GSJ: Volume 6, Issue 1, January 2018, Online: ISSN 2320-9186
www.globalscientificjournal.com

EMF AND ELECTROMAGNETIC RADIATION PARAMETER DECISION. (bASED ON TAGUCHI ANalysis.)

Mrs.A.G.Andurkar
Electronics and Telecommunication department.
Government College of Engineering,
Jalgaon

Abstract

Electromotive force generates electromagnetic radiation. It is therefore necessary to study the mathematical equations related to electromotive force. This paper focuses on electromagnetic radiation generated due to electromotive force . Depending upon the mathematical equations governing emf, certain parameters affecting electromagnetic radiation are decided based on Taguchi Analysis. Taguchi analysis is carried out for only those factors which affect and cause more electromagnetic radiation. Accordingly after carrying out Taguchi analysis, a condition is finalized so that it causes least electromagnetic iation. This condition is optimum condition which can be applied in any situation. It can also take care of human health as more electromagnetic radiation is harmful to human health.

Keywords-

Electromagnetic Radiation; Electromagnetic flux
I. Introduction

perimeter is the closed path, and $d \Phi / d t$ is the time rate of change of this flux.
A non zero value of $\mathrm{d} \Phi / \mathrm{dt}$ may result from any of the following situations:

1. A time - changing flux linking a stationary closed path
2. Relative motion between a steady flux and a closed path.
3. A combination of the two

The minus sign is an indication that the emf is in such a direction as to produce a current whose flux, if added to the original flux , would reduce the magnitude of the emf. This statement that the induced voltage acts to produce an opposing flux is known as Lenz's law.
Emf is also expressed as
Emf $=\int \mathrm{E} . \mathrm{dL}-------(2)$
Note that it is the voltage about a specific closed path. If any part of the path is changed, the emf in general changes.

Emf is also denoted as
Emf $=\int \mathrm{E} . \mathrm{dL}=-\mathrm{d} / \mathrm{dt} \int_{\mathrm{S}} \mathrm{B} . \mathrm{dS}--------(3)$

The fingers of our right hand indicate the direction of closed path and our thumb indicates the direction of dS. A flux density B in the direction of $d S$ and increasing with time thus produces an average value of E which is opposite to the positive direction about the closed path.
We first consider a stationary path. The magnetic flux is the only time varying quantity on the right side of (3), and a partial derivative may be taken under the integral sign ,

$$
\begin{equation*}
\mathrm{Emf}=\int \mathrm{E} \cdot \mathrm{dL}=-\int_{\mathrm{s}} \partial \mathrm{~B} / \partial \mathrm{t} \cdot \mathrm{dS} \tag{4}
\end{equation*}
$$

\qquad
Applying Stoke's theorem to the closed line integral , we have

$$
\int_{\mathrm{s}}(\Delta \mathrm{xE}) \cdot \mathrm{dS}=-\int_{\mathrm{s}} \partial \mathrm{~B} / \partial \mathrm{t} \cdot \mathrm{dS}
$$

Where the surface integrals may be taken over identical surfaces. The surfaces are perfectly general and may be chosen as differentials,

$$
\begin{equation*}
(\Delta \mathrm{xE}) \cdot \mathrm{dS}=-\partial \mathrm{B} / \partial \mathrm{t} \cdot \mathrm{dS} \tag{5}
\end{equation*}
$$

And
$\Delta x E=-\partial B / \partial t---------(6)$
This is one of Maxwell's four equations as written in differential ,or point form .
Equation 5 is the integral form of this equation and is equivalent to Faraday's law as applied to a fixed path.If B is not a function of time ,(5) and (6) evidently reduce to the electrostatic equations,
\int E.d L $=0$ (Electrostatics)
And
$\Delta \mathrm{xE}=0$ (electrostatics)
As an example of the interpretation of (5) and (6), let us assume a simple magnetic field which increases exponentially with time within the cylindrical region $\rho<b$,
$B=B_{0} e^{k t} a_{z}---------(7)$
Where
$\mathrm{B}_{0}=$ constant.
Choosing the circular path $\rho=a, a<b$ in the $z=0$ plane, along which E_{Φ} must be constant by symmetry, we then have from (4)
$\mathrm{Emf}=2$ ПaE $_{\Phi} \quad=-\mathrm{kB}_{0}{ }_{0}{ }^{\mathrm{kt}} \Pi \mathrm{a}^{2}$ \qquad
If we replace a by $\rho, \rho<b$, the electric field intensity at any point is
$\mathrm{E}=-1 / 2 \mathrm{k} \mathrm{B}_{0} \mathrm{e}^{\mathrm{kt}} \rho \mathrm{a}_{\Phi}--------------(9)$

The basic system is radiation measurement system. Depending on the equations governing electromotive force(emf) first the parameters affecting are decided according to priority. Thus following parameters which affect emf the most are decided.

1. Flux density
2. Time
3. Electric field intensity
4. Distance

However more study reveals that electric field intensity and flux density equally are responsible for emf, hence any one can be considered hence we will consider flux density, time and distance as three parameters.
Another important thing is that it is proved that plants/trees reduce emf.
Hence in our system we will measure emf nearby plants/trees.
The system will measure radiation at two different values of time, distance and flux density in an area without plants/ trees, and similarly it will measure radiation at two different values of time, distance and flux density in an area having plants/trees. The system will also record radiation values at early morning, afternoon and night.
The system will also record radiation values in different climate i.e hot, cold and rainy. also in airy atmosphere radiation values can be measured.
A detailed analysis of all above measurements will be done to reach some definite conclusions. Thereafter an optimum condition can be decided to have less amount of radiation.
3. Results and Discussions:

During experimentation following readings were taken.

Table 1

parameters	Minimum and max values	Mean value of Radiation measured at minimum values	Mean value of Radiation measured at maximum values
Rainy atmosphere (at home)	$\begin{aligned} & 32 \mu \text { Tesla, } 35 \\ & \mu \text { Tesla } \end{aligned}$	$\begin{aligned} & 33.565 \\ & \mu \text { Tesla } \end{aligned}$	$\begin{aligned} & 23.098 \\ & \mu \text { Tesla } \end{aligned}$
Rainy atmosphere (outside home)	$\begin{aligned} & 34 \mu \text { Tesla, } 36 \\ & \mu \text { Tesla } \end{aligned}$	33.86μ Tesla	35μ Tesla
Without gomutra bottle (at 7 p.m)	$\begin{aligned} & 37.94 \\ & \mu \text { Tesla,,42.84 } \\ & \mu \text { Tesla, } \end{aligned}$	37.94 μ Tesla,	42.84 μ Tesla,
With gomutra bottle (at 7 p.m)	$\begin{gathered} 37.5 \\ \mu \text { Tesla,38.2 } \\ \mu \text { Tesla, } \end{gathered}$	37.82 μ Tesla,	42.51 μ Tesla,

Each experiment is repeated 15 times and then mean value of radiation is decided in above tables.

Table 3

$\left.$| parameters | Mean value of
 Radiation
 measured at
 minimum
 values during
 day time | Mean value of
 Radiation
 measured at
 maximum
 values during
 evening. |
| :---: | :--- | :--- |
| Radiation | 33.86 | 38.53 |
| near plants
 such as aloe
 vera and
 cactus | μ Tesla(for aloe
 vera) | 3Tesla(for aloe
 vera)
 μ Tesla(for
 cactus) | | 39.47 |
| :--- |
| μ Tesla(for |
| cactus) | \right\rvert\,

Table 4

Direction	Mean value of Radiation
EAST	42.47μ Tesla
WEST	40.07μ Tesla
NORTH	40.67μ Tesla
SOUTH	40.73μ Tesla

The above readings are taken at evening time at 7.15 pm.

Table 5 : readings taken at 7 p.m evening with and without gomutra bottle.

Direction	Mean value of Radiation With gomutra bottle	Mean value of Radiation Without gomutra bottle
EAST	37.82μ Tesla	37.94μ Tesla
WEST	41.66μ Tesla	41.75μ Tesla
NORTH	42.51μ Tesla	42.84μ Tesla
SOUTH	37.92μ Tesla	38.32 Tesla

Conclusions:
It is a common observation that in evening , emf is highest in east direction, it is lowest in west, in north and south direction emf is high.
In morning emf is least in east direction and high in west.
The emf is less than the emf outside home near the plants such as aloe- vera and cactus during day time.
However it increases than emf outside home near plants such as aloe- vera and cactus. This indicates that during day time such plants absorb radiation and serve to minimise radiation in atmosphere.
Emf is different at different times and in different seasons also it varies. In hot atmosphere emf values are high.
In cold atmosphere emf is low.

EMF decreases due to gomutra bottle as seen by readings in table 5.
Hence gomutra has capacity to decrease radiation.

Signal-to-noise: Nominal is best ($10 \times \log 10\left(\mathrm{Ybar}^{\wedge} 2 / 5^{\wedge} 2\right)$)

From above graph it is clear that all points lie in a balanced way above average value of 0.64 .

Pareto Chart of outside by near aloe
Nested ANOVA: near cactus, near cactus1, near aloe, near aloe1
Nested ANOVA: near cactus versus outside
Analysis of Variance for near cactus
Source DF SS MS
outside 21.55480 .7774
Error 1210.17860 .8482
Total 1411.7333
Variance Components
Source Var Comp. \% of Total StDev
$\begin{array}{cccc}\text { outside } & -0.015^{*} & 0.00 & 0.000 \\ \text { Error } & 0.848 & 100.00 & 0.921\end{array}$
Total $0.848 \quad 0.921$

* Value is negative, and is estimated by zero.

Expected Mean Squares
1 outside $1.00(2)+4.80(1)$
2 Error $1.00(2)$
Nested ANOVA: near cactus1 versus outside Analysis of Variance for near cactus1
Source DF SS MS
outside 22.01901 .0095
Error 123.71430 .3095

Total 145.7333

Nested ANOVA: near aloe versus outside Analysis of Variance for near aloe
Source DF SS MS
outside 22.75481 .3774
Error 126.17860 .5149
Total 148.9333
Variance Components
Source Var Comp. $\begin{aligned} & \text { \% of } \\ & \text { Total } \\ & \text { StDev }\end{aligned}$
$\begin{array}{cccc}\text { outside } & 0.180 & 25.87 & 0.424 \\ \text { Error } & 0.515 & 74.13 & 0.718 \\ \text { Total } & 0.695 & & 0.833\end{array}$
Expected Mean Squares
1 outside $1.00(2)+4.80(1)$
2 Error 1.00(2)

Nested ANOVA: near aloe1 versus outside Analysis of Variance for near aloe 1
Source DF SS MS
outside 20.55480 .2774
Error 123.17860 .2649
Total 143.7333

		Variance Components $\%$ of	
Source Var Comp.			
Total			

Factor coding ($-1,0,+1$)
Factor Information
Factor Type Levels Values
outside Fixed 3 34, 35, 36
Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
$\begin{array}{lllll}\text { outside } 2 & 1.555 & 0.7774 & 0.92 & 0.426\end{array}$
Error 1210.1790 .8482
Total 1411.733

		Model Summary	
S	R-sq	R-sq(adj)	R-sq(pred)
0.920985	13.25%	0.00%	0.00%
	Coefficients		

Term Coef SE Coef T-Value P-Value VIF
Constant $33.512 \quad 0.246 \quad 136.15 \quad 0.000$
outside

34	0.488	0.362	1.35	0.203	1.24
35	-0.226	0.318	-0.71	0.490	1.24

Regression Equation
near $=33.512+0.488$ outside_34-0.226 outside_35-
cactus
0.262 outside_36

Fits and Diagnostics for Unusual Observations
Obs $\begin{gathered}\text { near } \\ \text { cactus }\end{gathered}$ Fit Resid Std Resid
$\begin{array}{lllll}14 & 32.000 & 34.000 & -2.000 & -2.51\end{array}$
R Large residual
General Linear Model: near cactus1 versus outside Method
Factor coding $(-1,0,+1)$
Factor Information
Factor Type Levels Values
outside Fixed 3 34, 35, 36
Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
$\begin{array}{llllll}\text { outside } & 2 & 2.019 & 1.0095 & 3.26 & 0.074\end{array}$
$\begin{array}{llll}\text { Error } & 12 & 3.714 & 0.3095\end{array}$
Total 145.733
Model Summary
S R-sq R-sq(adj) R-sq(pred)
$0.55634935 .22 \% \quad 24.42 \% \quad 0.00 \%$
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant $39.4760 .149 \quad 265.49 \quad 0.000$
outside
$\begin{array}{llllll}34 & -0.476 & 0.219 & -2.18 & 0.050 & 1.24\end{array}$
$\begin{array}{llllll}35 & -0.048 & 0.192 & -0.25 & 0.808 & 1.24\end{array}$
Regression Equation
near = 39.476-0.476 outside_34-0.048 outside_35 cactus1 $=\quad+0.524$ outside_36

Fits and Diagnostics for Unusual Observations
Obs $\begin{gathered}\text { near } \\ \text { cactus1 }\end{gathered}$ Fit Resid Std Resid
$1240.00039 .000 \quad 1.000 \quad 2.08 \quad \mathrm{R}$
$1438.00039 .000-1.000 \quad-2.08 \quad \mathrm{R}$

R Large residual
General Linear Model: near aloe versus outside Method
Factor coding ($-1,0,+1$)
Factor Information
Factor Type Levels Values
outside Fixed 3 34, 35, 36
Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
$\begin{array}{lllll}\text { outside } & 2 & 2.755 & 1.3774 & 2.68 \\ 0.109\end{array}$
$\begin{array}{llll}\text { Error } & 12 & 6.179 & 0.5149\end{array}$
Total 148.933
Model Summary
S R-sq R-sq(adj) R-sq(pred)
$0.71755230 .84 \% \quad 19.31 \% \quad 0.00 \%$
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant $34.155 \quad 0.192 \quad 178.10 \quad 0.000$
outside

34	-0.155	0.282	-0.55	0.594	1.24
35	-0.440	0.248	-1.78	0.101	1.24

Regression Equation
near = 34.155-0.155 outside_34-0.440 outside_35
aloe $=\quad+0.595$ outside_36
General Linear Model: near aloe 1 versus outside Method
Factor coding $(-1,0,+1)$
Factor Information
Factor Type Levels Values
outside Fixed 3 34, 35, 36
Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
outside 20.55480 .27741 .0500 .381
Error 123.17860 .2649
Total 143.7333

		Model Summary	
S	R-sq	R-sq(adj)	R-sq(pred)
0.514666	14.86%	0.67%	0.00%
		Coefficients	

Term Coef SE Coef T-Value P-Value VIF
Constant $38.512 \quad 0.138 \quad 279.98 \quad 0.000$
outside

34	-0.012	0.202	-0.06	0.954	1.24
35	-0.226	0.178	-1.27	0.227	1.24
Regression Equation					

Autocorrelations

Lag	ACF	T	LBQ
1	-0.700775	-2.71	8.94
2	0.563566	1.55	15.17
3	-0.532558	-1.27	21.20
4	0.475969	1.03	26.45

Taguchi Analysis: east, west, north, south versus outside, ... ar cactus1

* NOTE * Design is not orthogonal. Response Table for Signal to Noise Ratios
Nominal is best $\left(10 \times \log 10\left(\mathrm{Ybar}^{\wedge} 2 / \mathrm{s}^{\wedge} 2\right)\right)$
Level outside near aloe near near near

1	32.62	30.62	31.15	30.90	32.15	
2	29.95	31.57	30.59	31.71	30.55	
3	32.43	31.39	31.57		31.72	
4			32.16			
Delta	2.67	0.95	1.57	0.81	1.60	
Rank	1	4	3	5	2	
		Response Table for Means				

Level outside near aloe near near near cactus aloe 1 cactus 1

1	40.94	41.19	41.00	41.06	40.50
2	41.14	41.00	41.02	40.94	41.17
3	40.79	40.84	40.95		40.95
4			41.13		
Delta	0.35	0.34	0.17	0.13	0.67
Rank	2	3	4	5	1

cactus 1

* NOTE * Design is not orthogonal. Predicted values
* NOTE * Design is not orthogonal. Prediction
S/N Ratio Mean StDev $\operatorname{Ln}($ StDev $)$
$33.734840 .54550 .835915-0.181412$

Settings

outside near near near near aloe cactus aloe 1 cactus 1
$\begin{array}{lllll}34 & 33 & 32 & 38 & 38\end{array}$
Taguchi Analysis: east, west, north, south versus outside, ... ar cactus1

* NOTE * Design is not orthogonal. Predicted values
* NOTE * Design is not orthogonal. Prediction
S/N Ratio Mean StDev Ln(StDev)
$33.734840 .54550 .835915-0.181412$
Settings
outside near near near near
aloe cactus aloe 1 cactus1
$\begin{array}{lllll}34 & 33 & 32 & 38 & 38\end{array}$
Probability Plot of east, north
* NOTE * Distribution could not be fit. The number of distinct rows of data in east (for west
$=39$, south $=41)$ must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in east (for west
$=40$, south $=42$) must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in east (for west
$=41$, south $=40$) must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in east (for west
$=41$, south $=41)$ must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in north (for
west $=39$, south $=41$) must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in north (for
west $=40$, south $=42$) must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in north (for
west $=41$, south $=41$) must be greater than or equal to the number of estimated distribution parameters.
Taguchi Analysis: east, west, north, south versus outside, ... ar cactus1
* NOTE * Design is not orthogonal.

Linear Model Analysis: SN ratios versus outside, near aloe, near cactus, near aloe 1, near cactus1
Estimated Model Coefficients for SN ratios

Term	Coef	SE Coef	T	P
Constant	30.7384	1.6450	18.686	0.000
outside 34	2.4240	2.0796	1.166	0.328
outside 35	-2.1833	1.2752	-1.712	0.185
near alo 33	0.2436	1.7278	0.141	0.897
near alo 34	2.0028	1.7959	1.115	0.346
near cac 32	2.4000	2.6834	0.894	0.437
near cac 33	1.1570	1.8901	0.612	0.584
near cac 34	-1.1606	2.2719	-0.511	0.645
near alo 38	-0.4522	0.8830	-0.512	0.644

near cac $38-1.6192 \quad 3.7096-0.436 \quad 0.692$
near cac $39-0.6041 \quad 2.5969-0.233 \quad 0.831$
Model Summary

S R-Sq R-Sq(adj)

2.2974 68.63\% 0.00\%

Analysis of Variance for SN ratios

X denotes an observation whose X value gives it large leverage.
Linear Model Analysis: Means versus outside, near aloe, near cactus, near aloe1, near cactus1 Estimated Model Coefficients for Means

Term	Coef	SE Coef	T	P
Constant	40.7880	0.2383	171.180	0.000
outside 34	0.0781	0.3012	0.259	0.812
outside 35	0.1392	0.1847	0.754	0.506
near alo 33	0.1174	0.2503	0.469	0.671
near alo 34	-0.0104	0.2601	-0.040	0.971
near cac 32	0.2844	0.3887	0.732	0.517
near cac 33	-0.0266	0.2738	-0.097	0.929
near cac 34	-0.2667	0.3291	-0.810	0.477
near alo 38	-0.0895	0.1279	-0.700	0.535
near cac 38	-0.6330	0.5373	-1.178	0.324
near cac 39	0.2604	0.3762	0.692	0.539
		Model Summary		

S R-Sq R-Sq(adj)
0.3328 70.85\% 0.00\%

Analysis of Variance for Means
Source DF Seq SS Adj SS Adj MS F P
outside $\quad 20.287570 .153410 .076700 .690 .566$
near aloe $\quad 20.075860 .026280 .013140 .120 .892$
near cactus 30.238830 .112150 .037380 .340 .802
near aloe1 10.030250 .054210 .054210 .490 .535
near cactus1 20.174790 .174790 .087400 .790 .530
Residual Error 30.332210 .332210 .11074
Total 131.13951
Unusual Observations for Means
Observation Means Fit SE Fit Residual $\begin{gathered}\mathrm{St} \\ \text { Resid }\end{gathered}$

2	41.000	41.000	0.333	0.000	$*$	X
5	41.500	41.500	0.333	0.000	$*$	X
12	41.000	41.000	0.333	0.000	$*$	X
14	40.500	40.500	0.333	0.000	$*$	X

Linear Model Analysis: StDevs versus outside, near aloe, near cactus, near aloe1, near cactus1
Estimated Model Coefficients for StDevs
Term Coef SE Coef T P
$\begin{array}{llllll}\text { Constant } & 1.21971 & 0.2211 & 5.518 & 0.012\end{array}$
outside $34-0.320030 .2795-1.1450 .335$
$\begin{array}{llllll}\text { outside } 35 & 0.28988 & 0.1714 & 1.692 & 0.189\end{array}$
near alo $33-0.00162 \quad 0.2322-0.0070 .995$
near alo $34-0.258890 .2413-1.073 \quad 0.362$
near cac $32-0.32876 \quad 0.3606-0.9120 .429$
near cac $33-0.154860 .2540-0.6100 .585$
$\begin{array}{llllll}\text { near cac } 34 & 0.14977 & 0.3053 & 0.491 & 0.657\end{array}$
$\begin{array}{llllll}\text { near alo } 38 & 0.04902 & 0.1187 & 0.413 & 0.707\end{array}$
$\begin{array}{llllll}\text { near cac } 38 & 0.21759 & 0.4985 & 0.437 & 0.692\end{array}$
$\begin{array}{llllll}\text { near cac } 39 & 0.06276 & 0.3490 & 0.180 & 0.869\end{array}$
Model Summary
R-Sq R-Sq(adj)
0.3087 67.06\% 0.00\%

Analysis of Variance for StDevs
Source DF Seq SS Adj SS Adj MS F P
outside $\quad 20.4139070 .274810 .137401 .440 .364$
near aloe $\quad 20.0172370 .113460 .056730 .600 .606$
near cactus 30.0552010 .100460 .033490 .350 .793
near aloe1 $1 \quad 0.0002810 .016270 .016270 .170 .707$
near cactus1 20.0953320 .095330 .047670 .500 .649
Residual Error 30.2859180 .285920 .09531
Total 130.867875
Unusual Observations for StDevs
Observation StDevs Fit SE Fit Residual $\begin{gathered}\mathrm{St} \\ \mathrm{Resid}\end{gathered}$

2	1.414	1.414	0.309	-0.000	$*$	X
5	1.291	1.291	0.309	-0.000	$*$	X
12	0.816	0.816	0.309	0.000	$*$	X
14	1.000	1.000	0.309	0.000	$*$	X

Response Table for Signal to Noise Ratios Nominal is best $\left(10 \times \log 10\left(\mathrm{Ybar}^{\wedge} 2 / \mathrm{s}^{\wedge} 2\right)\right)$
Level outside near aloe near near near

		cactus aloe1 cactus1				
1	32.62	30.62	31.15	30.90	32.15	
2	29.95	31.57	30.59	31.71	30.55	
3	32.43	31.39	31.57		31.72	
4			32.16			
Delta	2.67	0.95	1.57	0.81	1.60	
Rank	1	4	3	5	2	
	Response Table for Means					
Level outside near aloe near	near	near				
1	40.94	41.19	41.00	41.06	40.50	
2	41.14	41.00	41.02	40.94	41.17	
3	40.79	40.84	40.95	40.95		
4			41.13			
Delta	0.35	0.34	0.17	0.13	0.67	
Rank	2	3	4	5	1	

Response Table for Standard Deviations Level outside near aloe $\begin{gathered}\text { near } \\ \text { cactus }\end{gathered}$ near aloe1 $\begin{gathered}\text { near } \\ \text { cactus } 1\end{gathered}$
$\left.\begin{array}{cccccc}1 & 0.9728 & 1.2497 & 1.1455 & 1.1983 & 1.0000 \\ 2 & 1.3227 & 1.1129 & 1.2217 & 1.0877 & 1.2421 \\ 3 & 0.9872 & 1.1090 & 1.1275 & & 1.0942 \\ 4 & & & 1.0374 & & \\ \text { Delta } & 0.3499 & 0.1407 & 0.1843 & 0.1106 & 0.2421 \\ \text { Rank } & 1 & 4 & 3 & 5 & 2 \\ & & & & \text { Probability Plot of east } \\ & & & \text { Probability Plot of west } \\ & & & \text { Probability Plot of north } \\ \text { Probability Plot of south }\end{array}\right)$

Samples per batch at each time: 1 Total runs: 27
Main Effects Plot for near aloe
Taguchi Analysis: east, west, north, south versus outside, ... ar cactus1

* NOTE * Design is not orthogonal.

Linear Model Analysis: SN ratios versus outside, near aloe, near cactus, near aloe1, near cactus1
Estimated Model Coefficients for SN ratios
Term Coef SE Coef T P
Constant $30.73841 .6450 \quad 18.6860 .000$
$\begin{array}{llllll}\text { outside } 34 & 2.4240 & 2.0796 & 1.166 & 0.328\end{array}$
outside $35-2.18331 .2752-1.712 \quad 0.185$
$\begin{array}{lllll}\text { near alo } 33 & 0.2436 & 1.7278 & 0.141 & 0.897\end{array}$
$\begin{array}{llllll}\text { near alo } 34 & 2.0028 & 1.7959 & 1.115 & 0.346\end{array}$
$\begin{array}{llllll}\text { near cac } 32 & 2.4000 & 2.6834 & 0.894 & 0.437\end{array}$
$\begin{array}{llllll}\text { near cac } 33 & 1.1570 & 1.8901 & 0.612 & 0.584\end{array}$
near cac $34-1.1606 \quad 2.2719-0.511 \quad 0.645$
near alo $38-0.4522 \quad 0.8830-0.5120 .644$
near cac $38-1.6192 \quad 3.7096-0.4360 .692$
near cac $39-0.6041 \quad 2.5969 \quad-0.233 \quad 0.831$
Model Summary
S R-Sq R-Sq(adj)
2.2974 68.63\% 0.00\%

Analysis of Variance for SN ratios

Source	DF	Seq SS	Adj SS Adj MS	F	P	
outside	2	23.4900	15.602	7.801	1.48	0.357
near aloe	2	1.6903	6.590	3.295	0.62	0.593
near cactus	3	3.2046	5.427	1.809	0.34	0.799
near aloe1	1	0.0817	1.384	1.384	0.26	0.644
near cactus1	2	6.1690	6.169	3.085	0.58	0.610
Residual Error	3	15.8336	15.834	5.278		

Total 1350.4692
Unusual Observations for SN ratios
Observation SN ratios Fit SE Fit Residual $\begin{gathered}\mathrm{St} \\ \text { Resid }\end{gathered}$

2	29.245	29.245	2.297	0.000	$*$	X
5	30.142	30.142	2.297	0.000	$*$	X
12	34.017	34.017	2.297	-0.000	$*$	X
14	32.149	32.149	2.297	0.000	$*$	X

X denotes an observation whose X value gives it large leverage.
Linear Model Analysis: Means versus outside, near aloe, near cactus, near aloe1, near cactus1
Estimated Model Coefficients for Means
Term Coef SE Coef T P
Constant $40.7880 \quad 0.2383 \quad 171.180 \quad 0.000$
$\begin{array}{llllll}\text { outside } 34 & 0.0781 & 0.3012 & 0.259 & 0.812\end{array}$
$\begin{array}{llllll}\text { outside } 35 & 0.1392 & 0.1847 & 0.754 & 0.506\end{array}$
near alo $330.1174 \quad 0.2503 \quad 0.469 \quad 0.671$
near alo $34-0.0104 \quad 0.2601 \quad-0.040 \quad 0.971$
$\begin{array}{lllll}\text { near cac } 32 & 0.2844 & 0.3887 & 0.732 & 0.517\end{array}$
near cac $33-0.0266 \quad 0.2738-0.097 \quad 0.929$
near cac $34-0.2667 \quad 0.3291-0.810 \quad 0.477$
near alo $38-0.0895 \quad 0.1279-0.700 \quad 0.535$
near cac $38-0.6330 \quad 0.5373-1.178 \quad 0.324$
$\begin{array}{llllll}\text { near cac } 39 & 0.2604 & 0.3762 & 0.692 & 0.539\end{array}$
Model Summary
S R-Sq R-Sq(adj)
0.3328 70.85\% 0.00\%

Analysis of Variance for Means
Source DF Seq SS Adj SS Adj MS F P
outside $\quad 20.287570 .153410 .076700 .690 .566$
near aloe $\quad 20.075860 .026280 .013140 .120 .892$

GSJ: Volume 6, Issue 1, January 2018

Unusual Observations for StDevs
Observation StDevs Fit \quad SE Fit Residual $\begin{array}{r}\mathrm{St} \\ \text { Resid }\end{array}$

2	1.414	1.414	0.309	-0.000	$*$	X
5	1.291	1.291	0.309	-0.000	$*$	X
12	0.816	0.816	0.309	0.000	$*$	X
14	1.000	1.000	0.309	0.000	$*$	X

Response Table for Signal to Noise Ratios

Pareto Chart of outside by near aloe
Nested ANOVA: near cactus, near cactus1, near aloe, near aloe1
Nested ANOVA: near cactus versus outside Analysis of Variance for near cactus
Source DF SS MS
outside 21.55480 .7774
Error 1210.17860 .8482
Total 1411.7333
Variance Components

Source Var Comp. \% of Total StDev
$\begin{array}{cccc}\text { outside } & -0.015^{*} & 0.00 & 0.000 \\ \text { Error } & 0.848 & 100.00 & 0.921 \\ \text { Total } & 0.848 & & 0.921\end{array}$

* Value is negative, and is estimated by zero. Expected Mean Squares
1 outside $1.00(2)+4.80(1)$
2 Error 1.00(2)
Nested ANOVA: near cactus1 versus outside Analysis of Variance for near cactus1
Source DF SS MS
outside 22.01901 .0095
Error 123.71430 .3095
Total 145.7333

		Variance Components \% of		
Source Var Comp.				
Total				

Expected Mean Squares
1 outside $1.00(2)+4.80(1)$
2 Error 1.00 (2)
Nested ANOVA: near aloe versus outside Analysis of Variance for near aloe
Source DF SS MS
outside $2 \times 2.75481 .3774$
Error 126.17860 .5149
Total 148.9333

		$\begin{array}{l}\text { Variance Con } \\ \text { Source Var Comp. } \\ \text { \% of }\end{array}$			StDev
Total					

Expected Mean Squares
1 outside $1.00(2)+4.80(1)$
2 Error 1.00(2)
Nested ANOVA: near aloe 1 versus outside Analysis of Variance for near aloe 1
Source DF SS MS
outside 20.55480 .2774
Error 123.17860 .2649
Total 143.7333
Variance Components
Source Var Comp. $\begin{gathered}\text { \% of } \\ \text { Total } \\ \text { StDev }\end{gathered}$
$\begin{array}{llll}\text { outside } & 0.003 & 0.97 & 0.051\end{array}$

Taguchi Analysis: east, west, north, south versus outside, ... ar cactus1

* NOTE * Design is not orthogonal. Response Table for Signal to Noise Ratios
Nominal is best $\left(10 \times \log 10\left(\mathrm{Ybar}^{\wedge} 2 / \mathrm{s}^{\wedge} 2\right)\right)$
Level outside near aloe near near near

| 1 | 32.62 | 30.62 | 31.15 | 30.90 | 32.15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 29.95 | 31.57 | 30.59 | 31.71 | 30.55 |
| 3 | 32.43 | 31.39 | 31.57 | | 31.72 |
| 4 | | | 32.16 | | |
| Delta | 2.67 | 0.95 | 1.57 | 0.81 | 1.60 |
| Rank | 1 | 4 | 3 | 5 | 2 |

Level outside near aloe near near near cactus aloe 1 cactus 1

1	40.94	41.19	41.00	41.06	40.50
2	41.14	41.00	41.02	40.94	41.17
3	40.79	40.84	40.95		40.95
4			41.13		
Delta	0.35	0.34	0.17	0.13	0.67
Rank	2	3	4	5	1

Taguchi Analysis: east, west, north, south versus outside, ... ar cactus1

* NOTE * Design is not orthogonal. Predicted values
* NOTE * Design is not orthogonal. Prediction
S/N Ratio Mean StDev $\operatorname{Ln}($ StDev $)$
$33.734840 .54550 .835915-0.181412$

Settings

outside near near near near aloe cactus aloe 1 cactus 1

34	33	32	38	38

Taguchi Analysis: east, west, north, south versus outside, ... ar cactus1

* NOTE * Design is not orthogonal. Predicted values
* NOTE * Design is not orthogonal. Prediction
S/N Ratio Mean StDev $\operatorname{Ln}($ StDev $)$
$33.734840 .54550 .835915-0.181412$
Settings
outside near near near near
aloe cactus aloe 1 cactus
$\begin{array}{lllll}34 & 33 & 32 & 38 & 38\end{array}$
Probability Plot of east, north
* NOTE * Distribution could not be fit. The number of
distinct rows of data in east (for west
$=39$, south $=41$) must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in east (for west
$=40$, south $=42$) must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in east (for west
$=41$, south $=40)$ must be greater than or equal to the number of estimated distribution parameters.
NOTE * Distribution could not be fit. The number of distinct rows of data in east (for west
$=41$, south $=41$) must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in north (for
west $=39$, south $=41$) must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in north (for
west $=40$, south $=42$) must be greater than or equal to the number of estimated distribution parameters.
* NOTE * Distribution could not be fit. The number of distinct rows of data in north (for
west $=41$, south $=41)$ must be greater than or equal to the number of estimated distribution parameters.
Taguchi Analysis: east, west, north, south versus outside, ... ar cactus1
* NOTE * Design is not orthogonal.

Linear Model Analysis: SN ratios versus outside, near aloe, near cactus, near aloe1, near cactus1
Estimated Model Coefficients for SN ratios
Term Coef SE Coef T P
Constant $30.73841 .6450 \quad 18.6860 .000$
$\begin{array}{llllll}\text { outside } 34 & 2.4240 & 2.0796 & 1.166 & 0.328\end{array}$
outside $35-2.18331 .2752-1.712 \quad 0.185$
$\begin{array}{llllll}\text { near alo } 33 & 0.2436 & 1.7278 & 0.141 & 0.897\end{array}$
$\begin{array}{lllllll}\text { near alo } 34 & 2.0028 & 1.7959 & 1.115 & 0.346\end{array}$
$\begin{array}{llllll}\text { near cac } 32 & 2.4000 & 2.6834 & 0.894 & 0.437\end{array}$
$\begin{array}{llllll}\text { near cac } 33 & 1.1570 & 1.8901 & 0.612 & 0.584\end{array}$
near cac $34-1.1606 \quad 2.2719-0.511 \quad 0.645$
near alo $38-0.4522 \quad 0.8830-0.512 \quad 0.644$
near cac $38-1.6192 \quad 3.7096-0.4360 .692$
near cac $39-0.6041 \quad 2.5969-0.2330 .831$

Model Summary

S R-Sq R-Sq(adj)
$2.297468 .63 \% \quad 0.00 \%$
Analysis of Variance for SN ratios

X denotes an observation whose X value gives it large leverage.
Linear Model Analysis: Means versus outside, near aloe, near cactus, near aloe1, near cactus 1
Estimated Model Coefficients for Means
Term Coef SE Coef T P
Constant 40.78800 .2383171 .1800 .000
$\begin{array}{llllll}\text { outside } 34 & 0.0781 & 0.3012 & 0.259 & 0.812\end{array}$
$\begin{array}{lllll}\text { outside } 35 & 0.1392 & 0.1847 & 0.754 & 0.506\end{array}$
$\begin{array}{llllll}\text { near alo } 33 & 0.1174 & 0.2503 & 0.469 & 0.671\end{array}$
near alo $34-0.0104 \quad 0.2601 \quad-0.040 \quad 0.971$
$\begin{array}{llllll}\text { near cac } 32 & 0.2844 & 0.3887 & 0.732 & 0.517\end{array}$
$\begin{array}{llllll}\text { near cac } 33 & -0.0266 & 0.2738 & -0.097 & 0.929\end{array}$
$\begin{array}{lllll}\text { near cac } 34 & -0.2667 & 0.3291 & -0.810 & 0.477 \\ \text { near alo 38 } & -0.0895 & 0.1279 & -0.700 & 0.535 \\ \text { near cac 38 } & -0.6330 & 0.5373 & -1.178 & 0.324 \\ \text { near cac 39 } & 0.2604 & 0.3762 & 0.692 & 0.539\end{array}$ Model Summary
S R-Sq R-Sq(adj)
0.3328 70.85\% 0.00\%

Analysis of Variance for Means
Source DF Seq SS Adj SS Adj MS F P
outside $\quad 20.287570 .153410 .076700 .690 .566$
near aloe $\quad 20.075860 .026280 .013140 .120 .892$
near cactus 30.238830 .112150 .037380 .340 .802
near aloe1 $1 \quad 0.030250 .054210 .054210 .490 .535$
near cactus1 20.174790 .174790 .087400 .790 .530
Residual Error 30.332210 .332210 .11074
Total 131.13951
Unusual Observations for Means
Observation Means Fit SE Fit Residual $\begin{gathered}\mathrm{St} \\ \text { Resid }\end{gathered}$

| 2 | 41.000 | 41.000 | 0.333 | 0.000 | $*$ |
| :---: | :---: | :---: | :---: | :---: | :---: | X

Linear Model Analysis: StDevs versus outside, near aloe, near
cactus, near aloe1, near cactus 1
Estimated Model Coefficients for StDevs
Term Coef SE Coef T P
Constant $1.219710 .2211 \quad 5.518 \quad 0.012$
outside $34-0.32003 \quad 0.2795-1.1450 .335$
$\begin{array}{lllll}\text { outside } 35 & 0.28988 & 0.1714 & 1.692 & 0.189\end{array}$
near alo $33-0.00162 \quad 0.2322-0.0070 .995$
near alo $34-0.25889 \quad 0.2413-1.0730 .362$
near cac $32-0.32876 \quad 0.3606-0.9120 .429$
near cac $33-0.15486 \quad 0.2540-0.610 \quad 0.585$
$\begin{array}{lllll}\text { near cac } 34 & 0.14977 & 0.3053 & 0.491 & 0.657\end{array}$
near alo $38 \quad 0.04902 \quad 0.1187 \quad 0.4130 .707$
$\begin{array}{llllll}\text { near cac } 38 & 0.21759 & 0.4985 & 0.437 & 0.692\end{array}$
near cac $390.062760 .3490 \quad 0.180 \quad 0.869$
Model Summary
$\left.\begin{array}{cccccccc}\text { S R-Sq } & \text { R-Sq(adj) } & & & \\ 0.3087 & 67.06 \% & 0.00 \%\end{array}\right]$

outside near near near near
$\begin{array}{lllll}34 & 33 & 32 & 38 & 38\end{array}$
aloe cactus aloe 1 cactus

Error	0.848	100.00	0.921
Total	0.848		0.921

* Value is negative, and is estimated by zero. Expected Mean Squares
1 outside $1.00(2)+4.80(1)$

2 Error $\quad 1.00(2)$
Nested ANOVA: near cactus1 versus outside Analysis of Variance for near cactus1

Source DF SS MS

outside	2	2.0190	1.0095
Error	12	3.7143	0.3095
Total	14	5.7333	

Variance Components
Source Var Comp. \% of StDev Total
$\begin{array}{llll}\text { outside } & 0.146 & 32.03 & 0.382\end{array}$
$\begin{array}{llll}\text { Error } & 0.310 & 67.97 & 0.556\end{array}$
$\begin{array}{lll}\text { Total } 0.455 & 0.675\end{array}$

Pareto Chart of outside by near aloe
Nested ANOVA: near cactus, near cactus1, near aloe, near aloe1
Nested ANOVA: near cactus versus outside Analysis of Variance for near cactus

| Source | DF | SS | MS |
| ---: | ---: | ---: | ---: | ---: |
| | | | |
| outside | 2 | 1.5548 | 0.7774 |

Error $\quad 12 \quad 10.1786 \quad 0.8482$

Total 1411.7333

Variance Components
Source Var Comp. \% of Total StDev
$\begin{array}{llll}\text { outside } & -0.015^{*} & 0.00 & 0.000\end{array}$

Total $0.848-0.921$

Pie Chart of outside, near aloe, near cactus, near aloe $1, \ldots$
Total $14 \quad 5.7333$

		Expected Mean Squares
1	outside	$1.00(2)+4.80(1)$
2	Error	$1.00(2)$

Nested ANOVA: near aloe versus outside Analysis of Variance for near aloe
Source DF SS MS
$\begin{array}{llll}\text { outside } & 2 & 2.7548 & 1.3774\end{array}$

Error $\quad 12 \quad 6.1786 \quad 0.5149$

Total 148.9333

Variance Components

[^0]| Source | DF | Adj SS | Adj MS | F-Value | P-Value | | Source | DF | Adj SS | Adj MS | F-Value | P-Value |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| outside | 2 | 2.019 | 1.0095 | 3.26 | 0.074 | | outside | 2 | 2.755 | 1.3774 | 2.68 | 0.109 |
| Error | 12 | 3.714 | 0.3095 | | | | | | | | | |
| | | | | | | | | | | | | |
| Total | 14 | 5.733 | | | | | | | | | | |
| Total | 14 | 8.933 | | | | | | | | | | |

Model Summary						Model Summary					
S	R-sq	R-sq(adj)	R -sq(pred)			S	R-sq	R-sq(adj)	R-sq(pred)		
0.556349	35.22%	24.42\%		\%		0.717552	30.84\%	19.31\%			
Coefficients						Coefficients					
Term	Coef	SE Coef	T-Value	P -Value	VIF	Term	Coef	SE Coef	T-Value	P -Value	VIF
Constant	39.476	0.149	265.49	0.000		Constant	34.155	0.192	178.10	0.000	
outside						outside					

34	-0.476	0.219	-2.18	0.050	1.24	34	-0.155	0.282	-0.55	0.594	1.24
35	-0.048	0.192	-0.25	0.808	1.24	35	-0.440	0.248	-1.78	0.101	1.24

near cactus1 = 39.476-0.476 outside_34-0.048 outside_35 + near aloe = 34.155-0.155 outside_34-0.440 outside_35+0.595 ou

Fits and Diagnostics for Unusual Observations					
Obsnear cactus1	Fit Resid	Std Resid	General Linear Model: near aloe1 versus outside		
Method					

12	40.000	39.000	1.000	2.08	R
14	38.000	39.000	-1.000	-2.08	R

R Large residual

General Linear Model: near aloe versus outside Method

Factor Information
Factor Type Levels Values
outside Fixed 3 34, 35, 36

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor coding $\quad(-1,0,+1)$
Factor Information
Factor Type Levels Values
outside Fixed 3 34, 35, 36
Total $\quad 14 \quad 3.7333$
Analysis of Variance
Model Summary
$\begin{array}{llll}\text { Total } & 15 & 180.47 & 1.96\end{array}$

Interaction Plot for near aloe

near aloe	0.355			
near aloe1	0.183	0.612		
near cactus	-0.310	-0.241	-0.040	
				0.211
near cactus1	0.591	0.075	-0.058	

Johnson Transformation for outside, near aloe, near ... st, north, south
Pie Chart of outside, near aloe, near cactus, near aloe1, ...
Pie Chart of outside, near aloe, near cactus, near aloe 1, ...
Scatterplot of near aloe vs outside
Scatterplot of near aloe vs outside
Scatterplot of near cactus vs outside
Scatterplot of near cactus vs outside
Scatterplot of near aloe 1 vs outside
Scatterplot of near aloe1 vs outside
Scatterplot of near cactus1 vs outside
Scatterplot of near cactus1 vs outside
Chart of east, north, south, west
Trend Analysis for east
Method
Model type Quadratic Trend Model

outside	15	35.00	0.76
near aloe	15	34.07	0.80
near aloe1	15	38.47	0.52
near cactus	15	33.47	0.92
near cactus1	15	39.47	0.64

Variance estimation Restricted maximum likelihood

MAD 0.56396 DF for fixed effects Kenward-Roger

MSD $\quad 0.37242$	
	Trend Analysis Plot for east
Trend Analysis for south	
Method	

Model type Linear Trend Model

Data	south
Length	15
NMissing	0
	Fitted Trend Equation

$\mathrm{Yt}=40.448+0.0357 \times \mathrm{t}$
Accuracy Measures
MAPE 1.12051

MAD	0.45556
MSD	0.30508

Single Exponential Smoothing for east Method
Data east

Length 15

| | | Smoothing Constant |
| :--- | :--- | :--- | :--- |
| α | 0.0783544 | |
| | | Accuracy Measures |
| MAPE | 1.40720 | |
| MAD | 0.59686 | |
| MSD | 0.42412 | |

Symmetry Plot for east
Mixed Effects Model: east versus outside, near aloe, near

[^1]Factor Information

Factor	Type	Levels	Values
outside	Random	3	$34,35,36$
near aloe	Fixed	3	$33,34,35$
near aloe1	Fixed	2	38,39
near cactus1	Fixed	3	$38,39,40$
near cactus	Fixed	4	$32,33,34,35$

Variance Components
Source Var \% of Total SE Var Z-Value P-Value
outside $0.000000 \quad 0.00 \%$ * *
$\begin{array}{llllll}\text { Error } & 0.628788 & 100.00 \% & 0.363031 & 1.732051 & 0.042\end{array}$

Total 0.628788
-2 Log likelihood $=27.967311$ Tests of Fixed Effects

Term	DF Num	DF Den	F-Value	P-Value
near aloe	2.00	6.00	0.12	0.891
near aloe1	1.00	6.00	0.10	0.767
near cactus1	2.00	6.00	0.53	0.614
near cactus	3.00	6.00	0.12	0.942

Model Summary
S \quad R-sq \quad R-sq(adj)
$0.792961 \quad 34.20 \% \quad 0.00 \%$
Coefficients
Term
Coef SE Coef DF
T-Value $\quad \mathrm{P}$-Value

near cactus				
32	-0.113636	0.778181	6.00	-0.146028
33	0.022727	0.565467	6.00	0.040192
34	0.340909	0.759595	6.00	0.448804

Marginal Fits and Diagnostics for Unusual Observations Obs east Fit Resid Std Resid

2	43.000000	43.000000	0.000000	$*$	X
5	43.000000	43.000000	-0.000000	-0.000002	X

X Unusual X
Mixed Effects Model: west versus outside, near aloe, ... s1,

| | near cactus
 Method | Term | Coef | SE Coef | DF | T-Value | P-Value |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variance estimation | Restricted maximum likelihood | Constant | 40.106061 | 0.300669 | 6.00 | 133.389204 | 0.000 |
| | | | | | | | |

Factor Information

Factor Type Levels Values
near aloe
$\begin{array}{llllll}33 & 0.000000 & 0.443813 & 6.00 & 0.000000 & 1.000\end{array}$
-2 Log likelihood $=25.161729$
Tests of Fixed Effects
0. Term

DF Num DF Den F-Value P-Value
0. near aloe
0. near aloe1 $\begin{array}{lllll}\text { near cactus1 } & 2.00 & 6.00 & 0.67 & 0.548\end{array}$ $\begin{array}{lllll}\text { near cactus } & 3.00 & 6.00 & 0.42 & 0.743\end{array}$

Model Summary
S R-sq R-sq(adj)
$0.627646 \quad 52.09 \% \quad 0.00 \%$

34	0.909091	0.469941	6.00	1.934478	0. near cactus 1		Fixed	d 3	38, 39, 40			
near aloe1					near cactus		Fixed	d 4	32, 33, 34, 35			
38	-0.136364	0.231774	6.00	-0.588348	0.5		Variance Components			Z-Value	P -Value	
					Source		Var	\% of Total	SE Var			
near cactus1												
					outside	0.000	0000	0.00\%	*	*	*	
38	0.121212	0.740024	6.00	0.163795	0.	0.303030		100.00\%	0.174955	1.732051	0.042	
					Error							
39	-0.515152	0.611997	6.00	-0.841754	0.	0.303030						
					Total							

 Factor Information

Factor	Type	Levels	Values	33	0.333333	0.389249	6.00	0.856349	0.425
outside	Random	3	$34,35,36$	34	-0.303030	0.412166	6.00	-0.735215	0.490
near aloe	Fixed	3	$33,34,35$	near aloe1					
near aloe1	Fixed	2	38,39	38	0.045455	0.203279	6.00	0.223607	0.830

References

	International
1."Guidelines for limiting exposure	Commission
ying electric, magneti	Non-ionizing
and electromagnetic fields (up to 300	Radiation
GHz)"	Protection
2."The Impulse UHF Field in	ABRIKOSOV, I.
Experimental and Clinical Practice"	A. 1954
"The Action of a Pulsed Electric	ABRIKOSOV, I.
UHF Field on the Organism"	A. 1955
	Litovitz TA, Krause
3."The role of coherence time in the	D, Penafiel M,
effect of microwaves on ornithine decarboxylase activity"	$\begin{array}{cl}\text { Elson EC, Mullins } \\ \text { JM } & 1993\end{array}$
4."Opioid receptor subtypes that mediate a microwave-induced decrease"	$\begin{aligned} & \text { inNL, Pal’tsev IuP, } \\ & \text { Iasnetsov VV } 1994 \end{aligned}$
5.Effect of a magnetic field on carboxydismutase"	$\begin{aligned} & \text { AKOYUNOGLOU, } \\ & \text { G. } 1964 \end{aligned}$
6."Mortality of chicken embryos	Youbicier-Simo BJ,
phones"	M 1998
ronucleus induction	Trosic I, Busljeta I,
hole-body microwave irradiation of	f Kasuba V, Rozgaj
rats"	R 2002

8. Study on health effects of the shortwave transmitter station of
Schwarzenburg, Bern, Switzerland"
9.The microwave syndrome-further aspects of a Spanish study, in:
Proceedings of the Third
InternationalWorkshop on Bioelectromagnetic Effects of Electromagnetic Fields, Kos Greece"
E.S. Altpeter, T.H. Krebs
n at the end of a paragraph. Do not add any kind of pagination anywhere in the paper. Do not number text headsthe template will do that for you.

Finally, complete content and organizational editing before formatting. Please take note of the following items when proofreading spelling and grammar:

A. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

B. Units

- Use either SI (MKS) or CGS as primary units. (SI units are encouraged.) English units may be used as secondary units (in parentheses). An exception would be the use of English units as identifiers in trade, such as " 3.5 -inch disk drive."
- Avoid combining SI and CGS units, such as current in amperes and magnetic field in oersteds. This often leads to confusion because equations do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation.
- Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries," not "...a few H."
- Use a zero before decimal points: " 0.25 ," not ". 25 ." Use "cm3," not "cc." (bullet list)

C. Equations

The equations are an exception to the prescribed specifications of this template. You will need to determine whether or not your equation should be typed using either the Times New Roman or the Symbol font (please no other font). To create multileveled equations, it may be necessary to treat the equation as a graphic and insert it into the text after your paper is styled.

Number equations consecutively. Equation numbers, within parentheses, are to position flush right, as in (1), using a right tab stop. To make your equations more compact, you may use the solidus (/), the exp function, or appropriate exponents. Italicize Roman symbols for quantities and variables, but not Greek symbols. Use a long dash rather than a hyphen for a minus sign. Punctuate equations with commas or periods when they are part of a sentence, as in

$$
\begin{equation*}
a+b=\gamma \tag{1}
\end{equation*}
$$

[^2]Note that the equation is centered using a center tab stop. Be sure that the symbols in your equation have been defined before or immediately following the equation. Use "(1)," not "Eq. (1)" or "equation (1)," except at the beginning of a sentence: "Equation (1) is ..."

D. Some Common Mistakes

- The word "data" is plural, not singular.
- The subscript for the permeability of vacuum μ_{0}, and other common scientific constants, is zero with subscript formatting, not a lowercase letter "o."
- In American English, commas, semi-/colons, periods, question and exclamation marks are located within quotation marks only when a complete thought or name is cited, such as a title or full quotation. When quotation marks are used, instead of a bold or italic typeface, to highlight a word or phrase, punctuation should appear outside of the quotation marks. A parenthetical phrase or statement at the end of a sentence is punctuated outside of the closing parenthesis (like this). (A parenthetical sentence is punctuated within the parentheses.)
- A graph within a graph is an "inset," not an "insert." The word alternatively is preferred to the word "alternately" (unless you really mean something that alternates).
- Do not use the word "essentially" to mean "approximately" or "effectively."
- In your paper title, if the words "that uses" can accurately replace the word using, capitalize the "u"; if not, keep using lower-cased.
- Be aware of the different meanings of the homophones "affect" and "effect," "complement" and "compliment," "discreet" and "discrete," "principal" and "principle."
- Do not confuse "imply" and "infer."
- The prefix "non" is not a word; it should be joined to the word it modifies, usually without a hyphen.
- There is no period after the "et" in the Latin abbreviation "et al."
- The abbreviation "i.e." means "that is," and the abbreviation "e.g." means "for example."

An excellent style manual for science writers is [7].

II. Using the Template

After the text edit has been completed, the paper is ready for the template. Duplicate the template file by using the Save As command, and use the naming convention prescribed by your conference for the name of your paper. In this newly created file, highlight all of the contents and import your prepared text file. You are now ready to style your paper; use the scroll down window on the left of the MS Word Formatting toolbar.

A. Authors and Affiliations

The template is designed so that author affiliations are not repeated each time for multiple authors of the same affiliation. Please keep your affiliations as succinct as possible (for example, do not differentiate among departments of the same organization). This template was designed for two affiliations.

1) For authorls of only one affiliation (Heading 3): To change the default, adjust the template as follows.
a) Selection (Heading 4): Highlight all author and affiliation lines.
b) Change number of columns: Select the Columns icon from the MS Word Standard toolbar and then select "1 Column" from the selection palette.
c) Deletion: Delete the author and affiliation lines for the second affiliation.
2) For authorls of more than two affiliations: To change the default, adjust the template as follows.
a) Selection: Highlight all author and affiliation lines.
b) Change number of columns: Select the "Columns" icon from the MS Word Standard toolbar and then select " 1 Column" from the selection palette.
c) Highlight author and affiliation lines of affiliation 1 and copy this selection.
d) Formatting: Insert one hard return immediately after the last character of the last affiliation line. Then paste down the copy of affiliation 1. Repeat as necessary for each additional affiliation.
e) Reassign number of columns: Place your cursor to the right of the last character of the last affiliation line of an even numbered affiliation (e.g., if there are five affiliations, place your cursor at end of fourth affiliation). Drag the cursor up to highlight all of the above author and affiliation lines. Go to Column icon and select " 2 Columns". If you have an odd number of affiliations, the final affiliation will be centered on the page; all previous will be in two columns.

B. Identify the Headings

Headings, or heads, are organizational devices that guide the reader through your paper. There are two types: component heads and text heads.

Component heads identify the different components of your paper and are not topically subordinate to each other. Examples include ACKNOWLEDGMENTS and REFERENCES, and for these, the correct style to use is "Heading 5." Use "figure caption" for your Figure captions, and "table head" for your table title. Run-in heads, such as "Abstract," will require you to apply a style (in this case, italic) in addition to the style provided by the drop down menu to differentiate the head from the text.

Text heads organize the topics on a relational, hierarchical basis. For example, the paper title is the primary text head because all subsequent material relates and elaborates on this one topic. If there are two or more sub-topics, the next level head (uppercase Roman numerals) should be used and,
conversely, if there are not at least two sub-topics, then no subheads should be introduced. Styles named "Heading 1," "Heading 2," "Heading 3," and "Heading 4" are prescribed.

C. Figures and Tables

1) Positioning Figures and Tables: Place figures and tables at the top and bottom of columns. Avoid placing them in the middle of columns. Large figures and tables may span across both columns. Figure captions should be below the figures; table heads should appear above the tables. Insert figures and tables after they are cited in the text. Use the abbreviation "Fig. l," even at the beginning of a sentence.

TABLE I. TABLE STYLES

Table	Table Column Head		
	Table column subhead	Subhead	Subhead
copy	More table copy $^{\mathrm{a}}$		

${ }^{\text {a. }}$ Sample of a Table footnote. (Table footnote)

Fig. 1. Example of a figure caption. (figure caption)
We suggest that you use a text box to insert a graphic (which is ideally a 300 dpi resolution TIFF or EPS file with all fonts embedded) because this method is somewhat more stable than directly inserting a picture.

To have non-visible rules on your frame, use the MSWord "Format" pull-down menu, select Text Box > Colors and Lines to choose No Fill and No Line.

Figure Labels: Use 8 point Times New Roman for Figure labels. Use words rather than symbols or abbreviations when writing Figure axis labels to avoid confusing the reader. As an example, write the quantity "Magnetization," or "Magnetization, M," not just "M." If including units in the label, present them within parentheses. Do not label axes only with units. In the example, write "Magnetization (A/m)" or "Magnetization (A ($\mathrm{m}(1)$," not just "A/m." Do not label axes with a ratio of quantities and units. For example, write "Temperature (K)," not "Temperature/K."

Acknowledgment (HEADING 5)

The preferred spelling of the word "acknowledgment" in America is without an "e" after the "g." Avoid the stilted
expression "one of us (R. B. G.) thanks ...". Instead, try "R. B. G. thanks...". Put sponsor acknowledgments in the unnumbered footnote on the first page.

References

The template will number citations consecutively within brackets [1]. The sentence punctuation follows the bracket [2]. Refer simply to the reference number, as in [3]-do not use "Ref. [3]" or "reference [3]" except at the beginning of a sentence: "Reference [3] was the first ..."

Number footnotes separately in superscripts. Place the actual footnote at the bottom of the column in which it was cited. Do not put footnotes in the reference list. Use letters for table footnotes

Unless there are six authors or more give all authors' names; do not use "et al.". Papers that have not been published, even if they have been submitted for publication, should be cited as "unpublished" [4]. Papers that have been accepted for publication should be cited as "in press" [5] Capitalize only the first word in a paper title, except for proper nouns and element symbols.

For papers published in translation journals, please give the English citation first, followed by the original foreignlanguage citation [6].
[1] G. Eason, B. Noble, and I.N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955. (references)
[2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol 2. Oxford: Clarendon, 1892, pp.68-73
[3] I.S. Jacobs and C.P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271-350.
[4] K. Elissa, "Title of paper if known," unpublished.
[5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.
[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
[7] M. Young, The Technical Writer's Handbook. Mill Valley, CA University Science, 1989.

[^0]: Analysis of Variance

[^1]: ... ear cactus Method

[^2]: Identify applicable sponsor/s here. If no sponsors, delete this text box (sponsors).

