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Abstract 

Quadcopters or drones are the emerging technology of today and are quickly finding their 

effectivity in every field of life. While their generalized use has brought ease, the possibility of their 

proliferation and illegal used by certain rogue elements and lone wolves also pose a serious 

security threat. With a lot of research directed towards ensuring the safe usage of these 

technologically advanced platforms, this publication review discusses various available 

techniques for drone detection and identification. The simplicity and effectiveness of audio-based 

designs for drone identification and localization is the primary focus of study. These available 

methods primarily rely on experimentally obtained drone data to build a machine learning model 

requiring physical setups and are mostly limited by the availability of model geometries and audio 

recording sessions. Towards the end of this technical review an effort is being made to lay the 

foundation for proposed utilization of Computational Fluid Dynamics (CFD) simulated audio data 

of different drone / quadcopter geometries. Same predicted data can in-turn be augmented with 

available experimental drone sounds and commercially available noise data to develop a drone 

identification machine learning (ML) model.  

1.1 Applications of Drone Technology 

The dawn of the present century has witnessed rapid technological advancement and growth in 

different areas.  A large share of this progress is related to the use of smart systems and 

automation, to minimize human physical effort. A direct beneficiary of these developments is the 

field of autonomous aerial vehicles. Recent estimates suggest that more than 10,000 drones will 

be operational for commercial use by 2024. The primary reason being low costs and budgets 

when compared with commercial helicopters and easy manipulation tools [1].These drones, 

varying in size from few inches to multiples of feet, are seen in common use today in diverse 

range of fields including surveillance, targeting, delivery applications, journalism, asset 

management, search and rescue, healthcare, sports coverage and scores of others. 

1.2 Military Usages- Latest Development and Occurrences 

Besides numerous commercial applications, unmanned aerial systems (UAS) have been the 

perfect choice for military use, specially the counter-insurgency and terrorism operations. The 

military UAV systems are being employed for persistent close air support, precision shelling, aerial 

surveillance and reconnaissance, unmanned air strikes, underwater surveillance and target 

assassination and killing. Most of these high value target killings are generally executed by drone 

strikes, with platforms such as Global Hawk, Predator, Reaper and Protector RG Mk1 drones 
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been used extensively in the past to eliminate key terrorist figures [2]. The explosive-laden drone 

class of these UAS may also employ killer drones, kamikaze drones or loitering munitions for 

targeting purpose.  This specific concept has been materialized by Israeli K1-UAV or Loitering 

Munitions such as Israeli Aerospace Industries (IAI) Harpi and IAI Mini-Harpi. Loitering munitions 

such as Harop and Orbiter 1K were used effectively by Azerbaijan Defense Forces (ADF) during 

Nagorno-Karabakh conflict in 2020 [3]. Due to their effectivity and low operational cost, the list of 

countries manufacturing drones and especially the loitering munitions continue to grow. 

1.3 Use by Terrorists / Extremist Elements 

With the flexibility in use, low budgetary requirements, high effectivity and diversity in operations, 

the proliferations of drones has resulted in serious threats and challenges. They are being 

employed by terrorist entities, rogue elements, militant organizations, armed wings and lone 

wolves for targeted operations and sophisticated attacks. The use of UAVs by different non-state 

actors dates back to 2004 when the Lebanese militant group Hezbollah flew MIRSAD-1, a small 

Iranian built military-grade drone, over Israeli airspace. Similary, UAVs and drones both were 

used by ISIS for reconnaissance and to drop bombs in conflict zones, targeting Iraqi and Syrian 

military personnel [4]. Over the past decade, these low cost drones have been employed in all 

recent conflicts. Drones were used by Moscow backed rebels in Eastern Ukraine to destroy 

Ukraine’s arm’s depot in 2017. The Syrian and Yemen wars have also witnessed the use of 

Iranian-origin drone technology with military grade Shahed-129 and Qasef-1 drones been 

employed against US-led Special Operation force and Saudi-led coalition by the rebels [5].  

Since the availability of consumer drones to public at an affordable price, nefarious actors have 

begun experimenting to use them for malicious purposes. While established terrorist 

organizations are experimenting with expensive models or larger captured drones for their specific 

goals, the widely available consumer drones offer tools to bypass traditional security measures 

to small organizations and lone wolves, at an affordable price. On August 4th, 2018, two-drones 

wrapped with explosives were used in an attempt to assassinate the Venezuelan president [6]. 

Multiple instances have taken place in which consumer drones have been used to target high 

profile figures. In 2013, a member of the opposition party crashed a Parrot quadcopter near the 

feet of German chancellor Angela Merkel at a campaign rally [7]. The aim was solely political but 

the incident highlighted the need for additional security protocols. Likewise, in January 2015, a 

government employee accidently crashed a DJI Phantom quadcopter into the White House lawn, 

raising questions on existing security measures in place. Later that year, another incident took 

place in which a drone carrying a bottle of radioactive sand was landed on the roof of the 

Japanese Prime Minister’s Tokyo office [8]. Globally dozens of similar occurrences related to 

uncontrolled use of drones have taken places, leading to speculations that these drones in the 

wrong hands can lead to serious consequences. 

2.1 Need for Protective and Preventive Counter-Measures 

The wide range of readily available commercial drones offer an easily accessible and low cost 

capability to the public, especially the lone wolf terrorists and rogue elements, who may obtain 

explosives, procure a consumer drone and independently conduct an attack. The probability of 

these attacks is high and they can have devastating effects. The production of these consumer 

drones has multiplied over the past few years with FAA estimating more than 30,000 drones in 

US airspace only, in 2020 [9]. The gravity of risks posed by uncontrolled drone usage also 

increases each year, with growing number and advancement in technology. Therefore, keeping 
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in view the probability for potential misuse of the drone technology, it becomes imperative that 

identification systems be developed to detect, classify, track and neutralize potentially hostile 

entities as quickly as possible.  

2.2 Present Available Tools 

With growing drone industry, a lot of research is also being directed towards facilitating safe usage 

of these drones. The primary requirement being correct and quick drone detection and 

identification, over the past few years multiple studies have been undertaken to demonstrate the 

feasibility of various techniques based on video data, thermal imaging, radar based systems, RF 

emissions and acoustic signatures. Many of these technologies are still nascent with each having 

certain advantages and limitations for use. 

2.2.1 Use of Video Data 

Using visual data (either image or video) to detect an incoming drone seems to be the simplest 

solution to our problem. An easier approach is to use a handcrafted feature based method 

involving image processing and motion detection for controlling movement and drone detection 

while employing a suitable machine learning algorithm. A further refined approach involves the 

use of faster R-CNN drone detection module to detect and localize the drone from available static 

images and later use the processed data to predict exact location of drone in next frame [10].   

Vision-based methods can achieve high accuracy with high-resolution cameras under strict line-

of-sight. However, this would require very large amount of data sets along with use of advanced 

technology. Nonetheless, such hardware is expensive, and vision-based methods are likely to 

operate poorly at night time and limited visibility conditions, and may fail drastically in adverse 

weather conditions such as rain, dust, mist or fog [11]. 

2.2.2 Thermal imaging 

Thermal imaging is a very specific source of information with its data interpretation greatly 

dependent on the properties of visualized object, especially in the presence of strong, local 

intensity background. It serves as the primary element of an infrared scanner for detection of 

small objects flying at low altitude. The quality of thermal imaging can be improved by employing 

a suitable algorithm to remove local image disturbances using a median filter and later applying 

contrast enhancement to the imagery obtained from infrared scanner [12]. The effect of a strong 

and structured background such as trees or buildings while identifying / targeting an object can 

be further dampened by employing a range-gated imaging system. The gate, if thin enough and 

positioned at the appropriate distance, can suppress the unnecessary foreground and the 

background around the object [13]. The EO/IR systems are able to detect small UAVs from few 

under clean environment. However, the performance of these systems can become degraded 

due to various noise factors like fixed patterns, dead or bad pixels and complex background 

conditions such as saturated images or foggy environments. 

2.2.3 Use of Radar Technology 

Radar has been associated with the aviation industry since 1930s, finding its effective role in 

navigation, control, air defense and targeting. Radars based methods use reflected radar 

signatures to detect and classify drones, just like normal aircraft. The only difference is that due 

to slow speed, smaller size, use of special materials and geometry profile the radar cross section 

of drones is way less than conventional UAS or aircrafts. With these limitations in view, micro-
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doppler radars serve as the best available tool to detect drones. An automatic and robust 

classification scheme was applied to X-band radar data monitoring a target scene, to differentiate 

between a UAV and non-UAV targets. The normalized log spectrum was developed using the 

available phase information and time frequency transformations for feature extraction prior to 

feeding the same to machine learning algorithm [14]. LiDAR is an acronym for Light Detection 

and Ranging which uses electromagnetic radiation of optical and infrared wavelengths. Like a 

radar, it has an active sensor that emits electromagnetic waves and receives reflected waves, 

only at much higher frequencies of range 200-400 THz. Evaluation of LiDAR for detection of a 

drone resulted in achieving about 90% of detection rate with a range of up to 200 m [15]. Radar-

based methods have the advantage of being less influenced by environmental conditions and 

they do not require line-of-sight, thus they can assist in drone detection and localization. However, 

they may have limited use when it comes to drones with smaller surface area or operating at low 

altitudes [16]. 

2.2.4 RF-Based Systems 

Radio frequency (RF) sensors work on a passive approach, which sense the wireless 

transmission between a malicious drone and the remote pilot’s radio control and subsequently 

detect and identify drones accordingly.  RF detection techniques may involve use of a known 

protocol or recognition of the communication spectral pattern. The RF fingerprint of the radio 

controller can also be recognized and the classification of the drone can be carried out using 

Machine learning algorithm [17]. This however, will not be effective, if the communication scheme 

is customized or the MAC address database is not updated. An easier approach is to localize the 

RF signal, in which direction of arrival (DoA) estimation is carried out using the received signal 

strength (RSS) or spectral analysis. A simple architecture based on an array of four antennas and 

a software defined radio (SDR) platform for processing employed the same scheme, in which a 

precision varying between 1.9° to 6° was achieved over a coverage range for 120o arc [18]; the 

results however, were improved further by using a commercial SDR, enhancing ability to localize 

drones for a range of 75 m.  Since, RF signature-based detection methods require active 

communication between the drone and its controller, they offer less effectivity for autonomous 

drones. Moreover, the performance deteriorates over long distances and due to signal 

interference from other RF transmissions, especially for unlicensed frequency bands used by 

commercial and recreational drones. 

2.2.5 Use of Acoustic Sensors 

Besides above stated techniques, studies have been undertaken to exploit drone acoustic 
signature for detection and identification. The engine, motor and propellers of the drones generate 
acoustic waves in human audible frequency range which can be recorded by employing single or 
an array of high fidelity microphones. This acquired signal can in-turn be compared with library of 
available acoustic signatures to distinguish a drone from other objects. Sound generated by 
drone’s propellers and motor was used to develop a sound based drone detection and 
identification (DDI) setup. A support vector machine (SVM) classifier was used as a Machine 
learning (ML) framework to identify a flying object as a drone or otherwise, based on features 
exhibited by their sounds [19]. With increased number of microphones and arranging the same in 
an array, the azimuth and elevation of one or more targets can be estimated using DoA. An 
identification success rate of around 80% was obtained using an acoustic circular microphone 
array while employing Hidden Markov Model (HMM) for classification and Recursive Least Square 
(RLS) beamforming for tracking [20]. For each identification setup, the drone detection range 
varies with size and quality of microphones, characteristics of the array and the type of processing 
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being performed. Results in literature, therefore seem to lie in a wide range, from 5 m to 600 m. 
A small tetrahedron microphone arrangement was used to measure acoustic signature of a Class-
1 UAS with detection algorithm implemented using an adaptive Kalman filtering for input from a 
beamforming algorithm.  The setup rendered a success rate of 99.5 percent with a detection range 
of up to 600 m [21].  

3.1 Audio Characteristics of Drones 

UAS including multiple types of drones and commercially available quadcopters are inherently 

noisy in nature. Drone structure including its propellers, motor and engine have peculiar acoustic 

signatures which differ from other sounds in the surroundings. Over the past few years, several 

audio-based drone detection methods have been proposed which make use of concise 

parametric representation i.e. acoustic features, to detect a drone audio. These acoustic features 

capture the unique drone acoustic fingerprints and are more discriminative and reliable for 

detection as compared to the original drone audio. Depending upon the scheme being employed, 

these features can either be manually engineering like Mel-Frequency Cepstral Coefficients 

(MFCC) and Linear prediction Coding [22] or they can be obtained directly using Deep learning 

Algorithms like Recurrent Neural Networks (RNN) or Convolution Neural networks (CNN) [23].   

3.2 Aerodynamics of Drone Rotors 

Acoustic signature of a drone consists of aeroacoustics noise produced by rotor blades, drone 

motor noise, mechanical vibrations, noise from electric components, and noise from aero elastic 

effects. The primary source being the rotor blades, it is imperative to understand the rotor 

aerodynamics and aeroacoustics. Aerodynamics and aeroacoustics are the two topics that go 

hand-in-hand. That is the reason why better aerodynamic performance, either in terms of power 

loading or figure of merit, is generally accompanied by better acoustic performance as well. Here 

power loading is defined as the ratio of thrust to power while figure of merit is the ratio of ideal 

power required to actual power. In terms of aerodynamic performance, the changes caused by 

simple rotor design parameters such as rotor planform shape, twist, taper, airfoil geometry and 

certain other factors have been investigated by many authors. A comprehensive parametric study 

[24] revealed that airfoil shape had the largest effect on power loading and figure of merit. While 

thinner airfoils with thickness to chord ratio between 0.02 and 0.06 were found to give optimum 

performance; likewise, airfoils with moderate camber ranging from 4.5 to 6.5 percent had better 

performance. Similarly, it was also concluded that increasing the rotor chord and the number of 

blades also had large impacts on the amount of thrust produced [25].  

Since the Reynolds number associated with airflow for small scale quadcopters or rotors is low, 

therefore, the drag component for these platforms is primarily due to flow separation over the 

airfoil. Reynolds number represents ratio of viscous forces to inertial forces, therefore low 

Reynolds number flows in-turn, are dominated by viscous fluid action. Another important aspect 

is to study the wake structure produced by small-scale rotors and their effect on performance 

values such power loading and figure of merit. It was shown through smoke visualization [26] that 

the small scale rotors produced a poor wake contraction ratio with tip vortices that were large as 

compared to the rotor size. In short, a requisite reduction in size of the tip vortices and thickness 

of the wake sheet could be achieved then the aerodynamic performance would be improved.  
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3.3 Drone Rotor Aeroacoustics  

Drone noise is affected by many factors including size and number of motors, propeller diameter, 

rotational speed and operating environment. This drone noise generated by different sources can 

been broadly categorized as tonal or deterministic noise and broadband noise. Tonal noise also 

referred to as harmonic noise is characterized by high amplitude spikes which appear at discrete 

frequencies directly related to the rotor motion i.e. the blade pass frequency and its harmonics 

[27]. Mostly spikes in these cases tend to appear at lower frequencies and serve as the most 

dominant source of rotor noise. At other instances, however, the noise sources do not have a 

particular frequency at which they occur, such as steady rotor loading or rotor thickness, since 

these sources are always present. Another important characteristics of this kind of noise is 

directivity, as the sources in this case are highly directive in nature. The theoretical prediction of 

this harmonic noise produced by rotating blades, in particular by propellers, is governed by the 

Ffowcs-Williams/Hawkings (FW-H) acoustic analogy. [28] 

As previously discussed, steady rotor loading results in noise propagation above and below the 

rotor plane, while the rotor thickness also causes increased noise in the plane of the rotor. Apart 

from these two contributors, an additional phenomenon is unsteady loading which gives rise to 

tonal noise. Unsteady loading can occur at multiple instances including blade-airframe interaction, 

blade-wake interaction, blade-turbulence interaction and blade-vortex interaction (BVI).  It is 

important to note that these tonal spikes appear because of the unsteady loading and not the 

actual flow phenomenon itself, such as vortex shedding.  An example of such unsteady loading 

is the BVI noise, a highly directive noise appearing at mid to high frequencies in the spectrum and 

is caused once the shed tip vortex is impacted upon by a rotor blade [29].  

The broadband noise meanwhile, is not characterized by amplitude peaks at specific frequencies 

but appear as a continuous signal, even at frequencies where tonal noise is not present.  A 

broadband noise source may appear due to conditions such as turbulent inflow, turbulent up-flow 

and rotor self-noise sources such as boundary layers, flow separation, rotor wakes, and vortex 

shedding [30]. At most instances, broadband noise is usually a small contributor towards the 

overall noise spectrum, but it becomes of increased significance in low speed flow conditions such 

as small scale quadcopters or micro-rotors [31]. Unlike the full scale rotors on helicopters, the 

micro-rotors installed on small drones or quadcopters typically operate at Reynold Number 

between 104 and 105. Subsequently, these platforms fall in the regime of flow transition from 

laminar to turbulent and see more broadband noise contribution as compared to the full scale 

rotors. 

4.1 Use of Computational Fluid Dynamics for Prediction of Drones Noise 

Computational Fluid Dynamics (CFD) is an evolving field, which over the years has gained 

attention in development of modern UAVs, simulating diverse range of conditions for operational 

feasibility. Recently number of researches have also been undertaken on design of quadcopters, 

and the characterization of flow generated by its propellers.  A simplified version of DJI Phantom-

3 was simulated in ANSYS 17.1 using Realizable k-epsilon model and employing the moving 

reference frame (MRF) and sliding mesh techniques to reproduce the flow generated by the 

propellers. These steady state simulations gave results in agreement with classical theoretical 

models, for entire range of heights [32]. CAA of a quadcopter was carried out using a combined 

frame work of CFD with unsteady Reynold-Averaged Navier-Stokes (RANS) and FW-H acoustic 

model. The rotor’s virtual blade model (VBM) was used to obtain the momentum sources as the 
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first approximation and the model was applied to simulate both hovering and forward flight 

conditions. The aero acoustic footprints were analyzed and the predicted octave band sound 

levels were found to be in good agreement with the experimental data [33]. An effective tool to 

capture minutest turbulences and eddies, while ensuring smooth transition from one flow state to 

another is the use of scale resolving Simulations (SRS). Using the same with the FW-H acoustic 

analogy, the SRS scheme had been used to accurately predict the acoustic signature for NACA 

0012 airfoil, and the results including location and amplitude of the main tone frequencies were 

found in good agreement with numerical and experimental data [34]. Another study proposed a 

combined CFD, CAA and machine learning methodology to predict drone noise given the 

uncertainties of rotational speed values. CFD simulation of the LHI-QAV250 quadcopter (a low 

cost model) was performed using scFLOW v2021. The pressure-based incompressible LES 

solver with WALE (Wall-Adapting Local Eddy-Viscosity) sub-grid scale turbulence model was 

used, with solution of a steady RANS calculation set as initial condition for the simulation. The 

acoustic solution was later computed using ACTRAN 2021 by solving the FEM formulation of 

Lighthill’s analogy in the frequency domain. The acoustic results were then provided as input data 

to train the selected machine learning regressor model. The predictions reconstructed with the 

regression algorithm were found to match well the experimental data, especially for peak’s 

amplitudes. Some divergences were observed for broadband noise, primarily attributed to limited 

data recorded using CFD/CAA setup [35].  

4.2 Present Available Tools for CFD Generated Sound 

The acoustic module of CFD solvers like ANSYS FLUENT have been previously brought in use 

to primary calculate and analyze Sound Pressure Levels (SPLs) of multiple acoustic sources at 

different receivers’ locations. The generic methodology generally employs FW-H Acoustic 

Analogy Model to compute sound generated because of source surfaces at different user defined 

locations to analyze sound characteristics around the area of interest. These results were 

generally restricted to discrete Sound parameters available in time and frequency domain with 

additional tools for Power Spectral density and Sound Energy content for later post processing of 

generated signals. The real part however, would have been to listen to the same and compare it 

with realistic sound obtained using experimental setups. This problem has been addressed with 

the introduction of ANSYS VRXPERIENCE Sound / ANSY Sound which enables the user to listen, 

analyze and design sound sources based on CFD acoustic simulation results. The software offers 

an innovative post-processing tool to predict and assess noise via human hearing, in early stages 

of virtual product modeling or using the available dataset [36]. The same information can in-turn 

be augmented with a suitable design like driving or flight simulator or any other relevant virtual 

reality platform. 

The acoustic workflow available in ANSYS software release, 2021 R1, can be used to couple 

ANSYS Fluent CFD simulations to ANSYS VRXPERIENCE Sound, which enables advanced 

acoustics analysis techniques for analysis of acoustic pressure signals computed by CFD. The 

Setup gives the provision to use CFD-generated sound pressure signals to provide 

psychoacoustics indictors and simulate resultant human perceived sound using different metrics 

such as loudness, tonality, sharpness, and articulation index. Using the same setup at ANSYS, 

traditional spectral plots were turned into real audio *.wav files with ANSYS VRXPERIENCE 

Sound Acoustic tool and study the impact of these predicted sounds on observers in close 

proximity to the drone’s flight path [37].  
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The use of ANSYS VRXPERIENCE Sound analysis tool was used effectively to compute 12 

psychoacoustic indicators using different sound recordings and the results were found consistent 

with literature data. The setup appreciated the use of this virtual reality setup to predict interior 

train background noise annoyance perceived by the user [38]. Likewise in order to analyze the 

correlation between the sound pressure level (SPL) and engine power, ANSYS Sound module 

was utilized whereby engine order components were separated from the overall interior noise in 

case of an electric vehicle (EV) design. The measurement data was imported into the software 

such that the Fast Fourier Transform (FFT) spectrum of the interior noise cold be analyzed. Based 

on certain important factors in hand, a sound sample was generated in ASD Module of the ANSYS 

VRXPERIENCE Sound and overall sound pressure level (OASPL) and FFT spectrums were 

obtained [39]. The software proposes the use of dynamic sound synthesis that can be interfaced 

with a simulator to evaluate different sound designs. The software is compatible with several 3D-

sound, multichannel playback systems and allows realistic rendering of the active sound together 

with other sound sources such as engine sound, aerodynamic noise, rolling noise, traffic noise, 

and weather effects. ANSYS VRXPERIENCE Sound offers a dedicated solution making it 

possible to test, compare, and finely tune different sound design candidates which was also 

employed by RENAULT to observe the difference between the expected sound and the sound 

perceived in vehicle [40]. 

5. Proposed Futuristic Direction 

Recently, a lot of research has been direction towards identification and classification of 

quadcopters / drones, based on their recorded peculiar acoustic signatures. While all these 

studies have employed physical acoustic measurement aids coupled with Machine learning 

algorithm setups, an effort may be been made to use available CFD solvers for predicting noise 

levels of selected drone geometries. The study may involve use of CFD-based simple alternative 

solution to physical setups which are presently in use, for recording and predicting acoustics 

signatures for diverse range of flight conditions and multirotor geometries. Aerodynamics and 

Aeroacoustics analysis of few drones have already been carried out successfully vide researches 

mentioned in earlier sections. Using latest CFD Acoustic interfaces like ANSYS VRXPERIENCE 

Sound, the acoustic data obtained for multiple quadcopter geometries after post processing of 

CFD data may be utilized to obtain audio files for each modeled receiver. Same in-turn can be 

used to develop consolidated audio library for selected drones along with commercially recorded 

drones and environmental sounds. This extensive data can be augmented with Machine Learning 

setups to obtain specific audio characteristics and help develop a refined ML model for 

subsequent drone identification and classification.  
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