝑈01

2
𝑒−𝑖(𝜔0+𝜔)𝑡𝐶1 

                              𝐶1̈=𝑖(𝜔0 − 𝜔)𝐶1 −̇
|𝑈10|

2𝑒−2𝑖𝜔𝑡

4ħ2
𝐶1                                                              (1.3.11) 
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Trial solution of Eq. (1.3.11) is, 

                                        𝐶1 = 𝐴 𝑒𝑟𝑡(1.3.12) 

Where                        𝑟2 − 𝑖(𝜔0 − 𝜔)𝑟+ 
|𝑈10|

2𝑒−2𝑖𝜔𝑡

4ħ2
 =0 

Using quadratic formula for calculating r 

                                    r = 
1

2
[𝑖(𝜔0 − 𝜔) ± √−(𝜔0 − 𝜔)2 − 4(

|𝑈10|2𝑒−2𝑖𝜔𝑡

4ħ2
) ] 

                                   r = 
1

2
[𝑖(𝜔0 − 𝜔) ± √−(𝜔0 − 𝜔)2 − (

|𝑈10|2𝑒−2𝑖𝜔𝑡

ħ2
) ] 

Let,       2𝜔𝑟 = √(𝜔0 − 𝜔)2 − (
|𝑈10|2𝑒−2𝑖𝜔𝑡

ħ2
) 

                                 r = 
𝑖(𝜔0−𝜔)

2
±  𝑖𝜔𝑟                                                                                       (1.3.13) 

The solution of the equation is, 

                             𝐶1 = 𝐴 𝑒
𝑖(𝜔0−𝜔)𝑡

2 𝑒𝑖𝜔𝑟𝑡+ B 𝑒
𝑖(𝜔0−𝜔)𝑡

2 𝑒−𝑖𝜔𝑟𝑡                                                (1.3.14) 

Checking boundary conditions   𝐶1(0) = 1, which gives𝐵 = −𝐴 then Eq. (1.3.14) gives 

 

                               𝐶1 = 𝐴 𝑒
𝑖(𝜔0−𝜔)𝑡

2 𝑒𝑖𝜔𝑟𝑡+ A 𝑒
𝑖(𝜔0−𝜔)𝑡

2 𝑒−𝑖𝜔𝑟𝑡 

                               𝐶1 = 𝐴 𝑒
𝑖(𝜔0−𝜔)𝑡

2      [𝑒𝑖𝜔𝑟𝑡 - 𝑒−𝑖𝜔𝑟𝑡 ]                                                          (1.3.15) 

Now 𝐶0will be 
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                                  𝐶0 = 
2𝑖ħ

𝑈10
𝑒−𝑖(𝜔0−𝜔)𝑡𝐶1̇ 

                                    𝐶0 = 
2𝑖ħ

𝑈10
𝑒−𝑖(𝜔0−𝜔)𝑡

𝑑

𝑑𝑡
 [𝐴 𝑒

𝑖(𝜔0−𝜔)𝑡

2      [𝑒𝑖𝜔𝑟𝑡 - 𝑒−𝑖𝜔𝑟𝑡 ] ] 

 𝐶0=𝐴
2𝑖ħ

𝑈10
𝑒−𝑖(𝜔0−𝜔)𝑡[𝑒

𝑖(𝜔0−𝜔)𝑡

2 (𝑖𝜔𝑟𝑒
𝑖𝜔𝑟𝑡 +  𝑖𝜔𝑟𝑒

−𝑖𝜔𝑟𝑡) + 
𝑖(𝜔0−𝜔)

2
× [𝑒𝑖𝜔𝑟𝑡 −

                                                                                                                              𝑒−𝑖𝜔𝑟𝑡 ] 𝑒
𝑖(𝜔0−𝜔)𝑡

2   ]                                                                

𝐶0= 𝐴
2𝑖ħ

𝑈10
𝑒−𝑖(𝜔0−𝜔)𝑡[𝑖𝜔𝑟(𝑒

𝑖(𝜔0−𝜔)𝑡

2  (𝑒𝑖𝜔𝑟𝑡 + 𝑒−𝑖𝜔𝑟𝑡) +
𝑖(𝜔0−𝜔)

2
(𝑒𝑖𝜔𝑟𝑡  − 𝑒−𝑖𝜔𝑟𝑡)𝑒

𝑖(𝜔0−𝜔)𝑡

2   ] 

𝐶0 = 𝐴
2𝑖ħ

𝑈10
𝑒−𝑖(𝜔0−𝜔)𝑡   [𝑖𝜔𝑟 (𝑒

𝑖(𝜔0−𝜔)𝑡

2  (2 cos𝜔𝑟𝑡) + 
𝑖(𝜔0−𝜔)

2
 (2𝑖 sin𝜔𝑟𝑡) 𝑒

𝑖(𝜔0−𝜔)𝑡

2   ] 

𝐶0 = 𝐴
2𝑖ħ

𝑈10
𝑒−𝑖(𝜔0−𝜔)𝑡𝑒

𝑖(𝜔0−𝜔)𝑡

2 [2𝑖𝜔𝑟 cos𝜔𝑟𝑡 +  
𝑖(𝜔0−𝜔)

2
 2𝑖 sin𝜔𝑟𝑡] 

𝐶0(𝑡) = 𝐴
2𝑖ħ

𝑈10
𝑒−𝑖(𝜔0−𝜔)𝑡𝑒

𝑖(𝜔0−𝜔)𝑡

2  [2𝑖𝜔𝑟 cos𝜔𝑟𝑡 − (𝜔0 − 𝜔) sin𝜔𝑟𝑡]                            (1.3.16) 

Checking boundary condition, 𝐶0(0) = 1 

                    1 = A  
2𝑖ħ

𝑈10
𝑒0𝑒0 [2𝑖𝜔𝑟 cos 0 − (𝜔0 − 𝜔) sin 0] 

                    1 = A  
2𝑖ħ

𝑈10
 2𝑖𝜔𝑟 

                  𝐴 = −(𝑈10/4ħ𝜔𝑟)                                                                                                   (1.3.17) 

Put this value of 𝐴 in Eq. (1.3.16) 

               𝐶0 = −(𝑈10/4ħ𝜔𝑟)
2𝑖ħ

𝑈10
𝑒−𝑖(𝜔0−𝜔)𝑡𝑒

𝑖(𝜔0−𝜔)𝑡

2  [2𝑖𝜔𝑟 cos𝜔𝑟𝑡 − (𝜔0 − 𝜔) sin𝜔𝑟𝑡] 
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        𝐶0 = −
𝑖

2𝜔𝑟
𝑒−𝑖(𝜔0−𝜔)𝑡𝑒

𝑖(𝜔0−𝜔)𝑡

2  [2𝑖𝜔𝑟 cos𝜔𝑟𝑡 − (𝜔0 − 𝜔) sin𝜔𝑟𝑡] 

 

𝐶0 =
1

2𝜔𝑟
𝑒−𝑖(𝜔0−𝜔)𝑡𝑒

𝑖(𝜔0−𝜔)𝑡

2 [2𝜔𝑟 cos𝜔𝑟𝑡 + 𝑖(𝜔0 − 𝜔) sin𝜔𝑟𝑡]                                     (1.3.18) 

This is the expression for 𝐶0. 

If we put the value of 𝐴 from Eq. (1.3.17) in Eq.(1.3.15), the 𝐶1will be, 

                𝐶1 = − (𝑈10/4ħ𝜔𝑟)𝑒
𝑖(𝜔0−𝜔)𝑡

2      [𝑒𝑖𝜔𝑟𝑡 - 𝑒−𝑖𝜔𝑟𝑡] 

                 𝐶1 = − (𝑈10/4ħ𝜔𝑟)𝑒
𝑖(𝜔0−𝜔)𝑡

2      [2𝑖 sin𝜔𝑟𝑡] 

                 𝐶1 = −
i𝑈10

2ħ𝜔𝑟
sin𝜔𝑟𝑡 𝑒

𝑖(𝜔0−𝜔)𝑡

2                                                                                    (1.3.19) 

This is the expression for 𝐶1. 

Now we can prove that, 

|𝐶0|
2 + |𝐶1|

2 = 1 

Where |𝐶0|
2 is the probability that the system is in the state |0〉, and |𝐶1|

2is the probability 

that the system is in the state |1〉. And thesum of these two probabilities is always equal to 

1.Now we will check that after time “t” the system goes from state |0〉 to state |1〉, the 

probability is, 

𝑃0→1 = |
𝑈10

2ħ𝜔𝑟
|2(sin𝜔𝑟𝑡)

2 
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Where|
𝑈10

2ħ𝜔𝑟
|2 is the intensity of the source. 

|
𝑈10

2ħ𝜔𝑟
|2  = |

𝑈10

2ħ(ω−𝜔0)
|2 

Where 𝜔𝑟is the driving frequency. 

 

1.4 Periodically Driven Two-Level Systems; 

In contrast to time-independent quantum theory, exactly solvable quantum two-level systems 

with time-dependent potentials are extremely rare.The problem of time dependently driven 

two-level dynamics is of enormous practical importance in the theory of nuclear magnetic 

resonance, quantum optics or in low temperature glass systems to name only a few. The 

driven two-level systems have a long history, and reviews are available [2]. A pioneering 

piece of work must be attributed to Rabi who considers the two-level system in a circularly 

polarized magnetic field- a problem that he could solve exactly. He thereby elucidated how 

to measure simultaneously both sign as well as the magnitude of the magnetic moments. 

However as Block and Siegert experience soon after[3], this problem is no longer exactly 

solvable in analytical close form when the field is linearly polarized, rather than circularly. 

We set for the wave function 

                          Ѱ(𝑡) = 𝑐1(𝑡)𝑒
𝑖∆𝑡

2ħ(1
0
) + 𝑐2(𝑡)𝑒

−
𝑖∆𝑡

2ħ(0
1
)                                                   (1.4.1.1) 

Where |𝐶1(𝑡)|
2 + |𝐶2(𝑡)|

2 = 1. With 2ħ𝜆=-𝜇𝐸0 and 𝜑 =
𝜋

2
 yielding a pure cos𝜔𝑡 

perturbation, the Schrodinger equation therefore takes the form of 
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           𝑖ħ
𝑑

𝑑𝑡
(
𝑐1(𝑡)𝑒

𝑖∆𝑡
2ħ

𝑐2(𝑡)𝑒
−
𝑖∆𝑡
2ħ
) =  (

−∆/2 −2ħ𝜆 cos𝜔𝑡
−2ħ𝜆 cos𝜔𝑡 ∆/2

)(
𝑐1(𝑡)𝑒

𝑖∆𝑡
2ħ

𝑐2(𝑡)𝑒
−
𝑖∆𝑡
2ħ
)                       (1.4.1.2) 

𝑖ħ(
𝑐̇1(𝑡)𝑒

𝑖∆𝑡

2ħ + 𝑐1(𝑡)𝑒
𝑖∆𝑡

2ħ (
𝑖∆

2ħ
)

𝑐̇2(𝑡)𝑒
−
𝑖∆𝑡

2ħ − 𝑐2(𝑡)𝑒
−
𝑖∆𝑡

2ħ (
𝑖∆

2ħ
)
) =  (

−
∆

2
𝑐1(𝑡)𝑒

𝑖∆𝑡

2ħ +−2ħ𝜆 cos𝜔𝑡𝑐2(𝑡)𝑒
−
𝑖∆𝑡

2ħ

−2ħ𝜆 cos𝜔𝑡𝑐1(𝑡)𝑒
𝑖∆𝑡

2ħ +
∆

2
𝑐2(𝑡)𝑒

−
𝑖∆𝑡

2ħ

) 

Comparing both sides we get two coupled differential equations. 

𝑖ħ(𝑐̇1(𝑡)𝑒
𝑖∆𝑡

2ħ + 𝑐1(𝑡)𝑒
𝑖∆𝑡

2ħ (
𝑖∆

2ħ
)) =  −

∆

2
𝑐1(𝑡)𝑒

𝑖∆𝑡

2ħ +−2ħ𝜆 cos𝜔𝑡𝑐2(𝑡)𝑒
−
𝑖∆𝑡

2ħ                         (1.4.1.3) 

𝑖ħ(𝑐̇2(𝑡)𝑒
−
𝑖∆𝑡

2ħ − 𝑐2(𝑡)𝑒
−
𝑖∆𝑡

2ħ (
𝑖∆

2ħ
)) =  −2ħ𝜆 cos𝜔𝑡𝑐1(𝑡)𝑒

𝑖∆𝑡

2ħ +
∆

2
𝑐2(𝑡)𝑒

−
𝑖∆𝑡

2ħ                        (1.4.1.4) 

𝑖ħ𝑐̇1(𝑡)𝑒
𝑖∆𝑡

2ħ + 𝑖ħ(
𝑖∆

2ħ
)𝑐1(𝑡)𝑒

𝑖∆𝑡

2ħ  =−
∆

2
𝑐1(𝑡)𝑒

𝑖∆𝑡

2ħ − 2ħ𝜆 cos𝜔𝑡𝑐2(𝑡)𝑒
−
𝑖∆𝑡

2ħ                               (1.4.1.5) 

𝑖ħ𝑐̇2(𝑡)𝑒
−
𝑖∆𝑡

2ħ − 𝑖ħ (
𝑖∆

2ħ
) 𝑐2(𝑡)𝑒

−
𝑖∆𝑡

2ħ = −2ħ𝜆 cos𝜔𝑡𝑐1(𝑡)𝑒
𝑖∆𝑡

2ħ +
∆

2
𝑐2(𝑡)𝑒

−
𝑖∆𝑡

2ħ                    (1.4.1.6) 

Solving Eq. (1.4.1.6) 

𝑖ħ𝑐̇1(𝑡)𝑒
𝑖∆𝑡

2ħ = −
∆

2
𝑐1(𝑡)𝑒

𝑖∆𝑡

2ħ+
∆

2
𝑐1(𝑡)𝑒

𝑖∆𝑡

2ħ  − 2ħ𝜆 cos𝜔𝑡𝑐2(𝑡)𝑒
−
𝑖∆𝑡

2ħ  

𝑖ħ𝑐̇1(𝑡)𝑒
𝑖∆𝑡

2ħ = −2ħ𝜆 cos𝜔𝑡𝑐2(𝑡)𝑒
−
𝑖∆𝑡

2ħ  

                                                𝑐̇1(𝑡) = 2𝑖𝜆 cos𝜔𝑡𝑐2(𝑡)𝑒
−
𝑖∆𝑡

ħ                                                   (1.4.1.7) 

With ∆= ħ𝜔0 Eq. (1.4.1.7) becomes 

 

                         𝑐̇1(𝑡) = 2𝑖𝜆 cos𝜔𝑡𝑐2(𝑡)𝑒
−𝑖𝜔0𝑡                                                             (1.4.1.8) 
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                            𝑐̇1(𝑡) = 2𝑖𝜆(
𝑒𝑖𝜔𝑡+𝑒−𝑖𝜔𝑡

2
)𝑒−𝑖𝜔0𝑡𝑐2                                                                (1.4.1.9) 

                            𝑐̇1(𝑡) = 𝑖𝜆(𝑒𝑖(𝜔−𝜔0)𝑡 + 𝑒−𝑖(𝜔+𝜔0)𝑡)𝑐2                                                    (1.4.1.10) 

Similarly 

                        𝑐̇2(𝑡) = 𝑖𝜆(𝑒−𝑖(𝜔−𝜔0)𝑡 + 𝑒𝑖(𝜔+𝜔0)𝑡)𝑐1                                                (1.4.1.11) 

This is the so-called coupled differential equations. Clearly such equations are generally not 

solvable in analytical closed form. Hence, although the problem is simple, the job of finding 

an analytical solution presents a hard task! Here we use the rotating wave approximation 

(RWA), assuming that 𝜔 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑜 𝜔0(near resonance), and 𝜆 is not very large. Then anti-

rotating wave term 𝑒𝑖(𝜔+𝜔0)𝑡 is rapidly varying, as compare to the slowly varying rotating-

wave term 𝑒−𝑖(𝜔−𝜔0)𝑡 . Therefore it can’t transfer much population from state |1〉 to state |2〉. 

neglecting this anti-rotating wave term Eq. (1.4.1.10) and Eq. (1.4.1.11) takes the form of 

                        
𝑑𝑐1

𝑑𝑡
= 𝑖𝜆𝑒𝑖𝛿𝑡𝑐2                                                                                       (1.4.1.12) 

                          
𝑑𝑐2

𝑑𝑡
= 𝑖𝜆𝑒−𝑖𝛿𝑡𝑐1                                                                                              (1.4.1.13) 

From these equations we can find for 𝑐1(𝑡)a linear second order differential equation with 

constant coefficients- which can be solve readily for arbitrary conditions. For example setting 

𝑐1(0) = 1 𝑎𝑛𝑑𝑐2(0) = 0 we obtain 

               𝑐1(𝑡) = 𝑒𝑖𝛿𝑡[cos (
1

2
Ω𝑡) −

𝑖𝛿

Ω
sin (

1

2
Ω𝑡)]                                                       (1.4.1.14) 

               𝑐1(𝑡) =
𝑒𝑖𝛿𝑡2𝑖𝜆

Ω
sin (

1

2
Ω𝑡)                                                                               (1.4.1.15) 
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Where 𝛿 = 𝜔 − 𝜔0the detuning parameter and Ω is denotes the celebrated Rabi frequency 

                Ω= √(𝛿2 + 4𝜆2)                                                                                                      (1.4.1.16) 

The populations as function of time are then given by 

              |𝐶1(𝑡)|
2 = (

𝛿

Ω
)2 + (

2𝜆

Ω
)2𝑐𝑜𝑠2 (

1

2
Ω𝑡)                                                              (1.4.1.17) 

               |𝐶2(𝑡)|
2 = (

2𝜆

Ω
)2𝑠𝑖𝑛2 (

1

2
Ω𝑡)                                                                                  (1.4.1.18)     

Note that at short time t, the excitation in the upper state is independent on the detuning, 

|𝐶2(𝑡)|
2 → 𝜆2𝑡2𝑓𝑜𝑟Ω𝑡 ≪ 1. This behavior is in accordance with the perturbation theory, 

valid at small time. Moreover the population at resonance completely cycle the population 

between the two states, while with𝛿 ≠ 0, the lower states is never completely depopulated. 
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            Single Axis Driven Two-Level Quantum Systems 

 

Since the foundation of quantum mechanics to the present time, many physicists want to 

solve analytically driven two-level systems. It is extremely challenging to find an exact 

solution for the Schrodinger equation and the corresponding time evolution operator. The 

most popular driven problem is the Landau-Zener problem [4, 5], Rabi problem [6], and 

Jaynes Cumming model [7]. Unfortunately, these analytically exact solutions are scare. 

Analytically solved pulses are very attractive in light of the advantages they offer in the 

design of qubit control operation. 

In this chapter we present a theoretical approach to the driven time-dependent two-level 

problem. Here we derive an algorithm that produces an unlimited number of the solutions to 

the analytically solvable driven time-dependent two-level systems, and its evolution operator 

by applying a single axis controlled field. We use a real function which obeys certain 

experimental constraints and initial condition and derive the single axis driven Hamiltonian 

and the corresponding evolution operator. 

We generate an algorithm which gives unlimited exact solution to the driven two-level 

systems, and its evolution operator. The corresponding driven term and its evolution operator 

can be derived from a real function 𝜆(𝑡) which obey certain experimental constraints and 

gives initial conditions. Also we find out how the properties of 𝜆(𝑡) translate to a control 

field and its corresponding time evolution operator. Here we use ‘reverse engineering’ 

approach in which we derived the particular evolution operator of driven two-level system by 

a controlled field and the corresponding controlled field is restricted to a few experimental 

imposed constraints and initial conditions. 

 

 

2.1 Finding Driven Time-Dependent Two-Level Hamiltonian And Its        

Evolution Operator Using “Reverse Engineering’’ Approach; 
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Consider time-dependent Hamiltonian for the two-level system. Let the Hamiltonian consist 

of single axis time dependent driven term𝛾(𝑡). So the general form of Hamiltonian is 

                           𝐻 =
𝛾(𝑡)

2
𝜎𝑧  + 

ℎ

2
𝜎𝑥                                                                                 (2.2.1) 

Where 𝛾(𝑡) is the single axis control field, ℎ is the separation between the two energy level, 

𝜎𝑥 𝑎𝑛𝑑 𝜎𝑧 are Pauli operators. The above Hamiltonian describes any single axis driven two-

level quantum system. 𝛾(𝑡),Is the energy splitting between the states. The time evolution 

operator for this system is given by 

                          𝑈 = (
𝑢11 𝑢∗21
𝑢21 𝑢∗11

)                                                                                    (2.2.2) 

, and 

|𝑢11|
2 + |𝑢21|

2 = 1 

Here we will use the “reverse engineering” approach, to find out the time evolution Eq. 

(2.2.2) and the corresponding driving term in Eq. (2.2.1). Now consider a general state  

|Ѱ(𝑡)〉 (𝑡) = 𝑑+(𝑡)|+〉(𝑡) + 𝑑−(𝑡)|−〉(𝑡). Using Schrodinger equation to find out the 

relation between𝑑+(𝑡) 𝑎𝑛𝑑 𝑑−(𝑡). 

𝑖ħ
𝑑Ѱ

𝑑𝑡
= 𝐻Ѱ 

Put Ѱ(𝑡) in above equation 

𝑖ħ
𝑑

𝑑𝑡
[𝑑+(𝑡)|+〉(𝑡) + 𝑑−(𝑡)|−〉(𝑡)] =

𝛾(𝑡)

2
𝜎𝑧  +  

ℎ

2
𝜎𝑥[𝑑+(𝑡)|+〉(𝑡) + 𝑑−(𝑡)|−〉(𝑡)]      (2.2.3) 

 

𝑖ħ𝑑+̇|+〉(𝑡) + 𝑖ħ𝑑+(𝑡)
𝑑|+〉(𝑡)

𝑑𝑡
+ 𝑖ħ𝑑—(𝑡) + 𝑖ħ𝑑−(𝑡)

𝑑|−〉(𝑡)

𝑑𝑡

=
𝛾(𝑡)

2
𝜎𝑧𝑑+(𝑡)|+〉(𝑡) +

𝛾(𝑡)

2
𝜎𝑧𝑑−(𝑡)|−〉(𝑡) + 

ℎ

2
𝜎𝑥𝑑+(𝑡)|+〉(𝑡)

+
ℎ

2
𝜎𝑥𝑑−(𝑡)|−〉(𝑡) 
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𝑖ħ𝑑+̇|+〉(𝑡) + 
ℎ

2
𝑑+|+〉(𝑡) + 𝑖ħ𝑑̇−|−〉(𝑡) −

ℎ

2
𝑑−|−〉(𝑡) 

= 
𝛾(𝑡)

2
𝜎𝑧𝑑+(𝑡) |+〉(𝑡) + 

ℎ

2
𝜎𝑥𝑑+(𝑡)|+〉(𝑡) + 

𝛾(𝑡)

2
𝜎𝑧𝑑−(𝑡) |−〉(𝑡) +

ℎ

2
𝜎𝑥𝑑−(𝑡)|−〉(𝑡) 

 

𝑖ħ𝑑+̇|+〉(𝑡) + 
ℎ

2
𝑑+|+〉(𝑡) + 𝑖ħ𝑑̇−|−〉(𝑡) −

ℎ

2
𝑑−|−〉(𝑡) 

= [
𝛾(𝑡)

2
𝑒𝑖ℎ𝑡𝑑−(𝑡) + 

ℎ

2
𝑑+(𝑡)] |+〉(𝑡) + [

𝛾(𝑡)

2
𝑒−𝑖ℎ𝑡𝑑+(𝑡) + 

ℎ

2
𝑑−(𝑡)]|−〉(𝑡)(2.2.4) 

 

Where𝜎𝑧 |±〉 = ±|±〉 𝑎𝑛𝑑 𝜎𝑥|±〉 = |∓〉. Similarly |+〉(𝑡) =  𝑒𝑖(
𝜔𝑡

2⁄ )|+〉 and |−〉(𝑡) =

 𝑒−𝑖(
𝜔𝑡

2⁄ )|−〉 . 

From Eq. (2.2.4) we get the following couple differential equations for, 𝑑+ 𝑎𝑛𝑑 𝑑− . 

                     𝑑̇±(𝑡) =  −𝑖
𝛾(𝑡)

2
𝑒±𝑖ℎ𝑡𝑑∓(𝑡)                                                                         (2.2.5) 

Using Eq. (2.2.5) to write the corresponding time evolution operator in the following form 

                    𝑑±(𝑡) =  −𝑖
1 

√2
𝑒±𝑖ℎ𝑡/2 (𝑢11 ± 𝑢21)                                                              (2.2.6) 

From Eq. (2.2.5) and (2.2.6) we have 

                     𝑑̈+ + (−𝑖ℎ −
𝛾̇

𝛾
) 𝑑̇+ + (

𝛾2

4
)𝑑+                                                                      (2.2.7) 

Solving Eq. (2.2.7) to find a particular expression for 𝛾(𝑡). But we use different approach, 

inwhich we consider Eq. (2.2.7) as a differential equation for 𝛾(𝑡) for a known 𝑑+ . for 

arbitrary 𝑑+, 𝛾(𝑡)  is given by 

                             𝛾(𝑡) = ±
𝑑̇+𝑒

−𝑖ℎ𝑡

√𝑐− 
1

4
𝑑+

2𝑒−𝑖2ℎ𝑡−𝑖ℎ/2∫ 𝑑𝑡′
𝑡
0 𝑒−𝑖2ℎ𝑡

′
𝑑+
2 (𝑡′)

                                             (2.2.8) 

GSJ: Volume 13, Issue 8, August 2025 
ISSN 2320-9186 1876

GSJ© 2025 
www.globalscientificjournal.com



Where ‘c’ is constant of integration. Using Eq. (2.2.5) to find the relation for 

𝑑− 𝑖𝑛𝑡𝑒𝑟𝑚 𝑜𝑓 𝑑+ 

                           𝑑− = ±2𝑖√𝑐 − 
1

4
𝑑+

2𝑒−𝑖2ℎ𝑡 − 𝑖ℎ/2∫ 𝑑𝑡′
𝑡

0
𝑒−𝑖2ℎ𝑡

′
𝑑+
2(𝑡′)                    (2.2.9) 

We start the evolution from t=0, so we impose that 𝑑− = 𝑑+ = 1/𝑎2, this implies that c=0. 

We can take the function 𝑑+ and use Eq. (2.2.8) and Eq.(2.2.9) to find 𝑑− and 𝛾(𝑡). Here the 

unitary is preserved and |𝑑+|
2 + |𝑑−|

2 = 1. To satisfy this an ansatz can be used, such as 

                 𝑑+ = 𝑒𝐹—𝑘+ℎ𝑡) cos 𝜃,        𝑑− = 𝑒
−𝑘 sin 𝜃                                                   (2.2.10) 

Where 𝐹, 𝑘 𝑎𝑛𝑑 𝜃 are real and arbitrary functions. From these functions we can derive the 

time evolution operator in matrix form. The unitary matrix elements in terms of 𝐹, 𝑘 𝑎𝑛𝑑 𝜃 is 

given by 

𝑢11 = 
1

√2
𝑒𝑖(

ℎ𝑡

2
−𝑘)[𝑒𝑖𝐹 cos 𝜃 + sin 𝜃] , 𝑢21 = 

1

√2
𝑒𝑖(

ℎ𝑡

2
−𝑘)[𝑒𝑖𝐹 cos 𝜃 − sin 𝜃]                   (2.2.11) 

The initial conditions on 𝑑+ 𝑎𝑛𝑑 𝑑− can be translated to 𝐹, 𝑘 𝑎𝑛𝑑 𝜃. So 𝜃(0) =

𝜋

4
𝑎𝑛𝑑    𝐹(0) = 𝑘(0) = 0. Using Eq. (2.2.10) in Eq.(2.2.9) and find the relation between 

𝐹, 𝑘 𝑎𝑛𝑑 𝜃. So 

                  𝐹̇ + ℎ = 𝑘̇(1 − tan2(𝜃)𝜃̇ = 𝑘̇ tan𝐹 𝑡𝑎𝑛𝜃                                                   (2.2.12) 

We can also express 𝛾(𝑡) in terms of these functions from Eq. (2.2.8) 

                𝛾(𝑡) = 2𝑘̇ sec 𝐹 tan 𝜃                                                                                     (2.2.13) 

So the modified initial conditions for these functions are 𝜃̇(0) = 0, 𝐹̇(0) = −ℎ 𝑎𝑛𝑑 𝛾(𝑡) =

2𝑘̇(0). 𝑘̇(0) is not restricted by these relations. From Eq. (2.2.12) it is straight forward to find 

𝜃 𝑎𝑛𝑑 𝑘 𝑖𝑛𝑡𝑒𝑟𝑚 𝑜𝑓 𝐹. For𝜃 

            sin 2𝜃 = sec 𝐹𝑒ℎ ∫ 𝑑𝑡′ tan𝐹′𝑡
0                                                                                  (2.2.14) 

If we know 𝐹 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑐𝑎𝑛 𝑓𝑖𝑛𝑑 𝑒𝑎𝑠𝑖𝑙𝑦 𝜃, 𝛾(𝑡), 𝑘 𝑎𝑛𝑑 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑈. Let’s take an 

arbitrary 𝐹 
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           𝐹 = arctan
𝜆

𝜆ℎ

̇
                                                                                                       (2.2.15) 

Where 𝜆(t) is the new real arbitrary function and this is the single arbitrary function from 

which, we can obtain the single axis driven term and the corresponding time evolution 

operator for a single axis driven two-level Hamiltonian. For 𝜃 𝑖𝑛𝑠𝑒𝑟𝑡 𝐹 𝑖𝑛 𝐸𝑞. (2.2.14) 

           sin 2𝜃 = sec 𝐹 𝑒∫ 𝑑𝑡′ tan
𝜆

𝜆ℎ

̇𝑡
0                                                                                    (2.2.16) 

            sin 2𝜃 = sec 𝐹 𝑒∫ tan
𝜆

𝜆ℎ

̇𝑡
0  

            sin 2𝜃 = 𝜆 sec 𝐹  

            Sin 2𝜃 = √𝜆2 +
𝜆̇2

ℎ2
 

Where sec 𝐹 = √1 − 𝑡𝑎𝑛2(𝐹) and∫
𝑑𝜆

𝜆
= 𝑙𝑛𝜆. This is the final expression for𝜃. 

Similarly put 𝜃 𝑎𝑛𝑑 𝐹 in Eq. (2.2.12) and Eq. (2.2.13) we get the following relations 

          𝑘̇ =
1

2

ℎ𝜆(𝜆̈+ℎ2𝜆)

ℎ2𝜆2+𝜆̇2
[1 +

ℎ

√ℎ2(1−𝜆2)−𝜆̇2
]                                                                        (2.2.17) 

             𝛾(𝑡) =
(𝜆̈+ℎ2𝜆)

√ℎ2(1−𝜆2)−𝜆̇2
                                                                                                       (2.2.18) 

The initial conditions on 𝐹, 𝑘 𝑎𝑛𝑑 𝜃 can be translated into 𝜆(t) such as 

            𝜆(0)= 1 , 𝜆̇(0)=0 , 𝜆̈(0)= -ℎ2                                                                                  (2.2.19) 

Where 𝜆(t) is restricted to the following inequality 

𝜆(𝑡) ≤ ℎ2(1 − 𝜆2) 

This simple method is generating an unlimited number solutions of the single axis driven 

two-level problems. For any 𝜆(𝑡) that obey the initial conditions and the above inequality is 

an exact solution of the two-level system. Note this method can only use for single axis 

driven two-level systems. 
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 Examples 

Consider a non-trivial example for 𝜆(t) that should be able to obey the initial conditions and 

inequalities. If we consider the function such as 𝜆= cos ℎ𝑡, this function will give 𝛾 =0, 

because it does not obey the initial conditions and inequality. So we can’t take the function 

like this, because it does not provide the exact solution for a driven two-level system. For this 

purpose, we consider the following functions which obey the requirements. 

Example 1 

Let 𝜆(t) is given by 

                      𝜆(𝑡)𝑒−
(
2
𝛼
)𝑠𝑖𝑛2ℎ√𝛼ℎ𝑡

2          𝛼 ≤ 2                                                                     (2.2.20) 

This function obeys the corresponding initial condition and inequality. Insert𝜆, 𝜆̇ 𝑎𝑛𝑑 𝜆̈in Eq. 

(2.2.18) 

                       𝜆̇ = −
2ℎ𝑒

−

2𝑠𝑖𝑛2(
√𝛼ℎ𝑡
2

)

2 cosh(
√𝛼ℎ𝑡

2
) sinℎ(

√𝛼ℎ𝑡

2
)

√𝛼
                                                  (2.2.21) 

And 

𝜆̈ = ( 
ℎ2𝑒

−

2𝑠𝑖𝑛2(
√𝛼ℎ𝑡
2

)

𝛼 ((4𝑐𝑜𝑠ℎ2
√𝛼ℎ𝑡

2
)−𝛼)𝑠𝑖𝑛ℎ2

√𝛼ℎ𝑡

2
−𝛼𝑐𝑜𝑠ℎ2

√𝛼ℎ𝑡

2

𝛼
) + ℎ2(𝑒

−(
2

𝛼
𝑠𝑖𝑛ℎ2

√𝛼ℎ𝑡

2
)
)            (2.2.22) 

 

𝛾(𝑡) =
( 

ℎ2𝑒
−

2𝑠𝑖𝑛2(
√𝛼ℎ𝑡
2

)

𝛼 ((4𝑐𝑜𝑠ℎ2
√𝛼ℎ𝑡
2

)−𝛼)𝑠𝑖𝑛ℎ2
√𝛼ℎ𝑡
2

−𝛼𝑐𝑜𝑠ℎ2
√𝛼ℎ𝑡
2

𝛼
)+ℎ2(𝑒

−(
2
𝛼
𝑠𝑖𝑛ℎ2

√𝛼ℎ𝑡
2

)
)

√
  
  
  
  
  

ℎ2(1−(𝑒
(
2
𝛼
𝑠𝑖𝑛ℎ2

√𝛼ℎ𝑡
2

)
)2)−(−

2ℎ𝑒
−

2𝑠𝑖𝑛2(
√𝛼ℎ𝑡
2

)

2 cosh(
√𝛼ℎ𝑡
2

) sinℎ(
√𝛼ℎ𝑡
2

)

√𝛼
)2

                    (2.2.23) 

The required single axis driven is given by 
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               𝛾(𝑡) =
ℎ[

1

𝛼
𝑠𝑖𝑛ℎ2(𝑥)−2𝑠𝑖𝑛ℎ2(

𝑥

2
)]

√𝑒
4
𝛼
𝑠𝑖𝑛ℎ2(

𝑥
2
)
−
1

𝛼
𝑠𝑖𝑛ℎ2(𝑥)−1

                                                                          (2.2.24) 

Where𝑥 = √𝛼ℎ𝑡 . 𝛼, Is control the driven field (controlling parameter for a given pulse)and 

change the shape of the driven field 𝛾(𝑡). 

 

Figure 1: Single-axis driven pulse for 𝜶 = 𝟓/𝟑 
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Figure 2: Single-axis driven pulse for 𝜶 = −
𝟏

𝟒
 

 

Figure 3: Single-axis driven pulse for 𝜶 = −𝟏 
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Example 2 

Consider another non trivial example, which obey the initial condition and inequality. Let the 

function is given by 

                         𝜆(𝑡) =
1

1+𝛼
[𝑒
−(

ℎ2𝑡2

2
)
+ 𝛼 cos(ℎ𝑡)]                                                         (2.2.25) 

Where the function is like Gaussian function and the parameter 𝛼 is the tuning parameter and 

change the width and magnitude of the function. Insert𝜆, 𝜆̇ 𝑎𝑛𝑑 𝜆̈in Eq. (2.2.18) 

                        𝜆̇ =
−sin(ℎ𝑡)−ℎ2𝑡𝑒

−(
ℎ2𝑡2

2
)

𝛼+1
                                                                           (2.2.26) 

                        𝜆̈ =
ℎ2𝑒

−(
ℎ2𝑡2

2
)
(𝛼𝑒

(
ℎ2𝑡2

2
)
cos(ℎ𝑡)−ℎ2𝑡2+1

𝛼+1 
                                                       (2.2.27) 

And 

𝛾(𝑡) =
ℎ2𝑒

−(
ℎ2𝑡2

2
)
(𝛼𝑒

(
ℎ2𝑡2

2
)
cos(ℎ𝑡)−ℎ2𝑡2+1

𝛼+1 
ℎ2[

1

1+𝛼
[𝑒
−(

ℎ2𝑡2

2
)
+𝛼 cos(ℎ𝑡)]]

√ℎ2(1−
1

1+𝛼
[𝑒
−(

ℎ2𝑡2

2
)
+𝛼cos(ℎ𝑡)])–(

−αhsin(ht)−ℎ2𝑡𝑒
−(

ℎ2𝑡2

2
)

𝛼+1 
)2

                                        (2.2.28) 

The required single axis driven is given by 

𝛾(𝑡) =
ℎ3𝑡2𝑒

−(
ℎ2𝑡2

2
)

√
1−(1+ℎ2𝑡2)𝑒ℎ

2𝑡2+2𝛼(1−𝑒
−(

ℎ2𝑡2

2
)
[cos(ℎ𝑡)+ℎ𝑡𝑠𝑖𝑛(ℎ𝑡)])

                                                (2.2.29) 

The plot of Eq.(2.2.29) is given in the below figure for different values of 𝛼 
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Figure 4: Color lines represent the graph between 𝜶 𝒂𝒏𝒅 𝒉𝒕 for different  𝜶′𝒔. For 𝜶 = −
𝟏

𝟒
, 𝟎,

𝟏

𝟐
, 𝟏, 𝟐, for large 𝜶 the 

amplitude is large and for small the amplitude is small. 
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2.2 How to choose 𝝀(𝒕)? 

Now the question is that how to choose𝜆(𝑡)? We are use a method to choose 𝜆(𝑡)  

systematically. We are generated 𝜆’s for real function 𝑃(𝜆) which obey the following 

inequality 

                         0 ≤ 𝑃(𝜆) ≤ 1 − 𝜆2                                                                                (2.2.30) 

Solving the equation 𝜆̇2 = ℎ2 𝑃(𝜆) 𝑓𝑜𝑟 𝜆 

                         𝜆̇2 = ℎ2𝑃(𝜆)                                                                                          (2.2.31) 

                           𝜆̇ = ℎ√𝑃(𝜆) 

                          ℎ𝑡 = ∫
𝑑𝜆

√𝑃(𝜆)

1

𝜆 
                                                                                                     (2.2.32) 

Now define a new function 𝑋(𝜆) = ∫
𝑑𝜆

√𝑃(𝜆)

1

𝜆
 where 

                     𝑋(𝜆) = ∫
𝑑𝜆

√𝑃(𝜆)

1

𝜆 
= 𝑐𝑜𝑠−1(𝜆)                                                                     (2.2.33) 

𝜆Will obey the following initial conditions  

                     𝑋(𝜆) → √2 − 2𝜆 As𝜆→ 1                                                                                     (2.2.34) 

Obeying the initial condition by 𝜆, we will the required relation for 𝜆 

                       𝜆(t)=𝑋−1(ℎ𝑡)                                                                                                          (2.2.35) 

Now let’s check the above formalism, we can find the required 𝜆 which follow the initial 

conditions in Eq. (2.2.19). Let’s choose the following form for X(𝜆), 

𝑋(λ) =
1

α
tan h−1(α√2 − 2λ)(2.2.36) 

Comparing the above equation with ℎ𝑡 = 𝑋(λ) and solve for 𝜆. We get the following form 

for 𝜆(t) 
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                                𝜆(𝑡) = 1 −
1

2𝛼2
tan ℎ2𝛼ℎ𝑡                                                               (2.2.37) 

This equation follows the required initial conditions and inequality. Switch 𝜆, 𝜆̇ 𝑎𝑛𝑑 𝜆̈ in Eq. 

(2.2.18) we get the final form of single axis driven 𝛾(𝑡) 

                              𝛾(𝑡) =
ℎ[14𝛼2−1+(2𝛼2−1)cosh(2𝛼ℎ𝑡)]𝑠𝑖𝑛ℎ2(𝛼ℎ𝑡)

2coth (𝛼ℎ𝑡)√4𝛼2[1−𝑠𝑒𝑐ℎ4(𝛼ℎ𝑡)−𝑡𝑎𝑛ℎ2(𝛼ℎ𝑡)]
                                 (2.2.38) 

The shape of this function shown in the below figure for different values of 𝛼 

 

Figure 5: Single-axis driven pulse for 𝜶 =
𝟏

√𝟐
 , 0.6, 0.5, 0.4, 0.3 
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         Exact Solvable Hamiltonian For Quantum TLS 

 

Investigating the quantum dynamics of a spin -1/2 particle subjected to an arbitrary time 

dependent classical magnetic field is the updated version of the old seminal problem. One 

example is that of a periodically driven two-level system exactly treated by Rabi [6] in the 

theory of nuclear magnetic resonance. Another example concerns the physical behavior of a 

quantum system around an avoided crossing region, analyzed with no approximation by 

Landau [4] and Zener [5] for a two-level system. 

Unfortunately, only a few examples of analytically solvable two-level evolution have been 

reported up to now. Therefore, we apply a new strategy to generate solvable Hamiltonians 

and its evolution operators. We treated in the same way as Barnes and Das Sarma [8]i.e., to 

connect analytically Hamiltonian and the resulting time evolution operator in terms of an 

arbitrary input parametric function, the method here is much simpler and transparent, and the 

connection is direct, thus allowing us to have explicit expression for both the Hamiltonian 

and the evolution operator. 

 

3.1 Method To Generate Solvable Hamiltonians 

Consider a quantum two-level system describe by a general time dependent Hamiltonian 

                                 H = (
Ω 𝜔
𝜔∗ −Ω

)                                                                                (3.2.1) 

Where Ω(𝜔) is a real (generally complex) function of t. This is the most general form of the 

Hermitian two-by-two operator. The unitary evolution operator generated by this 

Hamiltonian is an element of SU(2) [10],[Appendix A], which is always represented in terms 

of two complex function x and y, as 

                               U =(
𝑥 𝑦
−𝑦∗ 𝑥∗) , |𝑥|2 + |𝑦|2 = 1                                                        (3.2.2) 

Since the evolution operator satisfy the time defendant Schrodinger equation 

GSJ: Volume 13, Issue 8, August 2025 
ISSN 2320-9186 1886

GSJ© 2025 
www.globalscientificjournal.com



                         𝐻𝑈 = 𝑖ħ𝑈̇ 

                         𝐻 =  𝑖ħ𝑈̇𝑈ϯ                                                                                                           (3.2.3) 

Since 𝑈̇ = (
𝑥̇ 𝑦̇
−𝑦̇∗ 𝑥̇∗

) and𝑈ϯ = (
𝑥∗ −𝑦
𝑦∗ 𝑥

)  

                         (
Ω 𝜔
𝜔∗ −Ω

) = 𝑖ħ (
𝑥̇ 𝑦̇
−𝑦̇∗ 𝑥̇∗

) (
𝑥∗ −𝑦
𝑦∗ 𝑥

) 

                          (
Ω 𝜔
𝜔∗ −Ω

) = 𝑖ħ (
𝑥̇𝑥∗ + 𝑦̇𝑦∗ −𝑦𝑥̇ + 𝑥𝑦̇
−𝑦̇∗𝑥∗ + 𝑦∗𝑥̇∗ 𝑥𝑥̇∗ + 𝑦𝑦̇∗

) 

                         (
Ω 𝜔
𝜔∗ −Ω

) = 𝑖ħ (
𝑥̇𝑥∗ + 𝑦̇𝑦∗ 𝑥𝑦̇ − 𝑦𝑥̇
𝑦∗𝑥̇∗ − 𝑦̇∗𝑥∗ 𝑥𝑥̇∗ + 𝑦𝑦̇∗

)                                               (3.2.4) 

Therefore, we get 

                          Ω=  𝑖ħ (  𝑥̇𝑥∗ + 𝑦̇𝑦∗)                                                                                         (3.2.5) 

                          𝜔 = 𝑖ħ  ( 𝑥𝑦̇ − 𝑦𝑥̇ )                                                                                             (3.2.6) 

Using Eq. (3.2.6) to derive the value of  y in term of 𝜔 𝑎𝑛𝑑 𝑥, see appendix B 

                       y=
𝑥

𝑖ħ
∫

𝜔

𝑥2

𝑡

0
 

Where  ∫
𝜔

𝑥2

𝑡

0
 =Z 

                        y=
𝑥

𝑖ħ
Z                                                                                                          (3.2.7) 

Using Eq. (3.2.5) to derive the value of  x in term of 𝑍 𝑎𝑛𝑑 𝜴, see appendix B 

                          Ω=  𝑖ħ (  𝑥̇𝑥∗ + 𝑦̇𝑦∗)                                                                                 

                          𝑥̇ =[
Ω

𝑖ħ
−

𝜔

ħ2
𝑍∗]𝑥 

Use    𝜔 = 𝑥2𝑍̇ 

                                   𝑥̇ =[
Ω

𝑖ħ
−

𝑥2

ħ2
𝑍̇𝑍∗]𝑥 
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Where Z is constraint to satisfy the following condition 

                               |𝑥|2 (1 +
|𝑍|2

ħ2
) = 1 

                                𝑥̇ = [
Ω

𝑖ħ
−

𝑍̇𝑍∗

(ħ2+|𝑍|2)
]𝑥 

Solving by integration, finally we get, 

                                𝑥 =
ħ

√ħ2+|𝑍|2
𝑒
−
𝑖

ħ
∫ Ω
𝑡
0

−∫
𝑍̇𝑍∗

(ħ2+|𝑍|2)

𝑡
0                                                            (3.2.8) 

Once ‘𝑥’has been determined, the remaining functions are obtained from the relations, see 

Appendix B 

                                𝑦 =  
1

𝑖ħ
𝑥𝑍                                                                                           (3.2.9) 

                                   𝜔 = 𝑥2𝑍̇                                                                                                   (3.2.10) 

The result means that if transverse field 𝜔(𝑡) is given by this relation for an arbitrary chosen 

𝑍(𝑡) and an arbitrary longitudinal Ω (t), the resulting unitary evolution operator is exactly 

given by the parameters𝑥(𝑡) 𝑎𝑛𝑑 𝑦(𝑡). The relations are exact and no approximation is 

involved. 

 Examples 

Here we consider a few examples as mentioned by A Messina and H Nakazato[9] that is 

helpful to understand how this method works as well as its usefulness in practice. 

Example 1 A Real Function 

Let we choose a real function Z, Z = 𝑍∗ and specifies a transverse field as 

                    𝜔 = 
ħ2𝑍̇

ħ2+|𝑍|2
𝑒
−2𝑖

ħ
∫ Ω
𝑡
0                                                                                      (3.2.11) 

The evolution operator are characterized by 𝑥 𝑎𝑛𝑑 𝑦, which is given by, see Appendix B 

                   𝜔 = 𝑥2𝑍̇ 
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                      𝑥 =  
ħ𝑒

−𝑖
ħ ∫ Ω

𝑡
0

√ħ2+|𝑍|2
                                                                                              (3.2.12) 

                        𝑦 =  
−𝑖𝑍𝑒

−𝑖
ħ ∫ Ω

𝑡
0

√ħ2+|𝑍|2
                                                                                                      (3.2.13) 

                        𝑍 =  ħ tan[ ∫ 𝜔𝑒
2𝑖

ħ
∫ Ω
𝑡
0

𝑡

0
]                                                                                     (3.2.14) 

The consistency requires that the integrand inside the brackets should be a real function, 

which implies that the interaction Hamiltonian in the interaction picture commutes at 

different times; that is, this case correspond to a well-known solvable case [10]. This will 

happens if we applied the driven whose 𝜔 make the integrand real and we get an exact 

solvable case theoretically. 
Example 2 A Complex Function 

Consider a complex function 𝑍(𝑡) parametrized by a real function ɸ(𝑡) and a real constant 

parameter 𝑐as 

                              𝑍 = 𝑐𝑠𝑖𝑛ɸ𝑒𝑖ɸ ,             ɸ(𝑡).                                                              (3.2.15) 

The general formula tells us that when the transverse field is represented as 

                              𝜔 = 
ħ2𝑐ɸ̇

ħ2+𝑐2𝑠𝑖𝑛2ɸ
𝑒
−
2𝑖

ħ
∫ Ω
𝑡
0 +2𝑖 ∫

ħ2ɸ̇

ħ2+𝑐2 sinɸ2
𝑡
0                                               (3.2.16) 

The value of x and y is, see Appendix B 

                                  𝑥 =  
ħ

√ħ2+𝑐2 sinɸ2
𝒆
−
𝒊

ħ
∫ Ω
𝒕
𝟎

−𝒊∫
𝒄𝟐ɸ̇ 𝐬𝐢𝐧 ɸ𝟐

ħ𝟐+𝒄𝟐 𝐬𝐢𝐧ɸ𝟐
𝒕
𝟎                                            (3.2.17) 

                                  𝑦 =  
−𝑖𝑐 𝑠𝑖𝑛ɸ 𝑒𝑖ɸ

√ħ2+𝑐2 sinɸ2
𝒆
−
𝒊

ħ
∫ Ω
𝒕
𝟎 −𝒊∫

𝒄𝟐ɸ̇ 𝐬𝐢𝐧 ɸ𝟐

ħ𝟐+𝒄𝟐 𝐬𝐢𝐧 ɸ𝟐
𝒕
𝟎                                            (3.2.18) 

Observe that Eq. (3.2.16) requires that (c > 0 and ɸ̇> 0 are assume for simplicity) 
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|𝜔| = 
ħ2𝑐ɸ̇

ħ2+𝑐2𝑠𝑖𝑛2ɸ
 ,  ɸ𝜔 = −

2𝑖

ħ
∫ Ω
𝑡

0
+ 2𝑖 ∫

ħ2ɸ̇

ħ2+𝑐2 sinɸ2

𝑡

0
. In other words, if the magnitude and 

phase of the transverse field 𝜔 ≡ |𝜔|𝑒𝑖ɸ𝜔  are inter-connected as 

                                     
|𝜔|

𝑐
= 

Ω(𝑡)

ħ
+

ɸ𝜔(𝑡)̇

2
,                                                                                  (3.2.19) 

We are led to exact solution. This certainly enlarge the domain of solvability, since if we take 

the c=∞ limit while keeping finite Z≠ 0 𝑎𝑛𝑑|𝜔| ≠ 0 to nullify the right hand side of 

Eq.(3.2.19), we obtain the case where the interaction Hamiltonian in the interaction picture is 

commutable at different times, leading to a known exact solution [10]. 
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                                  Conclusion 

At the beginning of this thesis I introduced what is quantum two-level system and why they 

are of interest in modern researches. Then I solve the quantum two-level system using 

perturbation theory. After that I present the problem of periodically driven quantum two-

level system and find the time dependent probability coefficients and the corresponding 

populations in either state, which is an easy job. 

In this thesis the main problem was ‘’analytically solvable driven two-level quantum 

system’’. I reproduce that how to solve a single axis driven Hamiltonian using ‘’reverse 

engineering’’ approach to find the time evolution operator and then the corresponding driven 

Hamiltonian. We use a single real function which is restricted to obey certain boundary 

condition and some experimental constraints. By choosing a real function which follows the 

required initial condition and inequalities to find a relation for single axis driven term and the 

corresponding time evolution operator for two-level Hamiltonian. 

The other main problem in this thesis is analytically solvable Hamiltonian for quantum two 

level systems. I started from a general two by two Hamiltonian and a general two by two 

unitary evolution operator (belonging to SU (2) group), and use reverse engineering approach 

to find exact solvable Hamiltonians. We use an input function that obey certain boundary 

condition and satisfy some constraints to generate solvable Hamiltonians. I reproduce how to 

generate solvable Hamiltonian using reverse engineering approach. 
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                            Appendix A 

SU (2); Stand for special unitary two dimensionality. 

Let I can write the most general unitary unimodular matrix as 

                           U = (
𝑥 𝑦
−𝑦∗ 𝑥∗) , 

Where 𝑥 𝑎𝑛𝑑 𝑦 are complex functions satisfying the unimodular condition 

                           |𝑥|2 + |𝑦|2 = 1 

I can easily establish the unitary property as follows 

                           𝑈𝑈ϯ = (
𝑥 𝑦
−𝑦∗ 𝑥∗) (

𝑥∗ −𝑦
𝑦∗ 𝑥

)   =1 

The two complex functions 𝑥 𝑎𝑛𝑑 𝑦  are known as Cayley-Klein parameters. Historically the 

connection between a unitary unimodular matrix and a rotation was known long before the 

birth of quantum mechanics. Infact the Cayley-Klein parameters were used to characterized 

the complicated motion of gyroscopes in rigid body kinematics. 

Without appealing to the interpretation of unitary unimodular matrices in term of rotations, 

we can directly check the group properties of multiplication operations with unitary 

unimodular matrices. Note in particular that 

                        𝑈(𝑥1𝑦1)𝑈(𝑥2𝑦2) = 𝑈(𝑥1𝑥2 − 𝑦1𝑦2
∗, 𝑥1𝑦2 + 𝑥2

∗𝑦1) 

Where the unimodular condition for the product matrix is 

                       |𝑥1𝑥2 − 𝑦1𝑦2
∗|2 + |𝑥1𝑦2 + 𝑥2

∗𝑦1|
2 =1 

For the inverse of 𝑈 we have 

                       𝑈−1(𝑥, 𝑦)=𝑈(𝑥∗, −𝑦) , 
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The group is known as SU (2). In contract the group defines by multiplication operations 

with general 2 × 2 unitary matrices is known as U(2). The most general unitary matrix in two 

dimensions has four independent parameters and can be written as 𝑒𝑖𝛾 times a unitary 

unimodular matrix; 

 

𝑈 = 𝑒𝑖𝛾 (
𝑥 𝑦
−𝑦∗ 𝑥∗) , |𝑥|2 + |𝑦|2 = 1   and 𝛾∗ = 𝛾 

 

SU(2) is called subgroup of U (2). 
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                           Appendix B 

B-1 Finding the value of x and y 

 

The equation 

                             𝜔 = 𝑖ħ  ( 𝑥𝑦̇ − 𝑦𝑥̇ ) 

                                
𝜔

𝑖ħ
= ( 𝑥𝑦̇ − 𝑦𝑥̇ ) 

                                 
1

𝑖ħ

𝜔

𝑥2
=

(𝑥𝑦̇− y𝑥̇)

𝑥2
 

                               𝑑 (
𝑦

𝑥
) =

1

𝑖ħ

𝜔

𝑥2
 

                                 
𝑦

𝑥
=

1

𝑖ħ
∫

𝜔

𝑥2

𝑡

0
 

                             y=
𝑥

𝑖ħ
∫

𝜔

𝑥2

𝑡

0
 

Let we define Z =∫
𝜔

𝑥2

𝑡

0
 , then 

                            y=
𝑥

𝑖ħ
Z                                                                                                     (B-1.1) 

Now I go to calculate the value of x 

                             Ω =  𝑖ħ (  𝑥̇𝑥∗ + 𝑦̇𝑦∗) 

                             ( 𝑥̇𝑥∗ + 𝑦̇𝑦∗) =
Ω

𝑖ħ
 

                              𝑥̇𝑥∗ = 
Ω

𝑖ħ
−   𝑦̇𝑦∗ 

                              𝑥̇𝑥∗ =
Ω

𝑖ħ
−

𝑥

𝑖ħ

𝜔

𝑥2
𝑖𝑥∗

ħ
𝑍∗ 

Since y= 
𝑥

𝑖ħ
∫

𝜔

𝑥2

𝑡

0
 therefore 𝑦̇ =  

𝑥

𝑖ħ

𝜔

𝑥2
  and also y= 

𝑥

𝑖ħ
Z therefore 𝑦∗ = 

𝑖𝑥∗

ħ
𝑍∗ 
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Then 

                       𝑥̇𝑥∗ = 
Ω

𝑖ħ
−

𝜔

ħ
2

𝑥∗

𝑥
𝑍∗ 

 

Where 𝑥 𝑎𝑛𝑑 𝑥∗ are complex functions and are different from each other only by signs, we 

therefore; 

                      𝑥̇𝑥∗ =
Ω

𝑖ħ
−

𝜔

ħ2
𝑍∗ 

So                  𝑥̇ =
Ω

𝑖ħ
𝑥 −

𝜔

ħ2
𝑥𝑍∗ 

                        𝑥̇ =[
Ω

𝑖ħ
−

𝜔

ħ2
𝑍∗]𝑥 

Use    𝜔 = 𝑥2𝑍̇ 

                        𝑥̇ =[
Ω

𝑖ħ
−

𝑥2

ħ2
𝑍̇𝑍∗]𝑥 

Where Z is constraint to satisfy the following condition 

                     |𝑥|2 (1 +
|𝑍|2

ħ2
) = 1 

So 

                     𝑥̇ = [
Ω

𝑖ħ
−

ħ2

ħ2(ħ2+|𝑍|2)
𝑍̇𝑍∗]𝑥 

                       𝑥̇ = [
Ω

𝑖ħ
−

𝑍̇𝑍∗

(ħ2+|𝑍|2)
]𝑥 

Solving by integration, finally we get, 

                    𝑥 =
ħ

√ħ2+|𝑍|2
𝑒
−
𝑖

ħ
∫ Ω
𝑡
0 −∫

𝑍̇𝑍∗

(ħ2+|𝑍|2)

𝑡
0                                                                       (B-1.2) 

Once ‘𝑎’ has been determined, the remaining functions are obtained from the relations 
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                                  𝑦 =  
1

𝑖ħ
𝑥𝑍 

                                     𝜔 = 𝑥2𝑍̇ 

 

B-2 Examples 

1) A Real Function 

The function; 

                    𝜔 = 
ħ2𝑍̇

ħ2+|𝑍|2
𝑒
−2𝑖

ħ
∫ Ω
𝑡
0                                                                                       (B-2.1) 

The evolution operator are characterized by 𝑥 𝑎𝑛𝑑 𝑦, which is given by  

                    𝜔 = 𝑥2𝑍̇ 

So                𝑥2 =
ħ2

ħ2+|𝑍|2
𝑒
−2𝑖

ħ
∫ Ω
𝑡
0  

And             𝑥 =  
ħ𝑒

−𝑖
ħ ∫ Ω

𝑡
0

√ħ2+|𝑍|2
                                                                                                 (B-2.2) 

Similarly  𝑦 =  
1

𝑖ħ
𝑥𝑍 

And             𝑦 =  
−𝑖𝑍𝑒

−𝑖
ħ ∫ Ω

𝑡
0

√ħ2+|𝑍|2
                                                                                               (B-2.3) 

Notice that the above Eq. (B-2.1) can be integrated to give ′𝑍′ in terms of Ω𝑎𝑛𝑑 𝜔. 

                   𝜔 = 
ħ2𝑍̇

ħ2+|𝑍|2
𝑒
−2𝑖

ħ
∫ Ω
𝑡
0  

                   𝜔𝑒
2𝑖

ħ
∫ Ω
𝑡
0  =  

ħ2𝑍̇

ħ2+|𝑍|2
 

                    𝜔𝑒
2𝑖

ħ
∫ Ω
𝑡
0  =  

ħ2𝑍̇

ħ2(1+
|𝑍|2

ħ2
)
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                                                    𝜔𝑒
2𝑖

ħ
∫ Ω
𝑡
0  =  

𝑍̇

(1+
|𝑍|2

ħ2
)
 

                                                      ∫ 𝜔𝑒
2𝑖

ħ
∫ Ω
𝑡
0

𝑡

0
 = ∫

𝑍̇

(1+
|𝑍|2

ħ2
)

𝑡

0
 

Integrating by parts w.r.t “t” 

                                                 ∫ 𝜔𝑒
2𝑖

ħ
∫ Ω
𝑡
0

𝑡

0
= tan−1(

𝑍

ħ
) 

                                                    tan ∫ 𝜔𝑒
2𝑖

ħ
∫ Ω
𝑡
0

𝑡

0
 = 

𝑍

ħ
 

So                                           𝑍 =  ħ tan[ ∫ 𝜔𝑒
2𝑖

ħ
∫ Ω
𝑡
0

𝑡

0
]                                                     (B-2.4) 

 

2) A Complex Function 

The function; 

                     𝜔 = 
ħ2𝑐ɸ̇

ħ2+𝑐2𝑠𝑖𝑛2ɸ
𝑒
−
2𝑖

ħ
∫ Ω
𝑡
0 +2𝑖 ∫

ħ2ɸ̇

ħ2+𝑐2 sinɸ2
𝑡
0                                                         (B-2.5) 

Since 𝝎 = 𝒙𝟐𝒁̇ 

Therefore      𝑥 =  
ħ

√ħ2+𝑐2 sinɸ2
𝒆
−
𝒊

ħ
∫ Ω
𝒕
𝟎 −𝒊∫

𝒄𝟐ɸ̇ 𝐬𝐢𝐧 ɸ𝟐

ħ𝟐+𝒄𝟐 𝐬𝐢𝐧ɸ𝟐
𝒕
𝟎                                                         (B-2.6) 

Similarly     𝑦 =  
1

𝑖ħ
𝑥𝑍 

                     𝑦 =  
−𝑖𝑐 𝑠𝑖𝑛ɸ 𝑒𝑖ɸ

√ħ2+𝑐2 sinɸ2
𝒆
−
𝒊

ħ
∫ Ω
𝒕
𝟎 −𝒊∫

𝒄𝟐ɸ̇ 𝐬𝐢𝐧 ɸ𝟐

ħ𝟐+𝒄𝟐 𝐬𝐢𝐧 ɸ𝟐
𝒕
𝟎                                                          (B-2.7) 
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