
GSJ: VOLUME 6, ISSUE 8, AUGUST 2018  

GSJ© 2018 
www.globalscientificjournal.com  

  

GSJ: Volume 6, Issue 8, August 2018, Online: ISSN 2320-9186 
www.globalscientificjournal.com 

 

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF CUTTING 
PARAMETERS ON CUTTING TEMPERATURE USING RSM AND ANN IN 

TURNING AISI 1040 
 
Rifat Ahasan Siddique, Farhana Dilwar, Rezaul Karim Nayeem 
 
Department of Mechanical & Production Engineering 

Ahsanullah University of Science & Technology 

KEYWORDS 

AISI 1040, Turning, Cutting Temperature, Response Surface Methodology (RSM), Main Effects Plot, Artificial Neural Network (ANN)                                 

ABSTRACT 

In the present research, experimental investigation is done to identify the impact of cutting parameters (feed rate, cutting speed and depth 
of cut) on the cutting temperature in turning of AISI 1040 by using Response Surface Methodology (RSM) and Artificial Neural Network 
(ANN). Response surface methodology (RSM) is used to design the experimental layout consisting of 16 datasets using Central Composite 
Design (CCD). Significance of the cutting parameters is determined utilizing statistical analysis of variance (ANOVA) which indicates that all 
the three cutting parameters have noteworthy impact on the cutting temperature. The 3D response graphs present cutting temperature is 
increased with the increase of feed rate, cutting speed and depth of cut. Desirability Function Analysis (DFA) is employed to decide optimal 
values of cutting parameters. It is suggested from DFA that minimum temperature is obtained at lower feed rate (0.100 mm/rev), lower cut-
ting speed (62.172 m/min) and lower depth of cut (0.200 mm). Afterward, main effects plot is analyzed to show the variation of response 
with the three input variables and the result found from main effects plot is almost coherent to the results found from 3D plots and Desira-
bility Function Analysis (DFA). The predicted results using ANN indicate good agreement between the predicted values and experimental 
values. The R² value for model θ is noticed to be 0.99081. The deviation between experimental values, RSM predicted values and ANN pre-
dicted values is very minimum which presents the efficacy of the proposed RSM and ANN model. But MAPE for RSM is 0.001336 and ANN is 
0.006245 which evidently indicates that the prediction capabilities of RSM model are better as compared to the ANN models for this exper-
iment. 
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1. INTRODUCTION 
     
  In manufacturing, it is necessary to have certain knowledge about heat generation and temperature rise (including average and 

maximum temperature) during machining process. The temperature that develops in the cutting process has a significant effect on 
the performance of a cutting tool and the quality of the machined component. Quality of machined surface, a metallurgical structur-
al alteration in tool and workpiece material also depends on the maximum temperature, temperature gradient and cooling rate of 
both tool and workpiece. 

Choudhury and Bartarya [1] proposed an empirical relation between the cutting zone temperature and input variables such as 
cutting speed, feed and depth of cut in turning process by employing design of experiment and artificial neural networks. They com-
pared the predicted values with the experimental values and determined their closeness with the experimental values. Aouici et al. 
[2] studied the influence of cutting parameters on the cutting temperature during dry hard turning of AISI H11 steel using CBN insert. 
They used RSM technique to determine the relationship between the cutting parameters with the desired response i.e. cutting tem-
perature. They found that the temperature increases with increase in the cutting speed, feed rate and depth of cut. Lin et al. [3] in-
vestigated the effect of cutting speed on cutting temperature in turning of high hardness alloy steels (AISI 4340) by CBN tools. It was 
observed from their investigation that the cutting temperature increases with increase in the cutting speed. Venkataramaih P. [4] 
have conducted turning experiments on Aluminum Alloy 6061 work material for different values of cutting parameters and experi-
mental responses such as cutting temperature and surface finish are measured and recorded. Bouchelaghem et al. [5] investigated 
the effect of cutting parameters on hard turning of AISI D3 (60 HRC) using CBN tool. Their results showed that increase in the value of 
cutting parameters results in an increase in the cutting temperature. They also observed that longer cutting time leads to larger wear 
which in turn increases the temperature in the cutting zone. Fnides et al. [6] studied the influence of the cutting parameters (cutting 
speed, feed rate and depth of cut) on temperature in the cutting zone during dry hard turning of AISI H11 steel treated at 50 HRC 
using a mixed ceramic tool (insert CC650) . They noticed from their study that the effect of cutting speed on the temperature in the 
cutting zone is more significant than the feed rate and depth of cut. 

The measurement of cutting temperatures is more difficult because the temperature is a scalar field which varies throughout the 
system and cannot be uniquely described by values at a point. The most widely used method to measure cutting temperatures is 
tool-work thermocouple, which measures average interfacial temperature at tool work piece interface [7]   . The tool-chip thermo-
couple technique is the most effective method for measuring the average tool -chip interface temperature during metal cutting. The 
implementation of tool-chip thermocouple is easy and economical as compared to other temperature measurement techniques [8]. 
Gosai and Bhavsar [9] investigated the cutting tool’s average temperature by placing analog K-type thermocouple sensor in cutting 
tool. Smart and Trent [10] measured the cutting temperature by inserting thermocouple in the hole drilled in the work piece. 
O’Sullivan and Cotterell [11] had done experiment on cutting tool’s temperature while machining of aluminum AI 6082-T6 with help 
of k-type thermocouple and analyzed with LabVIEW but they have not used any methodology and taking just small amount of read-
ings 

 Ren et al. [12] utilized the combination of FE modeling and the use of a thermocouple on tool/shim interface in order to model 
temperature field in a PCBN tool and thus increase resolution of the data. The model, however, assumed a fixed and constant tool-
chip temperature on the tool rake. Abdil and Yashya [13] has recently examined with comparative study of different to two cutting 
temperature measurement technique used simultaneously (i.e. Thermocouple and Infrared based technique) and concluded that the 
cutting speed was the parameter most affecting the tool-chip interface temperature whereas feed rate was not significant. 

Response Surface Method is a group of mathematical and statistical techniques that are useful for the modeling and analysis of 
problems in which a response of interest is influenced by several variables and the objective is to optimize this response [14]. Bhu-
shan [15] investigated the influence of cutting parameters during turning of 7075 Al alloy SiC composite using the Response Surface 
Method and desirability analysis in order to reduce the power consumed by the machine and increase the tool life. Rudrapati et al. 
[16] studied the effect of process parameters of cylindrical grinding process on the responses like workpiece vibration and surface 
roughness using RSM methodology. Process parameters were optimized for the desired responses using multi-objective genetic algo-
rithm and predicted model was verified using confirmatory test. Palanikumar [17] carried out statistical modeling using RSM to inves-
tigate the effect of process parameters on surface roughness and delamination factor in turning operation of glass fiber reinforced 
composite. RSM central composite design matrix was employed for the experiment. The adequacy of the model was verified at 95% 
confidence level within limit of input parameters being considered. Artificial neural networks (ANNs) are comparatively new model-
ing techniques, which can be used to solve problems that are difficult for conventional computers or human beings. The ANNs have 
been applied to model complicated processes in many engineering fields, such as aerospace, automotive, electronics, manufacturing, 
robotics, telecommunications, etc. Over recent years the interest in the ANN modeling in the fields of physical metallurgy and mate-
rials science has increased rapidly [18]. Risbood et al. [19] developed a prediction equation using ANN taking radial vibration of tool 
holder as a feedback signal. Neural networks provide significant advantages in solving process problems that require real-time encod-
ing and interpretation of relationships among the variables of high-dimensional space [20]. Nouioua et al. [21] introduced RSM and 
ANN methods to find out optimal prediction of uncontrollable parameters.  The ANN method gives more precise results and suggest-
ed for usefulness in relating to correlation coefficients, Mean prediction errors and root mean square errors correlate towards those 
acquired by RSM method. 
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2. EXPERIMENTAL CONDITION AND PLANNING OF EXPERIMENT  

Experiment has been done on Lathe Machine (China). AISI 1040 is used as work-piece material. The details about the workpiece 
and chemical composition of AISI 1040 are given in Table 2.1 and Table 2.2 respectively. PSBNR2525M12 cutting tool holder is used 
which cutting edge angle is 60°. An uncoated carbide cutting Tool (SNMG) has been inserted into the tool holder. The experiment is 
conducted on dry condition with three controllable input variables (feed rate, cutting speed, depth of cut) and one output variable 
(temperature) which are showed in Table 2.3. 

Table 2.1: Workpiece Details 

Material Medium Carbon Steel 
Carbon content Approx. 30% 

Type Solid 
Diameter 150 mm 

Length 2.5 feet (762 mm) 

 

Table 2.2: Chemical Composition of AISI 1040 

Iron, Fe 
98.6-99% 

Manganese, 
Mn 

0.60-0.90% 

Carbon, C 
0.370-0.440% 

Sulfur, S 
≤ 0.050% 

Phosphorous, P 
≤ 0.040% 

 

Table 2.3: Experimental Factors 

Factor Name Units Minimum Maximum 

A Feed Rate mm/rev 0.1000 0.1600 
B Cutting Speed m/min 41.62 122.46 
C Depth of Cut mm 0.2000 0.8000 

    

2.1.  Experimental Layout 

The experimental layout plan (Table 2.4) is established using Response Surface Methodology (RSM) in Design Expert 11.0 Soft-
ware. The experiments have been done with the values of these three inputs. Full factorial design with 16 runs is used. RSM can be 
conducted by two methods- Box-Behnken and Central Composite Design (CCD). In this investigation, CCD method is utilized, since it 
offers more advantages over other design methods. 
 

Table 2.4: Experimental Layout of Input Parameters and their Resultant Output 

Run No. Feed Rate 

 So 

Cutting Speed 

Vc 

Depth of Cut 

d 

Temperature 

θ 
 mm/rev m/min mm °C 

1 0.1 62.172 0.2 522 
2 0.16 62.172 0.2 568 

3 0.1 122.46 0.2 389 

4 0.16 122.46 0.2 420 

5 0.1 62.172 0.8 826 

6 0.16 62.172 0.8 865 

7 0.1 122.46 0.8 695 

8 0.16 122.46 0.8 726 

9 0.1 92.316 0.5 605 

49

ISSN 2320-9186



 
 

GSJ© 2018 
www.globalscientificjournal.com  

Figure 1. Experimental Setup for the Experiment 

10 0.16 92.316 0.5 641 

11 0.13 41.62 0.5 740 

12 0.13 122.46 0.5 554 

13 0.13 92.316 0.2 475 

14 0.13 92.316 0.8 783 

15 0.13 92.316 0.5 629 

16 0.13 92.316 0.5 636 

 

2.2. Experimental Setup 

The experimental setup of our turning operation has been presented in Figure 1. Initially, the cutting tool holder with uncoated 
carbide insert has been fixed on the tool post of lathe and AISI 1040 workpiece has been mounted on the headstock. The experiment 
is conducted by changing the feed rate, cutting speed and depth of cut according to the values given in Table 3.  The average chip-
tool interface cutting temperature has been measured under dry condition undertaken by simple but reliable tool-work thermocou-
ple technique with proper calibration. This method is very useful to specify the effects of the cutting speed, feed rate, depth of cut 
and cutting parameters on the temperature. Thermocouples are conductive, rugged and inexpensive and can operate over a wide 
temperature range. To record emf as millivolt a digital multi-meter has been used where one end of multimeter has been connected 
to the workpiece and other end to the tool.    
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

2.3. Experimental Investigation 

 
2.3.1. Millivolt to Temperature Conversion 

After measuring the millivolt reading using thermocouple, the cutting temperatures are calculated using the following equation: 
Cutting Temperature, θ =  75.28 +  63.05 mV –  0.57 mV² (°C) (1) 

 
 

2.3.2. Response Surface Methodology (RSM) 

Response surface methodology (RSM) is employed to develop the model equations for the response i.e. cutting temperature as a 
function of input variables. 

Response Surface Methodology (RSM) is a collection of mathematical and experimental techniques that requires sufficient num-
ber of experimental data to analyze the problems and to develop mathematical models for several input variables and output per-
formance characteristics. 

After completing the machining work, all the experimental data for the output were inserted into the experimental layout found 
from response surface methodology. Then Analysis of variance (ANOVA) is conducted to determine the result (P-Value) that inde-
pendent variables (feed rate, cutting speed, depth of cut) have on the dependent variables through a regression study and check the 
model is significant or not. In the experimenters based mathematical model of temperature (θ) was developed in terms of three pro-

50

ISSN 2320-9186



 
 

GSJ© 2018 
www.globalscientificjournal.com  

cess parameters, namely Feed Rate (f), Cutting Speed (Vc) and Depth of Cut (d). 
𝑌𝑛 = 𝐹(𝑓, 𝑉𝑐, 𝑑) + 𝑒𝑖𝑗                                                                            (2)  

Here, Yn is desired response (temperature) and F is the response function of feed rate, cutting speed and depth of cut. 
The output response are proposed using the fitted second-order polynomial regression model which is called quadratic model. 

The quadratic model of Y can be written as follows: 
𝑌 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖  + 𝑘

𝑖=1 ∑ 𝑎𝑖𝑖𝑥𝑖
2𝑘

𝑖=1 + ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗
𝑘
𝑖=1                               (3) 

Here, Y represents the response and 𝑥𝑖,𝑥𝑗  are the independent variables. 
The influence of cutting parameters and their interaction effects have been analyzed by using 3-D response graph. Desirability 

Function Analysis (DFA) shows the optimized results in terms of the response. 
After that, the main effects plot have been drawn to examine differences between level means for three factors. There is a main 

effect when different levels of a factor affect the response differently. 
 

2.3.3. Artificial Neural Network (ANN) 

An artificial neural network (ANN) is a computational model in view of the structure and elements of organic neural systems. As 
the "neural" some portion of their name recommends, they are mind motivated frameworks which are proposed to imitate the way 
that we people learn. Neural systems comprise of input and output layers, and in addition (much of the time) a hidden layer com-
prising of units that change the input to something that the output layer can utilize. They are great tools for discovering designs 
which are very intricate or numerous for a human software engineer to concentrate and instruct the machine to perceive. Data that 
courses through the system influence the structure of the ANN in light of the fact that a neural system changes - or learns, it could 
be said - in view of that input and output. ANNs are viewed as nonlinear statistical information demonstrating tools where the com-
plex relationships amongst inputs and outputs are displayed or designs are found. ANNs have three layers that are interconnected. 
The primary layer comprises of input neurons. Those neurons send data on to the second layer, which in turn sends the output neu-
rons to the third layer. Learning ability and use of different learning algorithms are the key features of artificial neural network.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. ANALYSIS OF RESULT 
 

3.1. Analysis of Variance (ANOVA) of Cutting Temperature 
 
The results of analysis of variance (ANOVA) are appeared in Table 3.1 which reveals the model to be significant as its F value is 

1860.02. It might be noticed that the model terms with P values (Prob> F) less than 0.1000 are significant. What's more, it can like-
wise be seen from Table 5 that cutting rate (A), feed rate (B), depth of cut (C), have huge impact on the cutting temperature; while 
the interaction between feed rate and cutting speed (AC), cutting speed and depth of cut (BC) have no huge impact. The “Lack of Fit 
F-value” of 0.6507 implies that the Lack of Fit is not significant relative to the pure error. There is a 72.99% chance that a “Lack of Fit 
F-value” this large could occur due to noise. Non-significant lack of fit is good because it is desired that the model should fit to the 
data.   

 

Figure 2. ANN Structure 
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Table 3.1: ANOVA Results of Cutting Temperature for Quadratic Model 

Source Sum of Squares df Mean Square F-value p-value  
Model 2.908E+05 9 32306.39 1860.02 < 0.0001 significant 

A-Feed Rate 3348.90 1 3348.90 192.81 < 0.0001  
B-Cutting Speed 49692.58 1 49692.58 2861.02 < 0.0001  
C-Depth of Cut 2.313E+05 1 2.313E+05 13319.48 < 0.0001  

AB 66.13 1 66.13 3.81 0.0989  
AC 6.13 1 6.13 0.3526 0.5743  
BC 15.13 1 15.13 0.8708 0.3867  
A² 35.39 1 35.39 2.04 0.2034  
B² 21.17 1 21.17 1.22 0.3119  
C² 18.35 1 18.35 1.06 0.3437  

Residual 104.21 6 17.37    
Lack of Fit 79.71 5 15.94 0.6507 0.7299 not significant 
Pure Error 24.50 1 24.50    
Cor Total 2.909E+05 15     

It is clear from Table 3.2 that the "Predicted R²" of 0.9983 is in reasonable agreement with the "Adjusted R²" of 0.9991. "Adeq 
Precision" measures the signal to noise ratio.  A ratio greater than 4 is desirable and the resulted ratio is 145.4893 which indicates an 
adequate signal.  This model can be used to navigate the design space.  

Table 3.2: Regression Co-efficient 

R² 0.9996 
Adjusted R² 0.9991 
Predicted R² 0.9983 
Adeq Precision 145.4893 

Quadratic Model Equation 

The relationship between the factors (A-feed rate, B-cutting speed, C-depth of cut) and response (cutting temperature) were 
modeled by linear regression. The following quadratic equation is the final regression model in terms of actual parameters. 

𝐓𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞 = +𝟑𝟗𝟓. 𝟖𝟏𝟒𝟑𝟐 + 𝟏𝟗𝟓𝟗. 𝟖𝟒𝟔𝟔𝟎 ∗ 𝐀 − 𝟏. 𝟔𝟏𝟏𝟕𝟏 ∗ 𝐁 + 𝟒𝟕𝟕. 𝟔𝟗𝟓𝟐𝟐 ∗ 𝐂 − 𝟑. 𝟏𝟕𝟗𝟏𝟖 ∗  𝐀  ∗ 𝐁 −
                                  𝟗𝟕. 𝟐𝟐𝟐𝟐𝟐 ∗ 𝐀 ∗ 𝐂 + 𝟎. 𝟏𝟓𝟐𝟎𝟒𝟖 ∗ 𝐁 ∗ 𝐂 − 𝟑𝟖𝟕𝟓. 𝟗𝟒𝟓𝟖𝟏 ∗ 𝐀𝟐 − 𝟎. 𝟎𝟎𝟏𝟖𝟗𝟏 ∗ 𝐁𝟐    +

                                  𝟐𝟕. 𝟗𝟎𝟕𝟐𝟏 ∗ 𝐂²                                                                                         (4) 
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                     Figure 3. Predicted vs Actual Temperature 

Predicted Cutting Temperatures and Actual Cutting Temperatures are represented in Figure 3. This graph for cutting temperature 
ensures the fairly close distribution to a straight line which revealed that the actual values and predicted values are very close to 
each other, confirming that the terms related with the models are significant. It also ensures perfect correlations between experi-
mental and predicted values. 

The influence of Cutting parameters and their interaction effects can be analyzed by using 2-D contour graph and 3-D response 
graph. Figure 4 show the 2-D contour graphs and 3-D response graphs for cutting temperature. The response surface graphs are 
drawn by varying two parameters and keeping the other parameter at constant middle level. At minimal of all interaction parame-
ters, we can observe that the cutting temperature is minimum.  Figure 4(a) shows the response graph for two varying parameters 
feed rate and cutting speed (f*Vc) by keeping the third parameter depth of cut (d) at constant middle level which indicates that the 
increase of  feed rate and cutting speed increases the cutting temperature. Figure 4(b) shows the surface plot for two varying pa-
rameters feed rate and depth of cut (f*d). The results show that the increases of the both parameters increase the cutting tempera-
ture. The relation between cutting speed with respect to depth of cut (v*d) is presented in figure 4(c). The increases of depth of cut 
increase the cutting temperature. At maximal of cutting speed and minimal depth of cut, minimum temperature is observed.  
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The Desirability Function Analysis (DFA) takes values in range 0 < d < 1. When the response variable is at its goal or target, d be-
comes 1, and if the response variable is outside the acceptable range, d becomes zero. In this study, the target for the response is 
minimum value (smaller-the-better). 

Desirability function optimization of the RSM has been employed for single response optimization. The use of response surface 
optimization helps to find the optimal values of cutting parameters in order to minimize the cutting temperature during the turning 
process. Table 3.3 shows the constraints and parameter ranges used during the optimization process. Table 3.4 shows the RSM opti-
mization results for the input process parameters and the response i.e. cutting temperature. It can be seen from Table 3.4 that the 
optimized value of cutting temperature is 522.361°C at optimized values of feed rate, cutting speed and depth of cut 0.100 mm/rev, 
62.172 m/min and 0.200 mm respectively. So, it is suggested from DFA that minimum temperature is obtained at lower feed rate, 
lower cutting speed and lower depth of cut. Desirability of individual factor and response are portrayed in Figure 5. 

 
 
 
 

(a) 

(b) 

(c) 

Figure 4. (a) Effect of feed rate and cutting speed on cutting temperature at constant depth of cut (b) Effect of feed rate and depth 

of cut on cutting temperature at constant cutting speed (c) Effect of cutting speed and depth of cut on cutting temperature at 

constant feed rate 
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Table 3.3: Constraints for Optimization of Machining Parameters 

Name Goal Lower 
Limit 

Upper Lim-
it 

Lower Weight Upper Weight Importance 

A:Feed Rate is in range 0.1 0.16 1 1 3 
B:Cutting Speed minimize 62.172 122.46 1 1 3 
C:Depth of Cut is in range 0.2 0.8 1 1 3 
Temperature minimize 389 865 1 1 3 

Table 3.4: Results for Optimization of the machining parameters 

Number Feed Rate Cutting Speed Depth of Cut Temperature Desirability  
1 0.100 62.172 0.200 522.361 0.848 Selected 
2 0.100 62.172 0.200 522.584 0.848  
3 0.101 62.172 0.200 522.893 0.848  
4 0.100 62.420 0.200 521.832 0.847  
5 0.101 62.172 0.200 523.433 0.847  
6 0.100 62.172 0.202 523.476 0.847  
7 0.102 62.172 0.200 524.100 0.846  
8 0.103 62.172 0.200 524.761 0.845  
9 0.103 62.172 0.200 525.137 0.845  

10 0.100 62.173 0.206 525.461 0.845  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

1

1

1

0.71983

0.848428

Desirability

0.000 0.250 0.500 0.750 1.000

A:Feed Rate

B:Cutting Speed

C:Depth of Cut

Temperature

Combined

Solution 1 out of 61

Figure 5. Bar Chart for Individual Desirability 
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3.1.  Main Effects Plot 

Here, the main effects plot for temperature was analyzed with the help of software MINITAB and shown in Figure 6. The plot 
shows the variation of response with the three input variables; feed rate, cutting speed and depth of cut respectively. In case of tem-
perature minimum value is better. From the main effects plot, it is clearly seen that lower feed rate (0.10 mm/rev) gives the best re-
sult for temperature along with the higher cutting speed (122.460 m/min) and higher depth of cut (0.20 mm) which is coherent to 
the results found from 3D plots and Desirability Function Analysis (DFA).  

 

 

 

 

 

 

 

 

 

 

3.3. Results using Artificial Neural Network (ANN) 
 

In this study, TRAINLM was used as training function and TANSIG was used as Transfer function. 12 hidden layer was selected 
with three input variables (feed rate, cutting speed, depth of cut) and one output variable (temperature) and so, the network struc-
ture is 3-12-1.  

The performance of the developed network was examined for training data in terms of temperature using Artificial Neural Net-
work (ANN) on the basis of correlation coefficient (R²). Interrelationship between actual and predicted values for training is shown in 
Figure 7. The R² value for model θ is noticed to be 0.99081. However R2 for response model are near to unity which indicates the 
successful prediction of dataset under considered neural parameters. After training the data has been simulated and compared with 
input data and the mean absolute percentage error (MAPE) was calculated.    

 

 

 

 

 

 

 

 

 

Figure 6. Main Effects Plot for Temperature 

Figure 7. Linear Regression Plot for Cutting Temperature 
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3.4. Comparison of RSM, ANN Predicted Temperatures and Experimental Temperatures 

Absolute percentage error (APE) and mean absolute percentage error (MAPE) are calculated to measure the error of the process-
es which are defined as follows:  

                                   APE =
tj−oj

tj
∗ 100                                     (5) 

                                            MAPE =
APE

Pj
                                  (6) 

MAPE calculation for predicted values are shown in Table 3.5. Meanwhile, from Figure 8, it is shown that, the deviation between 
experimental values, RSM predicted values and ANN predicted values is very minimum as the lines are very close to each other 
which presents the efficacy of the proposed RSM and ANN model. But MAPE for RSM is 0.001336 and ANN is 0.006245 which evi-
dently indicates that the prediction capabilities of RSM model are better as compared to the ANN models for this experiment. 

Table 3.5: Comparison of predicted values and experimental values 

Run No Experimental 
Temperature 

RSM Pre-
dicted Tem-

perature 

APE for 
RSM 

ANN Pre-
dicted Tem-

perature 

APE for 
ANN 

1 522 522 0.001914 519 0.005747 

2 568 566 0.001765 573 0.008803 

3 389 387 0.002585 391 0.005141 

4 420 419 0.002384 424 0.009524 

5 826 826 0.001211 827 0.001211 

6 865 866 0.001155 861 0.004624 

7 695 696 0.001438 699 0.005755 

8 726 725 0.00138 729 0.004132 

9 605 607 0.001648 607 0.003306 

10 641 643 0.001554 652 0.017161 

11 740 740 0.001351 749 0.012162 

12 554 558 0.001793 553 0.001805 

13 475 479 0.002088 465 0.021053 

14 783 783 0.001277 796 0.016603 

15 629 629 0.001591 630 0.00159 

16 636 629 0.001591 632 0.006289 

   0.026726  0.124906 

  MAPE 0.001336  0.006245 
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4. CONCLUSIONS 

The present study focused on using tool-chip thermocouple technique to measure the cutting temperature during turning of AISI 
1040 using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Based on the results of the present study, 
following conclusions are drawn:  

 R² (correlation coefficients) for the quadratic model has been found from Analysis of Variance (ANOVA) which is quite satis-
factorily as 0.9996 for cutting temperature and the P values of the models are less than 0.05 which indicate that the models 
are significant to 95% level of confidence. 

 From 3-D Response Graphs, it has been clearly observed that cutting temperature increases significantly with the increase 
of feed rate, cutting temperature and depth of cut. 

 An optimized result has been found from desirability function analysis (DFA) which indicates that minimum temperature is 
obtained at lower feed rate, lower cutting speed and lower depth of cut. The desired cutting condition has been attained at 
lower feed rate (0.100 mm/rev), lower cutting speed (62.172 m/min) and depth of cut (0.200 mm) which gives the mini-
mum cutting temperature (522.361°C).  

  From the main effects plot, it is clearly seen that lower feed rate gives the best result for temperature along with the lower 
cutting speed and lower depth of cut which is coherent to the results found from 3D plots and Desirability Function Analysis 
(DFA).  

 ANN based modelling has been carried out where 3-12-1 was the proposed structure, TRAINLM was the training function 
and TANSIG was the transfer function. The developed correlations which is 0.99081 shows a strong agreement with actual 
results. 

 The deviation between experimental values, RSM predicted values and ANN predicted values is very minimum which indi-
cates the efficacy of the proposed RSM and ANN model. But MAPE for RSM is 0.001336 and ANN is 0.006245 which evi-
dently indicates that the prediction capabilities of RSM model are better as compared to the ANN models for this experi-
ment. 
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