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Abstract 

This research work focused on the numerical methods involved in solving boundary value 

problems. We employed finite difference method and shooting method to solve boundary value 

problems. We equally implemented the numerical methods in MATLAB through two 

illustrative examples. The results show that each of the two numerical methods employed is 

suitable for solving linear boundary value problems of ordinary differential equations. 
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1.1 Introduction 

In the history of mathematics and modeling physical phenomena, Ordinary and partial 

differential equation has played important roles; they continue to serve a critical tools in the 

nearest future. one may be interested to find a solution to a differential equation satisfying 

certain defined conditions in the theory and application of ordinary and partial differential 

equations. If the conditions are given at only one point of the independent variable, we have 

initial conditions; whereas if the conditions are given at more than one point of the independent 

variable, they are called boundary conditions (BC).  solution of an 𝑛𝑡ℎ order differential 

equation together with n-initial conditions is called an initial value problem (IVB), The 

problem is called boundary value problem if the n-boundary conditions are considered, (BVP) 

(Biruk Endeshaw 2019). 

When calculations are been carryout, we need not write out the full equations at each step or 

carrying the variables   𝑥1, 𝑥2, 𝑥3, 𝑥4,.  .  .,𝑥𝑛 through the calculations, since they remain in the 

same column. The only difference from system to system occurred in the coefficients of the 

unknowns and the values on the right side of the equations. A linear system is often replaced 

by a matrix, which contain all the information about the system that is necessary to determine 

its solutions, but in a compact form ( Fair, 2005). 

This work is proposing solution to only boundary value problems (BVP) of ODEs. These are 

problems in which the value of the unknown functions or its derivative are given at two 

different points known as boundary value problems. It often in the form  

𝑝′′ = 𝑓(𝑡, 𝑝, 𝑝′), 𝑝(𝑐) =∝ 𝑝(𝑑) = 𝛽 
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Where ∝ and β are given numbers 

With Dirichlet boundary conditions (first kind) 

𝑝 ′(𝑐) =∝ ,       𝑝(𝑑) = 𝛽 

Neumann boundary conditions (second kind) 

𝑝′(𝑐) = 𝑐,       𝑝′(𝑑) = 𝑑  

Robbin boundary conditions (third kind) 

𝑦′′ (𝑡) + 𝑎1(𝑡)𝑝(𝑡) = 𝑡,      𝑝′(𝑐) + 𝑎2(𝑐)𝑝(𝑐) = 𝑐 

 

2.1 Numerical Methods 

We will considered the following : 

2.2 Boundary Value Problem  

Boundary value problems deals with a wide range of applications in applied science and 

engineering, necessitating the development of faster and more reliable numerical methods. 

A large number of numerical methods have been introduced for solving two points boundary 

value problems such as higher order finite difference methods and extended a decomposition 

method (Timizi, 2002). 

There are two main ways for numerical solutions of boundary value problems, which are 

indirect methods Jang (2008). A lot of work was done on boundary value problems by Kreyzig 

(2005). He stated that a large class of important boundary value problem is Sturm Liouville 

problems. 

2.3 Finite Difference Method 

Methods involved in the finite difference for solving Boundary value problems replace each of 

the derivatives in the differential equations with an appropriate difference - quotient 

approximation. Burden, (2010). We shall consider the linear two points ordinary boundary 

value problem of the form. 

Y’’(x) + P(x)y’ + q(x)y = r(x), y(a) 

= yo, y(b) = yn satisfies the following conditions to ensure the existence of unique solution. P(x), 

q(x) and r(x) are containing on [a,b] and q(x) < 0 on [a,b] for positive q(x), the BVP may not 

possess a solution. For the sake of convenience, we shall employ equal increment in the 

independent variable, then xo, x1, ...., xn are the interior mesh points of the interval [a,b] related 

as x1 =xo + ih for I=0,1....n and h is the step size with h = (b-a)/n 

Based on Gilat and Subramanian (2011), the finite difference method entails that the derivative 

in the differential equation is replaced with the finite difference approximation, thereby 

changing the differential equation into algebraic form through a process called discretization. 

We used the  centre difference formulas to solve  finite difference methods since they give 

better validity.  

Madhumangal (2007) stated  that Euler's method is less efficient in practical problems because 

if h is not sufficiently small then the result will be inaccurate. 
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The Runge - Kutta methods give more accurate result. One advantage of this method is that it 

requires only one value of the function at some selected points at the sub - interval and it is 

stable, and easy to program. This method uses numerous calculations of the function to find 

yi+1. When the function f(x,y) has complicated analytical form the Runge - Kutta method is 

very tedious. 

According to Gilberto (2004), the finite difference method is a technique by which derivatives 

of function are approximated by a difference in the value of the independent variable say Xo 

and a small increment (Xo+h). To solve differential equations numerically we can replace the 

derivative in the equation with finite difference approximations on a discretized domain, this 

result in the number of algebraic equations can be solved. 

Stroud (2003) gave a detail description of the finite difference method, according to him, the 

approach to construct finite difference formulas for partial derivatives, and uses them to 

construct finite difference formula that represents an approximation to the differential equation. 

The method based on finite difference method transform a given ODE into a system of 

equations. After solving the system, we can get approximate solution of a nodal points interest 

at one. Computer Algebra System (CAS) usually incorporate routine for solving boundary 

value problems (Ramos et al 2017).  

2.3.1 Shooting method 

The shooting techniques are quite broad and can be used to solve wide range of differential 

equations. The equations do not need to be of a certain type, such as even- order self-adjoint, 

in order for shooting method to work. He also works much on the application of shooting 

methods for the solution of second order boundary value problems (Akinlabi, 2021) 

According to Jain et al (2013), the boundary value problem subject to the boundary condition 

will have a unique solution if the functions p(x), q(x), and r(x) are continuous on [a, b] and q(x) 

>o. 

Akinlabi, et al (2021) said that many writers have tried a variety of methods to achieve higher 

accuracy more quickly. Application of shooting method for the solution of second order 

boundary value problems are elaborately discussed by them. The shooting technique and 

nonhomogeneous multipoint boundary value problems of second order ODEs were also 

reviewed. 

Shooting method for a class of two points singular nonlinear boundary value problems was 

discuss and explore the shooting for calculating eigenvalues of fourth - order two points 

boundary value problems (Pareen, 2016). 

In shooting method, a given boundary value problem is transform into a system consisting of 

first order initial value problem ODEs. Furthermore, the resulting system is solved with any 

available ODEs solver, for example, Runge - Kutta or linear multi - step method. A major 

difficulty with the shooting method is that sometimes a well - known behaved boundary value 

problem is transformed, requiring later the integration of the initial value problem which is 

unstable. More precisely, the true solution of a boundary value problem can be stable to some 

perturbations in the boundary conditions, but the solution of the initial value problem arising 

in the shooting method area unstable to perturbations of the initial values (Ramos et al 2022). 

Turner (2008) stated that the philosophy behind shooting method for the solution of a two-

point boundary value problem is that, we embedded the initial value problems within an 

equation solving routine which is used to the appropriate initial condition so that final boundary 

conditions are also satisfied. 
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Fox, 2005 presented that, the most usual application of shooting method has been to particular 

problems for second order equation where to achieve computations, the equation is integrated 

from each boundary point and marched at a suitable interior point. 

3.0 Methods 

In this section, we will derive both the shooting method and the finite difference method for 

solving two point second-order boundary value problems (BVPs) of ordinary differential 

equations. 

3.1 Boundary Value Problems 

The simplest boundary value problem is given by the second order differential equation of the 

form: 

−𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑟(𝑥)                                                                                           (3.1) 

Where p(x), q(x) and r(x) are continuous function of x or constants, with one of three boundary 

conditions. 

3.1.1 Boundary Condition of the First Kind 

𝑦(𝑎) = 𝛾1,         𝑦(𝑏) = 𝛾2                                                                                                             (3.2)   

3.1.2 Boundary Condition of the second Kind 

𝑦′(𝑎) = 𝛾1,          𝑦
′(𝑎) = 𝛾2                                                                                                        (3.3)  

3.1.3 Boundary Condition of the Three Kind 

𝑎0𝑦(𝑎) − 𝑎1𝑦
′(𝑎) = 𝛾1

𝑏0𝑦(𝑏) − 𝑏1𝑦
′(𝑏) = 𝛾2

}                                                                                                (3.4) 

A homogeneous boundary value problem possesses only a trivial solution 

 𝑦(𝑥) = 0. 

We shall therefore consider those boundary value problems in which a parameter 𝜆 occurs 

either in the DE or the boundary conditions, and we determine values of 𝜆, called eigenvalues, 

for which the BVP has a non-trivial solution. 

Furthermore, in general, a boundary value problem does not always have a unique solution. 

However, we shall assume that the boundary value problem has a unique solution. 

3.2 Linear Shooting Method 

Consider the numerical solution of the differential equation (3.1) 

−𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑟(𝑥)  

𝑎 < 𝑥 > 𝑏 

Subject to the boundary conditions (3.4) 

𝑎0𝑦(𝑎) − 𝑎1𝑦
′(𝑎) = 𝛾1,  

𝑏0𝑦(𝑏) − 𝑏1𝑦
′(𝑏) = 𝛾2,  

Where 𝑎0,, 𝑏0, 𝑎1, 𝑏1, 𝛾1 and 𝛾2 are constants such that 
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𝑎0𝑎1 ≥ 0|𝑎0| + |𝑎1| ≠ 0  

 𝑏0𝑏1 ≥ 0|𝑏0| + |𝑏1| ≠ 0  

The boundary value problem (3.1) subject to boundary conditions (3.4) will have a unique 

solution if the function p(x), q(x) are continuous on [a,b] and 𝑞(𝑥) > 0.  

When the IVP is non-homogenous, then it is sufficient to solve the two initial value problems: 

−𝜑1
′′ + 𝑝(𝑥)𝜑′ + 𝑞(𝑥)𝜑 = 𝑟(𝑥)                                                                            (3.4(𝑖))  

−∅2
′′ + 𝑝(𝑥)∅2

′ + 𝑞(𝑥)∅2 = 𝑟(𝑥)                                                                         (3.4(𝑖𝑖))   

With suitable initial conditions at 𝑥 = 𝑎. 

We write the general solution of the value problem in the form 

𝑦(𝑥) = 𝜆∅1(𝑥) + (1 − 𝜆)∅2(𝑥)                                                                                  (3.5)  

And determine λ so that the boundary condition at the other end, that is at x=b is satisfied. 

We solve the initial value problems [3.4(i)],[3.4(ii)] up to x=b using initial conditions. 

3.2.1 Boundary Condition of the first kind 

  ∅1(𝑎) = 𝛾1, ∅′1(𝑎) = 0,  

∅2(𝑎) = 𝛾1, ∅′2(𝑎) = 1, 

From (3.5), we obtain 

𝑦(𝑏) = 𝛾2 = 𝜆∅1(𝑏) + (1 − 𝜆)∅2(𝑏)  

Which gives  

𝜆 =
𝛾2 − ∅2 (𝑏)

∅1 (𝑏) − ∅2 (𝑏)
, ∅1 ≠ ∅2 (𝑏)                                                                            (3.6) 

3.2.2 Boundary condition of the second kind 

  ∅1(𝑎) = 0, ∅′1(𝑎) = 𝛾1,  

∅2(𝑎) = 1, ∅′2(𝑎) = 𝛾1, 

From (3.5), we obtain 

𝑦′(𝑏) = 𝛾2 = 𝜆∅′1(𝑏) + (1 − 𝜆)∅′2(𝑏)  

Which gives  

𝜆 =
𝛾2 − ∅2

′ (𝑏)

∅1
′ (𝑏) − ∅2

′ (𝑏)
, ∅1

′ ≠ ∅2
′ (𝑏)                                                                            (3.7) 

3.2.3 Boundary conditions of third kind 

∅1(𝑎) = 0,   ∅1
′ (𝑎) =

−𝛾1

𝑎1
,  

∅2(𝑎) = 1,  ∅2
′ (𝑎) =

(𝑎0−𝛾1)

𝑎1
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 From (3.5), we obtain 

𝑦(𝑏) = 𝜆∅1(𝑏) + (1 − 𝜆)∅1
′ (𝑏),  

𝑦′(𝑏) = 𝜆∅2
′ (𝑏) + (1 − 𝜆)∅2

′ (𝑏).  

Substituting in the second condition, 

𝑏0𝑦(𝑏) + 𝑏1𝑦(𝑏) = 𝛾2 in (3.4), we get 

𝛾2 = 𝑏0[𝜆∅1(𝑏) + (1 − 𝜆)∅2(𝑏)] + 𝑏1[𝜆∅1
′ (𝑏) + (1 − 𝜆)∅2

′ (𝑏)]  

Which gives 

𝛾2 =
𝛾2−[𝑏0∅2(𝑏)+𝑏1∅2

′ (𝑏)]

[𝑏0∅1(𝑏)∅1
′ (𝑏)]−[𝑏0∅2(𝑏)]+𝑏1∅2

′ (𝑏)
  

3.1.4. Runge-Kutta method 

The Runge-Kutta method of order four requires four evaluation per step, so it should give more 

accurate answers than Euler’s method with one-fourth the step size if it is to be superior.  

The formula for fourth-order Runge-Kuta method is given by: 

𝑦𝑛+1 = 𝑦𝑛 + 
1

6
(𝑘𝐼1 + 2𝑘𝐼2 + 2𝑘𝐼3 + 𝑘𝐼4),         𝑛 = 0,1,2, … , 𝑁 − 1,          (3.14) 

where 

𝑘𝐼1 = ℎ𝑓(𝑥𝑛, 𝑦1𝑛, 𝑦2𝑛, … , 𝑦𝑚.𝑛),   

𝑘𝐼2 = ℎ𝑓1(𝑥𝑛 +
ℎ

2
, 𝑦1𝑛 +

𝑘𝐼1

2
, 𝑦2𝑛+𝑘21, … , 𝑦𝑚,𝑛 +

𝑘𝑚1

2
) , 

𝑘𝐼3 = ℎ𝑓1 (𝑥𝑛 +
ℎ

2
, 𝑦1𝑛 +

𝑘𝐼2

2
, 𝑦2𝑛 + 𝑘22, … , 𝑦𝑚,𝑛 +

𝑘𝑚2

2
),                  

𝑘𝐼4 = ℎ𝑓1 (𝑥𝑛 +
ℎ

2
, 𝑦1𝑛 +

𝑘𝐼3

2
, 𝑦2𝑛 + 𝑘23, … , 𝑦𝑚,𝑛 + 𝑘𝑚3),  

𝑖 = 1,2, … ,𝑚  

But for the sake of these research work, our focus will be on Runge-Kuta method for a pair of 

equations shown below. 

𝑉𝑛+1 = 𝑉𝑛 +
1

6
(𝑘1 + 2(𝑘2 + 𝑘3) + 𝑘4)  

𝑊(1)
𝑛+1 = 𝑊𝑛 +

1

6
(𝐼1 + 2(𝐼2 + 𝐼3) + 𝐼4)  

where 

𝑘(𝑖)1 = ℎ𝑓(𝑢, 𝑣, 𝑤)  

𝐼(𝑖)1 = ℎ𝑔(𝑢𝑛, 𝑣𝑛, 𝑤𝑛)     

𝑘(𝑖)2 = ℎ𝑓(𝑢𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘1

2
, 𝑤𝑛 +

𝐼1

2
)  

𝐼(𝑖)2 = ℎ𝑔(𝑢𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘1

2
, 𝑤𝑛 +

𝐼1

2
)  
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𝑘(𝑖)3 = ℎ𝑓(𝑢𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘2

2
, 𝑤𝑛 +

𝐼2

2
)  

𝐼(𝑖)3 = ℎ𝑔(𝑢𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘2

2
, 𝑤𝑛 +

𝐼2

2
)   

𝑘(𝑖)4 = ℎ𝑓(𝑢𝑛 + ℎ, 𝑣𝑛 + 𝑘3, 𝑤𝑛 + 𝐼3)   

𝐼(𝑖)4 = ℎ𝑔(𝑢𝑛 + ℎ, 𝑣𝑛 + 𝑘3, 𝑤𝑛 + 𝐼3)  

3.3 Finite Difference Method for Linear Problems   

Methods involving finite difference method for solving boundary value problems replace each 

of the derivatives in the differential equation with an appropriate difference-quotient 

approximation. 

The particular difference quotient and step size ℎ are chosen to maintain a specified order of 

truncation error. However, ℎ  cannot be chosen too small because of instability of the derivative 

approximations. 

The finite difference method for the linear second-order boundary-value problem; 

𝑦′′ = 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 + 𝑟(𝑥)  𝑎 ≤ 𝑥 ≤ 𝑏  

𝑦(𝑎) = 𝛼,        𝑦(𝑏) = 𝛽  

Requires that difference-quotient approximations be used to approximate both  

𝑦′ and 𝑦′′. 

 First, we select an integer 𝑛 > 0 and divide the interval [𝑎, 𝑏] into (N+1) equal sub-intervals 

whose endpoints are the mesh point 𝑥 𝑖 = 𝑎 + 𝑖ℎ, for 𝑖 = 0, 1… ,𝑁 + 1,Where 

ℎ =
𝑏−𝑎

𝑁+1
.  

At the interior mesh points, 𝑥𝑖 , for 𝑖 = 1,2…𝑁, the differential equation to be approximated is  

𝑦′′(𝑥𝑖) = 𝑝(𝑥𝑖) + 𝑞(𝑥𝑖) + 𝑟(𝑥𝑖)                                                                            (3.15)  

Expanding 𝑦 in a third Taylor polynomial about 𝑥𝑖 evaluate at 𝑥𝑖−1, we have, assuming that 

𝑦 ∈ 𝐶4[𝑋𝐼−1, 𝑋𝐼+1],  

 𝑦(𝑥𝑖+1) = 𝑦(𝑥𝑖 + ℎ) = 𝑦(𝑥𝑖) + ℎ𝑦′(𝑥𝑖) +
ℎ2

2!
𝑦′′(𝑥𝑖) +

ℎ3

3!
𝑦′′′(𝑥𝑖) +

ℎ4

4!
𝑦′′′′(𝜁)                                                                                                                                      (3.16)  

For some ζ𝑖
−in (𝑥𝑖+1, 𝑥𝑖). If these equations are added, we have 

𝑦(𝑥𝑖+1) + 𝑦(𝑥𝑖−1) = 2𝑦𝑖(𝑥𝑖) + ℎ2𝑦′′(𝑥𝑖) −
ℎ4

4!
[𝑦(4)(𝜉𝑖

+ + 𝜉𝑖
−)]                                       (3.17)  

And solving for 𝑦′′(𝑥𝑖)  gives  

 𝑦′′(𝑥𝑖) =
1

ℎ2 [𝑦(𝑥𝑖+1) − 2𝑦 (𝑥𝑖) + 𝑦(𝑥𝑖−1)] −
ℎ4

4!
[𝑦(4)(𝜉𝑖

+ + 𝜉𝑖
−)]                                 (3.18)  

The intermediate theorem can be used to simplify this to 

𝑦′′(𝑥𝑖) =
1

ℎ2 [𝑦(𝑥𝑖+1) − 2𝑦 (𝑥𝑖) + 𝑦(𝑥𝑖−1)] −
ℎ4

4!
[𝑦(4)(𝑦

(4)
(𝜉𝑖 ))]                               (3.19)  
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For some 𝜉𝑖 in (𝑥𝑖−1, 𝑥𝑖+1).  

This is called central difference formula for 𝑦′′(𝑥𝑖)  

A central difference for 𝑦′(𝑥𝑖) is obtain in a similar manner resulting in  

𝑦′(𝑥𝑖) =
𝐼

2ℎ
[𝑦(𝑥𝑖+1) − 𝑦(𝑥𝑖−1)] −

ℎ3

3!
𝑦′′′(𝜂𝑖)                                                                      (3.20)  

For some 𝜂𝑖 in (𝑥𝑖−1, 𝑥𝑖+1). 

The use of the finite difference formula in (3.1) and writing 𝑦(𝑥𝑖+1) as 𝑦𝑖+1, y(𝑥𝑖) as 𝑦𝑖 , 𝑦𝑖−1 𝑎𝑠 

𝑦𝑖 , 𝑝(𝑥𝑖) as 𝑝𝑖 , 𝑞(𝑥𝑖) as 𝑞𝑖 and 𝑟(𝑥𝑖) as 𝑟𝑖 result in the equation  

𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖−1

ℎ2
= 𝑝𝑖 (

𝑦𝑖+1 − 𝑦𝑖−1

2ℎ
) + 𝑞𝑖𝑦𝑖 + 𝑟𝑖                                                          (3.21) 

Further algebraic simplification leads to a tri-diagonal system for the unknowns 𝑦𝑖…, 𝑦𝑛−1 i.e 

𝑖 = 1… , 𝑛 − 1,  

(2 + ℎ𝑝𝑖)𝑦𝑖−1 − (4 + 2ℎ2𝑞𝑖)𝑦𝑖 + (2 − ℎ𝑝𝑖)𝑦𝑖+1 = 2ℎ2𝑟𝑖                                                (3.22)  

Where 𝑦0 = 𝑦(𝑎) = 𝛼 and 𝑦𝑛 = 𝑦(𝑏) = 𝛽 

Using the boundary value and simplifying gives: 

First (for i=1) 

−(4 + 2ℎ2𝑞𝑖)𝑦𝑖 + (2 − ℎ𝑝𝑖)𝑦2 = 2ℎ2𝑟𝑖 − 𝑎(2 + ℎ𝑝𝑖)                                                      (3.23)  

Then for i=2…, n-2, 

(2 + ℎ𝑝𝑖)𝑦𝑖−1 − (4 + 2ℎ2𝑞𝑖)𝑦𝑖 + (2 − ℎ𝑝𝑖)𝑦𝑖+1 = 2ℎ2𝑟𝑖                                                (3.24)  

And finally, (𝑓𝑜𝑟 𝑖 = 𝑛 − 1) 

(2 − ℎ𝑝𝑛−1)𝑦𝑛−2 − (4 + 2ℎ2𝑞𝑛−1)𝑦𝑛−1 = 2ℎ2𝑟𝑖 − 𝛽(2 − ℎ𝑝𝑛−1)                                (3.25)  

The system in matrix form 𝐴𝑦 = 𝑏, with 

𝐴 =

[
 
 
 
 
 
−(4 + 2ℎ2𝑞1)

(2 + ℎ𝑝2)
0
⋮
0
0

  

(2 − ℎ𝑝1)

−(4 + 2ℎ2𝑞2)

(4 + 2ℎ2𝑞3)
⋮
0
0

 

0
(2 − ℎ𝑝2)

−(4 + 2ℎ2𝑞3)
⋮

(2 + ℎ𝑝𝑛−2)
0

 

0
0

(2 − ℎ𝑝3)
⋮

−(4 + 2ℎ2𝑞𝑛−1)

(2 + ℎ𝑝𝑛−1)

  

0
0
0
⋮

(2 + ℎ𝑝𝑛−2)

−(4 + 2ℎ2𝑞𝑛−1)]
 
 
 
 
 

   

𝑌 =

[
 
 
 
 
𝑦1

𝑦2
𝑦3

𝑦4

𝑦5]
 
 
 
 

,             𝐵 =

[
 
 
 
 
 

2 + ℎ2𝑟1 − (2 + ℎ𝑝1)𝛼

2ℎ2𝑟2
2ℎ𝑟3

⋮
2ℎ𝑟𝑛−1

2ℎ2𝑟𝑛−1 − (2 − ℎ𝑝𝑛−1)𝛽]
 
 
 
 
 

.  
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4.0 Results and Discussion 

In this section, we will provide numerical results of the findings and discussion based on the 

outcome of our results. 

4.1 Results 

We will use the methods derived in chapter three to solve the boundary value problems 

numerically. 

4.1.1 Example I 

Solve the boundary value problem 

𝑦′′ = 𝑦 + 1 with boundary condition 

𝑦(0) = 0,     𝑦(1) = 0  

The exact solution is  

𝑦(𝑢) = 𝑒𝑢 − 1  

𝑢𝑛 = 0.25,0.50,0.75,1.0  

ℎ = 0.25  

solution using shooting method 

𝑦′′ = 𝑦 + 1                                          𝑈 ∈ [0,1]  

𝑦(0) = 0,       𝑦(1) = 0  

We assume the general solution of the boundary value problem as 

𝑦(𝑢) = 𝜆∅0(𝑢) + (1 − 𝜆)∅1(𝑢)  

Then we solve the two IVPs  

∅0
′′ = ∅0 + 1              ∅0(0) = 0, ∅0

′ = 0  

∅1
′′ = ∅1 + 1              ∅1(0) = 0, ∅1

′ (0) = 1  

We write these IVPs as the following equivalent 1st order systems. 

The systems are gotten as follows 

Let ∅0 = 𝑤′, 𝑤′ = 𝑣  

Differentiate we have  

∅0
′ = 𝑣′ = 𝑤(1)

𝑤′′ = 𝑤′ = 𝑣(1) + 1
}                         (1)  

Let ∅1 = 𝑣, 𝑣′ = 𝑤  

Differentiating we have  

∅1
′ = 𝑣′ = 𝑤(2)

𝑣′′ = 𝑤′ = 𝑣(2) + 1
}                        (2)                         
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We now apply Runge-Kutta method for a pair of equations. 

The first pair (1) is: 

∅0
′ = 𝑓(𝑢𝑛, 𝑣𝑛, 𝑤𝑛) = 𝑤𝑛

(1)
  

∅0
′′ = 𝑔(𝑢𝑛, 𝑣𝑛, 𝑤𝑛) = 𝑣𝑛

(1)
+ 1  

The second pair (2) is: 

∅1
′ = 𝑓(𝑢𝑛, 𝑣𝑛, 𝑤𝑛) = 𝑤𝑛

(2)
  

∅1
′′ = 𝑔(𝑢𝑛, 𝑣𝑛, 𝑤𝑛) = 𝑣𝑛

(2)
+ 1  

𝑘1 = ℎ𝑓(𝑢𝑛, 𝑣𝑛, 𝑤𝑛) = ℎ𝑤𝑛
(1)

  

𝐼1 = ℎ𝑔(𝑢𝑛, 𝑣𝑛, 𝑤𝑛) = ℎ(𝑣𝑛
(1)

+ 𝐼1)  

𝑘2 = ℎ𝑓 (𝑢𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘1

2
, 𝑤𝑛 +

𝐼1

2
 ) = ℎ(𝑤𝑛

(1)
+

𝐼1

2
)   

𝐼2 = ℎ𝑔 (𝑢𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘1

2
, 𝑤𝑛 +

𝐼1

2
 ) = ℎ(𝑣𝑛

(1)
+

𝑘1

2
)   

𝑘3 = ℎ𝑓 (𝑢𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘1

2
, 𝑤𝑛 +

𝐼2

2
 ) = ℎ(𝑤𝑛

(1)
+

𝐼2

2
)   

𝐼3 = ℎ𝑔 (𝑢𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘1

2
, 𝑤𝑛 +

𝐼1

2
 ) = ℎ(𝑣𝑛

(1)
+

𝑘2

2
)   

𝑘4 = ℎ𝑓(𝑢𝑛 + ℎ, 𝑣𝑛 + 𝑘3,𝑤𝑛 + 𝐼3) = ℎ(𝑤𝑛
(1)

+ 𝐼3)   

 𝑘4 = ℎ𝑔(𝑢𝑛 + ℎ, 𝑣𝑛 + 𝑘3,𝑤𝑛 + 𝐼3) = ℎ(𝑤𝑛
(1)

+ 𝑘3)  

At  𝑢0 = 0, 𝑖 = 1, 𝑣𝑜
(1)

, 𝑤𝑜
(1)

, 𝑛 = 0,1,2,3  

𝑘1 = ℎ𝑤0 = 0.25 × 0 = 0  

𝐼1 = ℎ(𝑣0 + 1) = 0.25 × (0 + 1) = 0.25  

𝑘2 = ℎ (𝑤0 +
𝐼1

2
) = 0.25 × (0 +

0.25

2
) = 0.0313  

𝐼2 = ℎ (𝑣0 +
𝑘1

2
) = 0.25 × (0 +

0

2
) = 0.03125  

𝑘3 = ℎ (𝑣0 +
𝐼2

2
) = 0.25 × (0 +

0.03125

2
) = 0.2539  

 𝑘4 = ℎ(𝑤0 + 𝐼3) = 0.25 × (0 + 0.2539) = 0.06347 

𝐼4 = ℎ(𝑤0 + 𝑘3) = 0.25 × (0 + 0.2539) = 0.06347  

𝑣𝑜
(1)

= 𝑣0 +
1

6
(𝑘1 + 2(𝑘2 + 𝑘3) + 𝑘4) = 0 +

1

6
(0 + 2(0.313 + 0.03125) + 0.06347) =

0.0314  

 𝑤𝑜
(1)

= 𝑤0 +
1

6
(𝐼1 + 2(𝐼2 + 𝐼3) + 𝐼4) = 0 +

1

6
(0 + 2(0.25 + 0.2539) + 0.2578) =

0.2526  
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For 𝑛 = 1, 𝑖 = 1  

𝑘1 = ℎ𝑤1 = 0.25 × 0.2526 = 0.0632  

𝐼1 = ℎ(𝑣1 + 1) = 0.24 × (0.0314 + 1) = 0.02579  

𝑘2 = ℎ (𝑤1 +
𝐼1

2
) = 0.25 × (0.02526 +

0.02579

2
) = 0.0957  

𝐼2 = ℎ (𝑣1 +
𝑘1

2
) = 0.25 × [(0.0315 + 1) +

0.0632

2
] = 0.02658  

𝑘3 = ℎ (𝑤1 +
𝐼2

2
) = 0.25 × (0.02526 +

0.2658

2
) = 0.0946  

𝐼3 = ℎ (𝑣1 +
𝑘2

2
) = 0.25 × [(0.2526 + 1) +

0.0954

2
] = 0.2698  

 𝑘4 = ℎ(𝑤1 + 𝐼3) = 0.25 × (0.2526 + 0.02698) = 0.1386  

 𝐼4 = ℎ(𝑣1 + 𝑘3) = 0.25 × [(0.0314 + 1(0.0964) − (0.0435) − (0.2 + 0.2) = 0.281 

𝑣2
(1)

= 𝑣0 +
1

6
(𝑘1 + 2(𝑘2 + 𝑘3) + 𝑘4) = 0.0314 +

1

6
(0 + 2(0.0632 + 0.0954) +

0.1306 = 0.0962  

𝑤2
(1)

= 𝑣1 +
1

6
(𝐼1 + 2(𝐼2 + 𝐼3) + 𝐼4) = 0.2526 +

1

6
(0.2579 + 2(0.2658 + 0.0964) +

0.2820) = 0.4633  

For 𝑛 = 2, 𝑖 = 1  

𝑘1 = ℎ𝑤2 = 0.25 × 0.4633 = 0.1158  

𝐼1 = ℎ(𝑣2 + 1) = 0.25 × (0.0962 + 1) = 0.2741  

𝑘2 = ℎ (𝑤2 +
𝐼1

2
) = 0.25 × (0.4633 +

0.2741

2
) = 0.1501   

𝐼2 = ℎ (𝑣2 +
𝑘1

2
) = 0.25 × ((0.0920 + 1) +

0.1158

2
) = 0.2885   

𝑘3 = ℎ (𝑤2 +
𝐼2

2
) = 0.25 × (0.4633 +

0.2885

2
) = 0.1519   

𝐼3 = ℎ (𝑣2 +
𝑘2

2
) = 0.25 × ((0.0962 + 1) +

0.1501

2
) = 0.2928   

 𝑘4 = ℎ(𝑤2 + 𝐼3) = 0.25 × (0.4633 + 0.2928) = 0.1890   

 𝐼4 = ℎ(𝑣2 + 𝑘3) = 0.25 × [(0.0962 + 1) + 0.1593] = 0.3120   

𝑣3
(1)

= 𝑣2 +
1

6
(𝑘1 + 2(𝑘2 + 𝑘3) + 𝑘4) = 0.0962 +

1

6
(0.1158 + 2(0.1501 + 0.1519) +

0.1890) = 0.2400  

𝑤3
(1)

= 𝑤2 +
1

6
(𝐼1 + 2(𝐼2 + 𝐼3) + 𝐼4) = 0.4633 +

1

6
(0.2741 + 2(0.2885 + 0.2928) +

0.3120) = 0.7548  

For 𝑛 = 3 

 𝑘1 = ℎ𝑤3 = 0.25 × 0.7548 = 0.1887 

𝐼1 = ℎ(𝑣3 + 1) = 0.25 × (0.2477 + 1) = 0.3119  
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𝑘2 = ℎ (𝑤3 +
𝐼1

2
) = 0.25 × (0.7548 +

0.3119

2
) = 0.2275  

𝐼2 = ℎ (𝑣3 +
𝑘1

2
) = 0.25 × [(0.2477 + 1) +

0.1887

2
] = 0.3355  

𝑘3 = ℎ (𝑤3 +
𝐼2

2
) = 0.25 × (0.7548 +

0.3355

2
) = 0.2306  

𝐼3 = ℎ (𝑣3 +
𝑘2

2
) = 0.25 × [(0.2477 + 1) +

0.2275

2
] = 0.3404  

 𝑘4 = ℎ(𝑤3 + 𝐼3) = 0.25 × (0.7548 + 0.3404) = 0.3596    

 𝐼4 = ℎ(𝑣2 + 𝑘3) = 0.25 × [(0.2477 + 1) + 0.2737] = 1.0777   

𝑣4
(1)

= 𝑣3 +
1

6
(𝑘1 + 2(𝑘2 + 𝑘3) + 𝑘4) = 0.2477 +

1

6
(0.1887 + 2(0.2275 + 0.2306) +

0.2737) = 0.477   

𝑤4
(1)

= 𝑤3 +
1

6
(𝐼1 + 2(𝐼2 + 𝐼3) + 𝐼4) = 0.7548 +

1

6
(0.3119 + 2(0.3355 + 0.3404) +

0.2737) = 1.0777  

For 𝑖 = 2, 𝑛 = 0  

𝑘1 = ℎ𝑤0 = 0.25 × 1 = 0.25  

𝐼1 = ℎ(𝑣0 + 1) = 0.25 × (0 + 1) = 0.25  

𝑘2 = ℎ (𝑤0 +
𝐼1

2
) = 0.25 × (1 +

0.25

2
) = 0.3813  

𝐼2 = ℎ (𝑣0 +
𝑘1

2
) = 0.25 × [(0 + 1) +

0.25

2
] = 0.2813   

𝑘3 = ℎ (𝑤0 +
𝐼2

2
) = 0.25 × (1 +

0.2813

2
) = 0.2852    

𝐼3 = ℎ (𝑣0 +
𝑘2

2
) = 0.25 × [(0 + 1) +

0.2813

2
] = 0.2852  

 𝑘4 = ℎ(𝑤0 + 𝐼3) = 0.25 × (1 + 0.2852) = 0.3213   

 𝐼4 = ℎ(𝑣0 + 𝑘3) = 0.25 × [(0 + 1) + 0.2852] = 0.3213  

𝑣1
(1)

= 𝑣0 +
1

6
(𝑘1 + 2(𝑘2 + 𝑘3) + 𝑘4) = 0 +

1

6
(0.25 + 2(0.2813 + 0.2852) + 0.3213) =

0.2840  

𝑤1
(1)

= 𝑤0 +
1

6
(𝐼1 + 2(𝐼2 + 𝐼3) + 𝐼4) = 1 +

1

6
(0.25 + 2(0.2813 + 0.2852) + 0.3213) =

1.2840  

For 𝑛 = 1  

𝑘1 = ℎ𝑤1 = 0.25 × 1.2840 = 0.3210  

𝐼1 = ℎ(𝑣1 + 1) = 0.25 × (0.2840 + 1) = 0.3210  

𝑘2 = ℎ (𝑤1 +
𝐼1

2
) = 0.25 × (1.2840 +

0.3210

2
) = 0.3611    

𝐼2 = ℎ (𝑣1 +
𝑘1

2
) = 0.25 × ((0.2840 + 1) +

0.3210

2
) = 0.3611   
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𝑘3 = ℎ (𝑤1 +
𝐼2

2
) = 0.25 × (1.2840 +

0.3611

2
) = 0.3661    

𝐼3 = ℎ (𝑣1 +
𝑘2

2
) = 0.25 × ((0.2840 + 1) +

0.3611

2
) = 0.3661   

 𝑘4 = ℎ(𝑤1 + 𝐼3) = 0.25 × (1.2840 + 0.3661) = 0.4125   

 𝐼4 = ℎ(𝑣1 + 𝑘3) = 0.25 × [(0.2840 + 1) + 0.3661] = 0.4125    

𝑣2
(2)

= 𝑣1 +
1

6
(𝑘1 + 2(𝑘2 + 𝑘3) + 𝑘4) = 0.2840 +

1

6
(0.3210 + 2(0.3611 + 0.5510) +

0.4125) = 0.7200  

𝑤2
(2)

= 𝑤1 +
1

6
(𝐼1 + 2(𝐼2 + 𝐼3) + 𝐼4) = 1.2810 +

1

6
(0.3210 + 2(0.3611 + 0.6610) +

0.4125) = 1.7470  

For 𝑛 = 2  

𝑘1 = ℎ𝑤2 = 0.25 × 1.7470 = 0.4368  

𝐼1 = ℎ(𝑣2 + 1) = 0.25 × (0.7470 + 1) = 0.4368   

𝑘2 = ℎ (𝑤2 +
𝐼1

2
) = 0.25 × (1.7470 +

0.4368

2
) = 0.4913   

𝐼2 = ℎ (𝑣2 +
𝑘1

2
) = 0.25 × ((0.7470 + 1) +

0.4368

2
) = 0.4913   

𝑘3 = ℎ (𝑤2 +
𝐼2

2
) = 0.25 × (1.7470 +

0.4913

2
) = 0.4913    

𝐼3 = ℎ (𝑣2 +
𝑘2

2
) = 0.25 × ((0.7470 + 1) +

0.4918

2
) = 0.4913    

 𝑘4 = ℎ(𝑤2 + 𝐼3) = 0.25 × (0.4932 + 1.7470) = 0.5613   

 𝐼4 = ℎ(𝑣2 + 𝑘3) = 0.25 × [(0.7470 + 1) + 0.4982] = 0.5613 

  𝑣3
(2)

= 𝑣2 +
1

6
(𝑘1 + 2(𝑘2 + 𝑘3) + 𝑘4) = 0.7470 +

1

6
(0.4368 + 2(0.4913 + 0.4982) +

0.5613) = 1.2400   

𝑤3
(2)

= 𝑤2 +
1

6
(𝐼1 + 2(𝐼2 + 𝐼3) + 𝐼4) = 1.7470 +

1

6
(0.4368 + 2(0.4913 + 0.4982) +

0.5613) = 2.2432   

 For 𝑛 = 3 

 𝑘1 = ℎ𝑤3 = 0.25 × 2.2432 = 0.0608  

𝐼1 = ℎ(𝑣3 + 1) = 0.25 × (1.2432 + 1) = 0.0608  

𝑘2 = ℎ (𝑤3 +
𝐼1

2
) = 0.25 × (2.2432 +

0.0608

2
) = 0.5684  

𝐼2 = ℎ (𝑣3 +
𝑘1

2
) = 0.25 × [(1.2432 + 1) +

0.5684

2
] = 05684  

𝑘3 = ℎ (𝑤3 +
𝐼2

2
) = 0.25 × (2.2432 +

0.5684

2
) = 0.6319  

𝐼3 = ℎ (𝑣3 +
𝑘2

2
) = 0.25 × [(1.2432 + 1) +

0.6319

2
] = 0.6319   
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 𝑘4 = ℎ(𝑤3 + 𝐼3) = 0.25 × (2.2432 + 0.6319) = 0.7188    

 𝐼4 = ℎ(𝑣3 + 𝑘3) = 0.25 × [(1.2432 + 1) + 0.6319] = 0.7188    

𝑣4
(2)

= 𝑣3 +
1

6
(𝑘1 + 2(𝑘2 + 𝑘3) + 𝑘4) = 1.2432 +

1

6
(0.0608 + 2(0.5684 + 0.6319) +

0.6398) = 1.7732    

𝑤4
(2)

= 𝑤3 +
1

6
(𝐼1 + 2(𝐼2 + 𝐼3) + 𝐼4) = 2.2432 +

1

6
(0.0608 + 2(0.5684 + 0.6319) +

0.6398) = 2.7732  

Using the conditions 𝑖 = 1,𝑤0
(1)

= 0, 𝑣0
(0)

= 0, we get  

[
𝑣1

(1)

𝑤1
(1)] = [

0.0314

0.2526
] , [

𝑣2
(1)

𝑤2
(1)] = [

0.0962

0.4633
] , [

𝑣3
(1)

𝑤3
(1)] = [

0.2477

0.7548
] , [

𝑣4
(1)

𝑤4
(1)] = [

0.4775

1.0777
]. 

Using the condition 𝑖 = 2, 𝑣0
(2)

= 0,𝑤0
(2)

= 1, we get 

[
𝑣1

(2)

𝑤1
(2)] = [

0.2840

1.2840
] , [

𝑣2
(2)

𝑤2
(2)] = [

0.7470

1.7470
] , [

𝑣3
(2)

𝑤3
(2)] = [

1.2432

2.2432
] , [

𝑣4
(2)

𝑤4
(2)] = [

1.7730

2.7730
]. 

𝑦(𝑥) = 𝜆∅0(𝑥) + (1 − 𝜆)∅1(𝑥)  

 𝜆 =
𝛾2=∅2(𝑥)

∅1(𝑥)−∅2(𝑥)
                                             𝛾2 = 0   

=
0−𝑣4

(2)

𝑣4
(1)

−𝑣4
(2) =

−1.2773

0.4775−1.2773
= 1.3686  

𝑦(𝑥) = 𝜆∅0(𝑥) + (1 − 𝜆)∅1(𝑥)  

𝑦(𝑥) = 1.3686∅0(𝑥) − 0.3686∅1(𝑥)  

Calculating for the remaining values of 𝑥 at 

𝑋 = 0.25, 0.50, 0.75 𝑎𝑛𝑑 1.00  

𝑦(0.25) = 1.3686(0.0314) − 0.3686(0.2840) = −0.0617  

𝑦(0.50) = 1.3686(0.0962) − 0.3686(0.7470) = −0.1437  

𝑦(0.75) = 1.3686(0.2477) − 0.3686(1.2432) = −0.1192  

𝑦(1.00) = 1.3686(0.4775) − 0.3686(1.2773) = −0.1827  

Solution Using Finite Difference Method 

Applying the finite difference scheme, we discretize the given equation into algebraic form 

𝑦𝑛+1 − 2𝑦1 + 𝑦𝑛+1

ℎ2
= 𝑦1 + 1 

Multiply each term by ℎ2 and collect like terms to have 

𝑦𝑛+1 − (2 + ℎ2)𝑦1 + 𝑦𝑛+1 = ℎ2  

With mesh points 
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0.00 0.25 0.50 0.75 1.00 

The solution at the boundaries is given, so we shall be interested in finding solutions at the 

interior points, i.e., 𝑖 = 1,2 𝑎𝑛𝑑 3.  

For 𝑖 = 1  

⇒ −(2 + ℎ2)𝑦1 + 𝑦2 = ℎ2 − 𝛼  

For 𝑖 = 2   

𝑦1 − (2 + ℎ2)𝑦1 − 𝑦2 = ℎ2  

For 𝑖 = 3  

𝑦1 − (2 + ℎ2)𝑦3 = ℎ2 − 𝛽  

This has given a system of three algebraic equations and it can be represented in matrix form 

as 

(
−2.0625

1
0

   
1

−2.0625
1

  
0
1

−2.0625
) [

𝑦1

𝑦2

𝑦3

] = [
0.0625
0.0625
0.0625

]  

This can be solved using Gauss elimination method. 

The augmented Matrix is given below  

(
−2.0625

1
0

   
1

−2.0625
1

  
0
1

−2.0625
|
0.0625
0.0625
0.0625

)  

We will then reduce the matrix into row echelon form 

(
−2.0625

1
0

   
1

−1.5778
1

  
0
1

−2.0625
|
0.0625
0.0928
0.0625

)

𝑝𝑖𝑣𝑜𝑡 𝑟𝑜𝑤

𝑅2 +
𝑅1

2.0625

𝑅3 = 0𝑅1

  

(
−2.0625

0
0

   
1

−1.5778
1

  
0
1

−1.4287
|
0.0625
0.0928
0.0121

)

𝑝𝑖𝑣𝑜𝑡 𝑟𝑜𝑤

𝑅3 +
𝑅2

1.5778
  

Using backward substitution, we have the following  

−1.4287𝑦3 = 0.0121  

𝑦3 = −0.0085  

−1.577𝑦2 = 0.0928 + 0.0085  

𝑦2 = −0.0642  

−2.0625𝑦1 = 0.0625 + 0.0642  

𝑦1 = 0.0614  

Tabulating the above solutions for both shooting method (SM) and Finite Difference Method 

(FDM) results in the following table. 
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Table 1: Results of Shooting Method (SM) and Finite Difference Method (FDM) for 

Example 1 

𝑿𝒏      Exact                Numerical Solution            Absolute Error 

           Solution 

           𝒚(𝒙)  

                                Shooting     Finite Diff.      SM                     FDM 

                                Method       Method 

                                (SM)            (FDM) 

___________________________________________________________________________

___ 

0.00      0.0000        0.0000          0.0000             0.0000                    0.0000 

0.25      0.2840        -0.0617         -0.0352            0.3457                   0.3198       

 0.50     0.6487        -0.1437         -0.0112            0.7924                   0.6599 

0.75      1.1170        -0.1192         -0.0085            1.2362                   1.1255 

1.00      1.7183          0.1827          0                     1.5356                   1.7183 

___________________________________________________________________________ 
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Solution Using Finite Difference Method 

Applying the finite difference scheme, we discretize the given equation into algebraic form 

𝑦𝑖+1−2𝑦1+𝑦𝑖+1

ℎ2 = 4(𝑦1 + 𝑢)  

Multiply each term by ℎ2 and collect like terms to have 

𝑦𝑖−1 − (2 + 4ℎ2)𝑦1 + 𝑦𝑖+1 = −4ℎ𝑢2  

With mesh points 

0.00 0.20 0.40 0.60 0.80 1.00 

 

The solution at the boundaries are given, so we shall be interested in finding solutions at the 

interior points, that is, 𝑖 = 1,2,3 𝑎𝑛𝑑 4.  

For 𝑖 = 1  
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⇒ −(2 + 4ℎ2)𝑦2 + 𝑦3 = −4ℎ2 − 𝛼  

For 𝑖 = 2   

𝑦1 − (2 + 4ℎ2)𝑦2 − 𝑦3 = −4ℎ2  

For 𝑖 = 3  

𝑦2 − (2 + 4ℎ2)𝑦2 − 𝑦3 = −4ℎ2  

For 𝑖 = 4  

𝑦1 − (2 + ℎ2)𝑦3 = −4ℎ2 − 𝛽  

This has given a system of three algebraic equations and it can be represented in matrix form 

as 

(

−2.16
1
0
0

  

1
−2.16

1
0

  

0
1

−2.16
1

  

0
0
1

−2.16

) [

𝑦1

𝑦2
𝑦3

𝑦4

] = [

−0.032
−0.064
−0.096
−2.096

]  

This can be solved using Gauss elimination method. 

The augmented matrix is given below 

(

−2.16
1
0
0

  

1
−2.16

1
0

  

0
1

−2.16
1

  

0
0
1

−2.16

|

−0.032
−0.064
−0.096
−2.096

)  

We will the reduce the matrix into row echelon form 

(

−2.16
1
0
0

  

1
−1.697

1
0

  

0
1

−2.16
1

  

0
0
1

−2.16

|

−0.032
−0.064
−0.096
−2.096

)

𝑝𝑖𝑣𝑜𝑡 𝑟𝑜𝑤

𝑅2 +
𝑅1

2.16

𝑅3 + 0𝑅1
𝑅4 + 0𝑅1

  

(

−2.16
1
0
0

  

1
1.697

1
0

  

0
1

−2.7493
1

  

0
0
1

−2.16

|

−0.032
−0.064
−0.096
−2.096

)

 
𝑝𝑖𝑣𝑜𝑡 𝑟𝑜𝑤

𝑅3 +
𝑅2

−1.697

𝑅4 + 0𝑅2

  

(

−2.16
1
0
0

  

1
1.697

1
0

  

0
1

−2.7493
1

  

0
0
1

−2.5237

|

−0.032
−0.064
−0.096
−2.0612

)

 
 

𝑝𝑖𝑣𝑜𝑡 𝑟𝑜𝑤

𝑅4 +
𝑅3

−2.7493

  

Using backward substitution, we have the following  

−2.5237𝑦3 = −2.0612  

𝑦4 = 0.8167   

−2.7493𝑦2 = −0.096 − 0.8167  

𝑦3 = 0.3320   

1.697𝑦2 = −0.064 − 0.3320   
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𝑦2 = −0.3960  

−2.5237𝑦1 = −0.032 + 0.3960   

𝑦2 = −0.1442  

𝑦1 = 0.0614  

Tabulating the above solutions for both shooting method (SM) and Finite Difference Method 

(FDM) results in the following table. 

Table 2: Results of Shooting Method (SM) and Finite Difference Method (FDM) for 

Example 2 

𝑿𝒏      Exact                Numerical Solution            Absolute Error 

           Solution 

           𝒚(𝒙)  

                                Shooting     Finite Diff.      SM                     FDM 

                                Method       Method 

                                (SM)            (FDM) 

__________________________________________________________________ 

0.0      0.0000        0.0000          0.0000             0.0000                    0.0000 

0.2      0.3131        0.1313         0.0610              0.1818                   0.2521       

0.4     0.6449         0.3236         -0.1442           0.3213                   0.7891 

0.6      1.0162        0.0462         0.3320             0.9700                   0.6842 

0.8      1.4550        0.0595          0.8163            1.3955                   0.6387 

1.0      2.0000       0.0000           2.0000            2.0000                     0.0000  

__________________________________________________________________ 
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5.0 Discussion  

From the examples we have solved above, we observed that Example 1 is linear boundary value 

problem of Dirichlet boundary conditions. We solved Example 1 using shooting method, we 

observed that in the course our solving, we come across two systems of pair of equations with 

two variably and we applied the Runge - Kutta method for the pair of equations. 

On the other hand, as we applied the finite difference method, we observed that we need not to 

compute the values at the boundaries since it was explicitly given to be zero at both ends, we 

only calculated for the interior points and we obtained a system of three algebraic equations 

which was represented in matrix form and we went further to solve using Gauss elimination 

method, we got the result shown in Table 1. 

 

 

5.2 Conclusion 

In this research work, we only examined two numerical methods namely; shooting method and 

finite difference method; however, we did not take a closer look on the finite element method 

which is another numerical method for solving boundary value problems. The accuracy of the 

Figure 2: Graph of Shooting Method (SM) and Finite Difference Method 

(FDM) for Example 2. 
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methods highly depends on the step size, the smaller the step size the higher the accuracy. The 

shooting method requires longer step of computations compared to the finite difference 

method. From the result obtained, we can say that either of the method can be used in solving 

boundary value problems even though the shooting method is toilsome when it comes to 

computation and is based on guesses which brings about uncertainty. 

References 

Akinlabi, I . F. and Akinlabi, G . O. (2021). Application of shooting method for solution of 

second order Boundary Value Problems, a Journal of Physics conference series 

Vol. 1734, no 1, Article ID 012020.  

 Burden, R. L. (2010). Numerical Analysis 9th edition, Brookcole. 

Burden, R . L. and Fairs, J . D (2005). Numerical Analysis. Calcutta: Academic Publishers. Pp. 

40 - 44. 

Fox, L. (2005). The Numerical Solution of two Boundary Value Problems in Ordinary 

Differential Equations. Oxford Clarendon Press. 

Gilat, A. and Subrmaniam, V. (2011). Numerical Methods: An Introduction with Application 

Using MATLAB. (2nd Edition). Asia. John Wiley and Sons Printing Press. 480Pp. 

Gilberto, E.V. (2004). Numerical Solution of Ordinary Differential Equations: London. 

Publishers. Pp. 29 - 33. 

Gupta, G. (1985). A Review of Recent Developments in Solving Ordinary Differential 

Equations, Department of Computer Science Monash University Clayton, 

Australia. 17(1): 5 - 47. 

Jain, M.K. (2013). Numerical Method (Problems and solutions). New Delhi; New age 

International publishers. 17(1): 272-292. 

Jang, B. (2008). Two Point Boundary Value Problems by Extended Domain Decomposition 

Method. Journal of computations and Applied Mathematics, 219(1): 253-262. 

Madhumangal, P. (2007). Numerical Analysis for Scientists and Engineerings. New Delhi: 

Publishing House PVT Ltd. Pp 528-537. 

Ramos, H et al, (2022). A two - step hybrid block method with fourth derivatives for solving 

third order Boundary Value Problems, 2022. 

 

Stroud, K. A. (2003). Further Engineering Mathematics, London Macmillan press. P.1074. 

Timizi, I. A. (2002). Higher Order Finite Difference Methods for Nonlinear Second Order Two 

Point Boundary Value Problems. Applied Mathematics Letters, 15(7): 897-902. 

 

Turner, P. (2008). Guide to Numerical Analysis. London: Macmillan press. 

GSJ: Volume 11, Issue 8, August 2023 
ISSN 2320-9186 1410

GSJ© 2023 
www.globalscientificjournal.com




