

GSJ: Volume 7, Issue 10, October 2019, Online: ISSN 2320-9186
www.globalscientificjournal.com

ENHANCEMENT OF SOAP WEB SERVICES MODEL

PERFORMANCE BASED ON OPTIMIZED XML FILES

Adeeb M. Al-qershi
Computer Center and Information Technology

adeeb@taiz.edu.ye

Abstract

 The quality of Web Services (WS) depends on the efficiency of considered WS model. In a real

environment, the efficiency of WS models are measured and evaluated by various vital metrics such as:

reducing Response Time (RT), CPU Utilization and memory space. Traditional WS model has three

components, which are WS Provider, WS Consumer and WS Registry as in [5],[3] .Actually, WS have

two types based on principles either SOAP or REST as in [6].Each SOAP and REST has advantages

and disadvantages over others. SAOP depend on XML files rather than REST that can operate on XML

or JSON files. In fact, XML files have a large size and more manipulating time rather than JSON files.

In this paper, proposed component has been added and tested into WS traditional model that has been

called XMLOptimizer. Based on results of experiments that have done on WS model with

XMLOptimizer, the XMLOptimizer enhanced the performance of WS. The measured factors of

performance were Response Time (RT), CPU Utilities and Memory space. For instance, the RT of

search operation has been enhanced to 99% as well as the memory space of XML files have been

reduced by 90%.

Keywords: Web Services, SOAP, REST, XML, JSON, XMLOptimizer, Response Time, CPU Utilities,

Memory space

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1430

GSJ© 2019
www.globalscientificjournal.com

Introduction

With the advent of the Internet, Web and e-commerce technology began to

become as a commodity [1].WS technologies are becoming increasingly important

for integrating systems and services [2]. They provide a universal and standard

platform which can works with different services. The most common way to

implement WS are SOAP and REST [4]. Based on table (1) each one them have

advantage and disadvantage, but JSON files have less size compared by XML

files. Consequently, XML files exhausted more memory space, CPU utilization

and RT.

Literature Review

 SOAP: " is a standard for sending messages and making remote procedure calls over the

Internet"[11].so SOAP is independent of the programming language, object model, operating

system and platform. It uses HTTP as the transport protocol and XML for data encoding"[11].

 REST is Representational State Transfer and it depend on client and server

 architecture REST does not require message format as SOAP [7].

Table (2.1) demonstrates a summery comparison between SOAP and

REST depend on evaluation of performance was performed on mobile

emulator [12], [13], [14].

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1431

GSJ© 2019
www.globalscientificjournal.com

Table (1): SOAP and REST performance [12], [13], [14].

Factor SOAP REST

Architecture Enterprise Client/server

Designed for Extensible, Distributed Computing Client/server

Stateless Yes Yes

Message Format XML XML and JSON

Message size Little big Very little

Application Heavyweight lightweight

Mobile computing Little suitable More suitable

Coupling Tightly coupled with Client-server

but Loosely Coupled with enterprise

Opposite of SOAP

Standard Standard Ad-hoc

Response time Relatively high Low

Security Secure (based on WS-Security) Low secure

Transaction Support ACID Not

Message size 9-10 times bigger than REST Smaller than SOAP

Latency response

time

5-6 times more than REST 5-6 lesser than

SAOP

 There are many studies have been done to enhance WS model by reduce XML files.

 This reducing depended on compress XML files size. This technique applies either on sent

SOAP message or XML files. There are many techniques are used to compress XML files

to enhance XML file performance such as ZIP, XMILL, XGrind and XPRESS. These

studies listed below.

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1432

GSJ© 2019
www.globalscientificjournal.com

1- ZIP:

 (Tere, G.M., R R Mudholkar, and B.T. Jadhav,2014) have depended on their research

on compress messages, which are sent from SOAP as a response files [8]. This compression

used ZIP utilities. Its good way to send XML data from server side to client side, but it's not

clear how will deal with this ZIP file in client side.

2- XMill

 XMILL uses dictionary compress [9] to compress XML tags and zlib, which

is library of gzip to compress inner data [10].

3-XGrind

 XGrind depends on Huffman encoding to compress data and dictionary compressing for

XML tags [9].

4-XPRESS

XPRESS technique based on the XPRESS compression rate was 73% and query

performance was 2.38 times better than other XML compressors [9].In this technique six

encoder's methods are done for data values u8, u16, u32 and f32, dict8 and Huffman.

The previous XML compression techniques still needed to compress and decompress

of entire data every time to access it, so it's not effective and not flexible especially with the

frequented accesses. Because, these techniques need additional time to manipulate access

operation (compress time+ decompress time+ query time). Furthermore, decompress XML

file will return XML file to its original size (before compress). Thus, each access to XML file

needs additional memory space.

Theoretical framework

 XML optimizer: is a component that has been developed to improve client side

application performance based on reducing the XML file size and RT of operations on XML

files. In addition, all operations on this file are done in compressed mode as shown in Figure

(1).In fact, XMLOptimizer reconstruct and rearrange XML file tags and data in efficient way.

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1433

GSJ© 2019
www.globalscientificjournal.com

1- XML Optimizer Functionality

XML files have plenty of whitespaces, because each tag (element) takes a

separate line, even if tag characters not fill all line, the remaining spaces are

padded with whitespaces. Moreover, XML File has a lot of tags that are repeated

for each record in both open and close tag. Figure (1) shows how XML Optimizer

optimizes the original XML file by eliminating Whitespaces and reducing XML

tag count of original XML file

Figure (1): XML Optimizer Architecture

The XML Optimizer receives XML file from WS Provider, then it

eliminates white spaces and repeated tags. The XML optimizer has two main

stages to achieve optimizing operation. These steps are explained as follow:

First Stage:

XML optimizer in this stage holds the original file that is decompressed in first

stage and collects all tags within original XML file without repeating. These tags

are used to build the compressed xml file as well as used in the third stage to collect

data from all tags. This stage reduces the number of tags in the compress xml file

compared with original one by eliminating repeated tags. The next equation is used

to calculate count of XML file tags to show the difference between tags count of

original and compressed xml files sequentially. (𝑥) = (2 ∗ 𝑅𝑡) + (2 ∗ 𝑃𝑡𝑛) + (2 ∗ 𝐶𝑡𝑛)

Where: 𝑅𝑡 is Root tag, 𝑃𝑡𝑛 number of parent tags, 𝐶𝑡𝑛 number of Child tags, 2 constant number

for open and close tag.

XML File Optimized XML File

Eliminate White Spaces

Eliminate Repeated

Tags

XMLOptimizer

(Re-construct XML file)

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1434

GSJ© 2019
www.globalscientificjournal.com

Repeated tags

White Spaces

. This equation calculates tags count in traditional xml file. When applying this equation on xml

file before compressing, the number of xml tags is 44 tags as in figure (2). In the other side,

when applying the same equation on xml file after compressing, then the tags number is 16 tags

as in figure (3).Consequently, the result of this stage is XML structure without repeated tags.

Second Stage:

In this stage the content (data) of all tags in original file is collected and then added to

previous structure that has been generated in previous stage as in figure (2).So, XML Optimizer

functionality is summarized in:

1. Received XML file.

2. Eliminates white spaces of XML file.

3. Eliminates repeated tags of XML file.

4. Generates new XML file structure.

5. Fill the generated XML structure with data.

The size of optimized XML file depend on XML tag length, number of tags and number

of whitespaces ,so the longer length of XML tag ,the smaller optimized XML file size ,also the

more whitespaces , the smaller optimized XML file size.

Figure (2): Traditional XML file

The xml file after XML Optimizer has been applied looks like as in figure (3). The repeated tags are

eliminated and their data is collected and allocated within unique tags

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1435

GSJ© 2019
www.globalscientificjournal.com

These tags were repeated in

traditional file three times

before applying XML

Optimizer,

Figure (3): WSMM Compressed XML file

The figure (3) shows the xml file after compress the xml file .Xml Optimizer works

with two main methods XmlUniqueSructure and XMLOptimizer.XmlUniqueNodes method is

used to travel throw original XML file nodes (tags) to collect all nodes Root, Parents and

Childs without repeating. These nodes used to build the structure of new compressed XML

file. XMLOptimizer method is used to re-construct the XML file structure. The new structure

contains the unique tags that are returned by XmlUniqueNodes method, and all data of XML

file nodes. XMLOptimizer method travels all nodes to get data from each node and appends it

into matches tag node.

2- XML Optimizer Contribution in WS

In the contrast of traditional compression techniques that depend on

compressing and decompressing files, the XML Optimizer doesn't need to do that

each time.

The idea behind XML optimizer is eliminating whitespaces as well as eliminating

repeating tags of XML tags. Consequently, XML Optimizer contributed to:

1- No need to decompress xml files, so all operations are done on

compressed xml file.

2- Save memory space due to reduce of XML file.

3- Enhance XML parser by reduce RT of operations on XML files such as

search, update, insert and delete.

4- Save time of compress and decompress operation that is needed in others techniques.

5- Save CPU Utilities.

6- Works with multiple Tables in the same XML file.

7- Can apply with large size of XML files.

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1436

GSJ© 2019
www.globalscientificjournal.com

3- XML Optimizer Algorithms

Algorithm: XmlUniqueSructure

Input Data : origin XML file path

Result: new XML file structure without repeated tags

The previous pseudo code shows how parse received XML file to get Parents and their Childs into

strings without repeating. In line 8, distinctParent method receives XMLObj with LINQ to retrieve

nodes without repeating

Algorithm: XML Optimizer

Input Data : origin XML file path

Result: new XML file structure without repeated tags

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1437

GSJ© 2019
www.globalscientificjournal.com

This algorithm is used to build the new optimized XML file structure based on

XmlUniqueSructure algorithm. StringBuilder is proposed mechanism to build strings based

on its high speed of building strings [8]. In this algorithm the origin xml file nodes are

traveled depend on collected parents and Childs using dynamic XPath which is created by

XmlUniqueSructure algorithm to ensure rapidly speed access to each node. Finally, the new

optimized xml file is saved and become ready to use.

Experiments and result

 The experiments have been done to test the impact of XMLOptimizer on RT, CPU

utilization and memory space factors.

1- Response Time (RT)

Response Time: is the vital computing factor in any system/application [15]. RT According

to the IBM Dictionary of Computing is “The elapsed time between the end of an inquiry

or demand on a computer system and the beginning of a response" [6]. RT is used to

measure time from submit request until get first response [16].

The experiments have been done about 9 times on XML files. XML files contain

thousands of records as in Figure (4).The size of XML files that are measured starts from

293KB until 93MB.This experiment measures RT of search operation on Optimized XML

files by XML Optimizer of WSMM component and others without optimization as well as

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1438

GSJ© 2019
www.globalscientificjournal.com

measure enhancement rate of search operation.

Experiment 1: Measure RT of search operation from optimized XML file

Input: XML files with different size starts with 293KB to 93MB.

Result: comparison between RT of optimized and none optimized XML

Size Unit: Second

Figure (4): RT of Search Operation after and before applied XML Optimizer

Result Analysis:

The previous Figure shows that RT of search performance enhanced with the XML

Optimizer. That is noted with enhancement rate

Experiment 2: Measure RT of XML files optimizing operation

 This experiment has two parts; in part I the experiment is done on Windows7 with

Intel core i3; in the other side, part II done on Intel Core i5.

 Table (2): Experiment environment settings

Environment Part I Part II

Windows 7 7

M.P Intel Core i3 Intel Core i5

File Size/M 0.29-93 1.54-312

Records No. 1141- 353,710 24200 - 4,800,200

Tables No. Single table Multiple Tables (3)

Exp. Times 8 7

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1439

GSJ© 2019
www.globalscientificjournal.com

 Part I:

This experiment has been done 8 times; each time is performed on different XML file

Size as in table (2).

Input: 8 XML files with sizes between .29 MB and 93MB.

Result: RT of compression operation as well as compression ratio

Size Unit: MB

Figure (5): Comparison between xml file before and after applying XML Optimizer

 Part II:

This experiment has been done 7 times; each time is performed on different XML

file size as in table (2).

Input: 7 XML files with sizes between 1.54 MB and 312 MB.

Result: RT of compression operation as well as compression ratio

 Size Unit: MB

Figure (6): Comparison between xml file before and after applying XML Optimizer

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1440

GSJ© 2019
www.globalscientificjournal.com

Result analysis:

The results in Part I are enhanced in Part II based on experiment environment,

which become Intel Core i5, although the size of XML files become larger than in Part I.

As demonstrated, the modern environment, the more impressive results.

2- CPU Utilization

 CPU Utilization indicates extend of CPU utilization to perform the processes [17].

 Thus, CPU Utilization refers to CPU Utilization [18].Practically; efficiency of the proposed

model implies high CPU Utilization.

Experiment 1: Optimized vs. Non-Optimized CPU Utilization of search operation

Another test has been done in Figure (7) bellow and shows the CPU

Utilization, when search operations are achieved on XML files before and after

are optimized. This experiment has been done 8 times on 8 different XML files

size.

Input: 8 XML files are differenced in size before and before XML optimizer is

applied Result: comparison between RT of search operation on XML files

before and after reduces file size

Time Unit: Second

Figure (7): CPU Utilization on optimized and Non-optimized XML files.

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1441

GSJ© 2019
www.globalscientificjournal.com

Result Analysis:

Previous Figure shows the enhancement of CPU Utilization, when XML Optimizer is

applied.

3- Memory Space

Memory Space indicates the amount of memory is needed to store either LCC or

temporary notifications files. Based on [2] Memory is "central to the operation of a

modern computer system. Main memory is a large array of bytes, ranging in size from

hundreds of thousands to billions".

Experiment 1: Measure XML file size with XML Optimizer

This experiment has been done on many XML files of LCC with difference size to

measure applying XML Optimizer on them. These XML files contain one table. The

experiment has been done for 9 times, each time is performed on different size of XML file.

Input: 9 xml file with different sizes in KB where (269.96 KB≅1143 record as in

Figure (8), as well as there is one table in XML file

Result: comparison between XML file size before and after applying XML Optimizer

Size Unit: MB

Figure (8): File size after and before apply XML Optimizer

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1442

GSJ© 2019
www.globalscientificjournal.com

 Result Analysis:

The previous figure shows the difference between XML file before and after applying

XML Optimizer on them, where XML file is reduced to73%.As a result, the XML optimizer

saved the memory space efficiently.

Experiment 2: Optimize XML file size with Multiple Tables

This experiment has been conducted on many XML files with multiple Tables

(Parents) to measure extend of impact XML optimizer on these types of files. The

experiment is done on small, medium and large files as in table (3).Table (3) below shows

chosen sample of three XML files contain data.

Table (3): DB Tables and count of records for each table in XML files

Tables/Records Small-1.54 MB Medium-77.6 MB Large-312 MB

Students/rec 600 300,000 1,200,000

Subjects/rec 200 200 200

Results/rec 1800 900,000 3,600,000

The experiment has been done for 7 times, in each time performed on different XML

file size. The first experiment starts with 1.54 MB and the last one with 312 MB.

Input: 7 xml file with different sizes in MB contain three tables with thousands records

Result: comparison between XML file size before and after applying XML Optimizer

Size Unit: MB

Environment: Windows 7, Intel Core i5

Figure (9): XML Optimizer with Multi-tables

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1443

GSJ© 2019
www.globalscientificjournal.com

Result Analysis:

The Figure shows the rate of optimization of xml files after apply XML Optimizer. This

rate reached to 90%. That means the XML Optimizer performance increased with XML files

that contain multi-tables. In the general, Optimization rate depend on some vital factors such

as: length of tag name, size of inner data within tags, count of distinct tags.

Compare with other studies results

 In this section of paper, there is mention about comparing WS model with XMLOptimizer and

previous study XPRESS as in Table (4).The table contains summery of comparison that illustrates

extends of enhancement with XMLoptimizer.

Table (4): compare XPRESS and XMLOptimizer performance

This comparison based on experiment has been done on both traditional WS model and WS model with

XMLOptimizer. The results in figure (10) illustrate the enhancement in WS with XMLoptimizer over

traditional WS model.

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1444

GSJ© 2019
www.globalscientificjournal.com

Figure (10): compare WS with XMLOptimizer performance with Traditional WS Model

Conclusion

 In this paper, XMLOptimizer was underwent several experiments to evaluate its performance.

Based on the analysis of the results, XMLOptimizer is noted to save significant system resources by re

ducing RT, CPU usage and memory space.

The size of XML files has been reduced by 90%, which is better than other methods for compressing

XML files. In addition, RT of operations such as search and insert that have been achieved on XML

files enhanced about 99%.So XMLOptimizer proved to be effective in improving the SOAP WS

model.

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1445

GSJ© 2019
www.globalscientificjournal.com

References

1. Bean, J., SOA and Web Services Interface Design. 2010: Elsevier Inc.
2. Roy Grønmo, D.S., Ida Solheim, Jon Oldevik, Model-driven Web Services Development.

IEEE, 2004.
3. Connolly, T., C. Begg, and R. Holowczak, BUSINESS DATABASE

SYSTEMS. 2008: Pearson Education Limited.
4. Abilio, C.M.G.a.R., Systems Integration Using Web Services, REST and SOAP: A Practical

Report.FSMA, 2017. 19: p. 34-41.
5. Dustdar, S. and W. Schreiner, A survey on web services composition.

Int. J. Web and Grid Services, 2005. 1(1).
6. IBM. Response Time. 2017 [cited 2018; Available from:

6http://searchnetworking.techtarget.com/definition/response-time
7. A. Bhuvaneswari, G.R.K., Semantic web service discovery for mobile web

services. Int. J. Business Intelligence and Data Mining, 2018. .
8. Rohit Ranchal, B.B., Pelin Angin, Lotfi ben Othmane, EPICS-A Framework

for Enforcing Security Policies in Composite Web Services. IEEE, 2018.
9. JunKi, et al., XPRESS: A Queriable Compression for XML Data. 2003.
10. Liefke, H. and D. Suciu, XMill: an Efficient Compressor for XML Data. ACM.
11. TSALGATIDOU, A. and T. PILIOURA, An Overview of Standards and

Related Technology in Web Services. Kluwer Academic, 2002. 12.
12. Mumbaikar, S. and P. Padiya, Web Services Based On SOAP and REST Principles.

International Journal of Scientific and Research Publications, 2013. 3(5).
13. Bedi, K.S. REST Vs SOAP. 2013 [cited 2017; Available from: http://www.c-

sharpcorner.com/blogs/rest-vs-soap1
14. Wagh, K. and D.R. Thool, REST and Soap Compare. Journal of

Information Engineering and Applications, 2012. 2.
15. Inc, T. Response Time. 2017 [cited 2017; Available from:

https://www.techopedia.com/definition/9181/response-time.
16. SILBERSCHATZ, A., P.B. GALVIN, and G. GAGNE, OPERATING SYSTEM CONCEPTS. 9 ed.

2013: wiley.
17. Inc., T. CPU Utilization. 2018 [cited 2018; Available from:

https://www.techopedia.com/definition/28291/cpu-utilization
18. Microsoft. Interpreting CPU Utilization for Performance Analysis. 2018

[cited2018;Availablefrom:
ttps://blogs.technet.microsoft.com/winserverperformance/2009/08/06/
interpreting- cpu-utilization-for-performance-analysis/.

GSJ: Volume 7, Issue 10, October 2019
ISSN 2320-9186

1446

GSJ© 2019
www.globalscientificjournal.com

file:///D:/globalscientificresearch/journal/October%202019/BATCH%2017/6%20http:/searchnetworking.techtarget.com/definition/response-time
file:///D:/globalscientificresearch/journal/October%202019/BATCH%2017/6%20http:/searchnetworking.techtarget.com/definition/response-time
http://www.c-sharpcorner.com/blogs/rest-vs-soap1
http://www.c-sharpcorner.com/blogs/rest-vs-soap1
http://www.c-sharpcorner.com/blogs/rest-vs-soap1
http://www.techopedia.com/definition/9181/response-time
http://www.techopedia.com/definition/28291/cpu-utilization

