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1 Introduction

In this paper we deal with the existence of solutions for non-local initial value prob-
lem (IVP for short), for fractional order differential equation with Caputo-Hadamard
fractional derivative:

cDα
1 y(t) = f(t, y(t), Iα1 y(t)), t ∈ J := [1, T ], 0 < α ≤ 1. (1)

y(1) = y1 + ϕ(y), (2)

where f : J × R × R → R is a given function, y1 ∈ R, and cDα
1 , Iα1 are the

Caputo-Hadamard fractional derivative and the Hadamard integral operators and ϕ :
C(J, IR)→ IR is a continuous function.
The nonlocal condition can be applied in physics with better effect than the classical
initial condition y(0) = y0. For example, ϕ(y) may be given by

ϕ(y) =

p∑
i=1

ciy(ti).
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2 Z. Bouazza, M.S. Souid

where ci, i = 1, 2, ..., p are given constants and 0 < ... < tp < T. Nonlocal condi-
tions were initiated by Byszewski [3] when he proved the existence and uniqueness of
mild and classical solutions of nonlocal Cauchy problems. As remarked by Byszewski
[4, 5],the nonlocal condition can be more useful than the standard initial condition to
describe some physical phenomena.

This paper is organized as follows. In Section 2, we will recall briefly some basic
definitions and preliminary facts which will be used throughout the following section.
In Section 3, we give two results, the first one is based on Schauder’s fixed point theorem
(Theorem 3.1) and the second one on the Banach contraction principle (Theorem 3.2).
Finally, in Section 4 an example is given to demonstrate the application of our main
results. These results can be considered as a contribution to this emerging field.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper.
By C(J,R), we denote the Banach space of continuous functions from J into R with
the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}
, by AC(J,R), we denote the space of absolutely continuous functions from J0 into R

Definition 2.1 .([7], [10]) Let 0 < a < b <∞, and h : [a, b]→ R+ is a function.
The Hadamard fractional integral of order α ∈ R+ of the function h is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(log
t

s
)α−1h(s)

s
ds, t ∈ [a, b]

where Γ(.) is the gamma function.

Definition 2.2 .([7], [10]) Let 0 < a < b <∞, and h : [a, b]→ R+ is a function.
The Hadamard fractional derivative of order α ∈]0, 1] of the function h is defined by

Dα
ah(t) =

1

Γ(1− α)
t
d

dt

∫ t

a

(log
t

s
)−α

h(s)

s
ds, t ∈ [a, b]

Obviously, we can obtient

Iαa (log
t

a
)β−1 =

Γ(β)

Γ(β + α)
(log

t

a
)β+α−1, Dα

a (log
t

a
)β−1 =

Γ(β)

Γ(β − α)
(log

t

a
)β−α−1

The following properties are some of the main ones of the fractional Hadamard inte-
grals and derivatives operators.
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Fractional Order Differential Equations 3

Proposition 2.1 ([10]) Let α, β > 0, and 1 ≤ p ≤ +∞ Then we have

(1) Iαa : Lp(J,R+)→ Lp(J,R+), and if f ∈ Lp(J,R+), then

Iαa I
β
a f(t) = Iβa I

α
a f(t) = Iα+β

a f(t).

(2) The fractional integration operator Iαa is linear

(3) The fractional order integral operator Iαa maps Lp into itself continuously.

Definition 2.3 ([10]). Let 0 < a < b <∞ and 1 ≤ p < +∞. The Caputo-Hadamard
fractional derivative of order α ∈]0, 1] of the function h ∈ Lp([a, b],R+) is defined by

cDα
ah(t) = Dα

a [h(t)− h(a)], t ∈ [a, b]

If h ∈ AC([a, b],R+), then Caputo-Hadamard fractional derivative has the following
equivalent formulation

cDα
ah(t) =

1

Γ(1− α)

∫ t

a

(log
t

s
)−αh′(s)ds, t ∈ [a, b]

Lemma 2.1 ([7], [10]) Let 1 ≤ p < +∞ and α > 0 be such that n = [α] + 1.

(1) If h ∈ C([a, b],R+), then cDα
a (Iαa h(t)) = h(t), t ∈ [a, b].

(2) If h ∈ AC([a, b],R+), then Iαa (cDα
ah(t)) = h(t)− h(a), t ∈ [a, b].

The following theorems will be needed.

Theorem 2.1 (Schauder fixed point theorem) ([10]) Let E a Banach space and Q be
a convex subset of E and F : Q −→ Q is compact, and continuous map. Then F has
at least one fixed point in Q.

3 Existence of solutions

Let us start by defining what we mean by an integrable solution of the problem (1)−(2).

Definition 3.1 . A function y ∈ C(J,R) is said to be a solution of IVP (1)− (2) if y
satisfies (1) and (2).

For the existence of solutions for the problem (1)− (2), we need the following auxiliary
lemma.

Lemma 3.1 The solution of the IVP (1)−(2) can be expressed by the integral equation

y(t) = y1 − g(y) +
1

Γ(α)

∫ t

1

(log
t

s
)α−1f (s, y(s), Iα1 y(s))

s
ds, for t ∈ J (3)

GSJ: Volume 7, Issue 12, December 2019 
ISSN 2320-9186 

282

GSJ© 2019 
www.globalscientificjournal.com 



4 Z. Bouazza, M.S. Souid

Proof. Assume that y ∈ C(J,R) is a solution of the integral equation (3).
Obviously we obtain y(1) = y1 and t 7→ Iα1 y(t) ∈ C(J,R).
The continuity of f and definition of Hadamard integral Iα1 guarantee that t 7→
f(t, y(t), Iα1 y(t)) is continuous as well and

Iα1 f(t, y(t), Iα1 y(t))|t=1 = 0

Since t 7→ Iα1 f(t, y(t), Iα1 y(t)) is continuous, then we have y is differential for t ∈ J (see
(3)) then y ∈ AC(J,R).
From Lemma (2.1), we have

cDα
1 I

α
1 f(t, y(t), Iα1 y(t)) = f(t, y(t), Iα1 y(t)), for t ∈ J

On the other hand,

cDα
1 [y(t)− y1] =

1

Γ(1− α)

∫ t

1

(log
t

s
)−α[y(s)− y1]′ds

=
1

Γ(1− α)

∫ t

1

(log
t

s
)−αy′(s)ds

= cDα
1 y(t), for t ∈ J

By all above, we conclude that y ∈ C(J,R) is a solution of the problem (1) and (2)
Let us introduce the following assumptions:

(H1) f : J × R2 −→ R is continuous.

(H2) There exists a constants, K > 0 and 0 < L < 1 such that:
|f(t, u1, v1)− f(t, u2, v2)| ≤ K|u1− u2|+L|v1− v2|, for any u1, u2, v1, v2 ∈ R and
t ∈ J .

(H3) there exist a constant K̃ > 0 such that

|ϕ(u)− ϕ(u)| ≤ K̃|u− u| for any u, u ∈ C(J, IR),

(H4) there exists a constants M̃ > 0 such that

|ϕ(y)| ≤ M̃, ∀y ∈ C(J,R).

Our first result is based on Schauder fixed point theorem.

Theorem 3.1 Assume that the assumptions (H1)− (H4) are satisfied. If

K(logT )α

Γ(α + 1)
+
L(logT )2α

Γ(2α + 1)
< 1, (4)

then the IVP (1)− (2) has at least one solution y ∈ C(J,R).
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Fractional Order Differential Equations 5

Proof
Transform the problem (1)− (2) into a fixed point problem. Consider the operator

H : C(J, IR) −→ C(J, IR)

defined by:

(Hy)(t) = y1 + ϕ(y) + Iα1 f(t, y(t), Iα1 y(t)),

Let

r ≥
|y1|+ M̃ + f∗(logT )α

Γ(α+1)

1− (K(logT )α

Γ(α+1)
+ L(logT )2α

Γ(2α+1)
)

where

f ∗ = supt∈J |f(t, 0, 0)|

and consider the set

Br = {y ∈ C(J, IR)/‖y‖∞ ≤ r}

Clearly Br is nonempty, bounded, convex and closed.
Now, we shall show that H satisfies the assumption of Schauder fixed point theorem.
The proof will be given in three parts.
Step 1. H is continuous
Let (yn) be a sequence such that yn → y in C(J,R) if t ∈ J
then

‖H(yn)(t)−H(y)(t)‖∞ = 0

For t ∈ J , we have

|H(yn)(t)−H(y)(t)| ≤ |ϕ(yn)− ϕ(y) + Iα1 [f(s, yn(s), Iα1 yn(s))− f(s, y(s), Iα1 y(s))]
ds

s
|

≤ |ϕ(yn)− ϕ(y)|+ Iα1 |f(s, yn(s), Iα1 yn(s))− f(s, y(s), Iα1 y(s))|
≤ K̃|yn − y|+ Iα1 [K|yn(s)− y(s)|+ L(Iα1 |yn(s)− y(s)|)]
≤ K̃|yn − y|+K(Iα1 |yn(s)− y(s)|) + L(I2α

1 |yn(s)− y(s)|)

then

‖H(yn)−H(y)‖∞ ≤ K̃‖yn − y‖∞ +
K(logT )α

Γ(α + 1)
‖yn − y‖∞ +

L(logT )2α

Γ(2α + 1)
‖yn − y‖∞

≤ (K̃ +
K(logT )α

Γ(α + 1)
+
L(logT )2α

Γ(2α + 1)
)‖yn − y‖∞

‖H(yn)−H(y)‖∞ → 0 as n→∞
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6 Z. Bouazza, M.S. Souid

Consequently, H is continuous.
Step 2. HBr ⊂ Br,
let y ∈ Br then

|Hy(t)| = |y1 + ϕ(y) +
1

Γ(α)

∫ t

1

(log
t

s
)α−1f(t, y(t), Iα1 y(t))

dt

s
|

≤ |y1|+ |ϕ(y)|+ 1

Γ(α)

∫ t

1

(log
t

s
)α−1|f(t, y(t), Iα1 y(t))|dt

s

≤ |y1|+ |ϕ(y)|+ 1

Γ(α)

∫ t

1

(log
t

s
)α−1

(
|f(t, y(t), Iα1 y(t))− f(t, 0, 0)|+ |f(t, 0, 0)|

)dt
s

≤ |y1|+ |ϕ(y)|+ 1

Γ(α)

∫ t

1

(log
t

s
)α−1|f(t, y(t), Iα1 y(t))− f(t, 0, 0)|dt

s

+
1

Γ(α)

∫ t

1

(log
t

s
)α−1|f(t, 0, 0)|dt

s

By (H2) and (H3) we have

|Hy(t)| ≤ |y1|+ M̃ +
1

Γ(α)

∫ t

1

(log
t

s
)α−1|f(t, 0, 0)|dt

s
+

K

Γ(α)

∫ t

1

(log
t

s
)α−1|y(t)|dt

s

≤ | y1|+ M̃ +
1

Γ(α)

∫ t

1

(log
t

s
)α−1|f(t, 0, 0)|dt

s
+

K

Γ(α)

∫ t

1

(log
t

s
)α−1|y(t)|dt

s

+
L

Γ(α)

∫ t

1

(log
t

s
)α−1Iα1 |y(t)|dt

s

Hence

‖Hy‖∞ ≤ |y1|+ M̃ +
f ∗(logT )α

Γ(α + 1)
+
K(logT )α

Γ(α + 1)
‖y‖∞ +

L(logT )2α

Γ(2α + 1)
‖y‖∞

≤ |y1|+ M̃ +
f ∗(logT )α

Γ(α + 1)
+
K(logT )α

Γ(α + 1)
r +

L(logT )2α

Γ(2α + 1)
r ≤ r

Then HBr ⊂ Br.
Step 3. H is compact

Now, we will show that HBr is relatively compact, meaning that H is compact. Clearly
HBr is uniformly bounded because by Step 2, we have H(Br) = {H(y) : y ∈ Br} ⊂ Br
thus for each y ∈ Br we have ‖H(y)‖∞ ≤ r which means that H(Br)is uniformly
bounded. It remains to show that HBr is equicontinuous
Let t1, t2 ∈ J ; t1 < t2, and let y ∈ Br, then

|H(y)(t1)−H(y)(t2)| =
1

Γ(α)

∣∣∣ ∫ t2

1

(log
t2
s

)α−1f(s, y(s), Iα1 y(s))
ds

s
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Fractional Order Differential Equations 7

=
1

Γ(α)
|
∫ t2

1

(log
t2
s

)α−1f(s, y(s), Iα1 y(s))
ds

s

−
∫ t1

1

(log
t1
s

)α−1f(s, y(s), Iα1 y(s))
ds

s
|

=
1

Γ(α)
|
∫ t1

1

[(log
t2
s

)α−1 − (log
t1
s

)α−1]f(s, y(s), Iα1 y(s))
ds

s

+

∫ t2

t1

[(log
t2
s

)α−1f(s, y(s), Iα1 y(s))
ds

s
|

≤ M

Γ(α)

∣∣∣ ∫ t1

1

[(log
t2
s

)α−1 − (log
t1
s

)α−1]
ds

s
+

∫ t2

t1

[(log
t2
s

)α−1ds

s

∣∣∣
≤ M

Γ(α)
|
∫ t1

1

[(log
t2
s

)α−1 − (log
t1
s

)α−1]
ds

s
+

∫ t2

t1

[(log
t2
s

)α−1ds

s
|

≤ M

Γ(1 + α)
[(log(t2)α − (log(t1)α + 2(log

t2
t1

)α]

Hence |H(y)(t1)−H(y)(t2)| → 0 as |t1−t2| → 0 where M > 0 is a constant independent
of t1 and t2. It implies that HBr is equicontinuous. From Arzela-Ascoli Theorem, we
imply that HBr is relatively compact.
As a consequence of Schauders fixed point theorem the IVP (1)− (2) has at least one
solution in Br.

Theorem 3.2 Assume that the assumptions (H1)− (H3) and if

K̃ +
K(logT )α

Γ(α + 1)
+
L(logT )2α

Γ(2α + 1)
< 1, (5)

then there exists a unique solution for IVP (1)− (2) on J .

Proof
Let x, y ∈ C(J,R), for t ∈ J , we have

|H(y)(t)−H(x)(t)| ≤ |ϕ(x)− ϕ(y) +
1

Γ(α)

∫ t

1

(log
t

s
)α−1[f(s, y(s), Iα1 y(s))− f(s, x(s), Iα1 x(s))]

ds

s
|

≤ |ϕ(x)− ϕ(y)|+ 1

Γ(α)

∫ t

1

(log
t

s
)α−1[K|y(s)− x(s)|+ L(Iα1 |y(s)− x(s)|)]ds

s

≤ K̃|x− y|+ K

Γ(α)

∫ t

1

(log
t

s
)α−1|y(s)− x(s)|ds

s
+ L(I2α

1 |y(s)− x(s)|)
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8 Z. Bouazza, M.S. Souid

then

‖H(y)−H(x)‖∞ ≤ K̃‖x− y‖∞ +
K(logT )α

Γ(α + 1)
‖y − x‖∞ +

L(logT )2α

Γ(2α + 1)
‖y − x‖∞

≤ (K̃ +
K(logT )α

Γ(α + 1)
+
L(logT )2α

Γ(2α + 1)
)‖y − x‖∞

Consequently by (5), the operator H is a contraction. Hence, by Banach’s contraction
principal, H has a unique fixed point y ∈ C(J,R), which is a solution of the problem
(1)− (2).

3.1 Example

Let us consider the following fractional initial value problem,

cD
1
2
1 y(t) =

e−t

(et + π)(1 + |y(t)|+ |I
1
2
1 y(t)|)

, t ∈ J := [1, e], (6)

y(1)−
n∑
i=1

ciy(ti) = 1, (7)

where 0 < t1 < t2 < ... < tn < 1 and ci = 1, ..., n are positif constants with

n∑
i=1

ci <
1

5
.

Set

f(t, y, z) =
e−t

(et + π)(1 + y + z)
, (t, y, z) ∈ J × [0,+∞)× [0,+∞).

and

ϕ(y) =
n∑
i=1

ciy(ti)

Clearly, the function f is continuous.
For each y1, y2, z1, z2 ∈ ×[0,+∞) and t ∈ [1, e] : Then we have

|f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣ e−t

et + π

(
1

1 + y1 + z1

− 1

1 + y2 + z2

)∣∣∣∣
|f(t, y1, z1)− f(t, y2, z2)| =

e−t

et + π

∣∣∣ 1

1 + y1 + z1

− 1

1 + y2 + z2

∣∣∣
≤ e−t(|y1 − y2|+ |z1 − z2|)

(et + π)(1 + y1 + z1)(1 + y2 + z2)
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Fractional Order Differential Equations 9

≤ e−t

(et + π)
(|y1 − y2|+ |z1 − z2|)

≤ e−1

(e+ π)
|y1 − y2|+

e−1

(e+ π)
|z1 − z2|.

Hence the condition (H2) holds with K = L = e−1

e+π
.

On the other hand, we have

|ϕ(u)− ϕ(ū)| =

∣∣∣∣∣
n∑
i=1

ciu−
n∑
i=1

ciū

∣∣∣∣∣
≤

n∑
i=1

ci |u− ū|

<
1

5
|u− ū| .

Hence the condition (H3) holds with K̃ = 1
5
.

We shall check that condition (5) is satisfied with T = e, and α = 1
2
. Indeed

K̃ +
K(logT )α

Γ(α + 1)
+
L(logT )2α

Γ(2α + 1)
=

1

5
+
( e−1

e+ π

)( 1

Γ(3
2
)

+
1

Γ(2)

)
' 0.33 < 1. (8)

Then by Theorem 3.2, the problem (6)− (7) has a unique solution on [1, e].
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