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Abstract

This essay examines the matrix exponential function exp, which is a function defined on the
additive abelian group Mn(C,+) of n×n matrices over the field C of complex numbers with values
in the non-abelian multiplicative group GLn(C, ·) of invertible n× n complex matrices. Because
GLn(C, ·) is a non-abelian group, the matrix exponential function exp :Mn(C,+)→ GLn(C, ·)
is not a group homomorphism, except in the case n = 1 where the familiar formula ew+z = ewez

holds for all complex numbers w and z. However, there are cases in which the matrix exponential
does act like a group homomorphism. For example, if A,B ∈Mn(C,+) commute multiplicatively
(that is, AB = BA), then exp(A + B) = exp(A)exp(B) = exp(B)exp(A). This essay proves
this fact, and presents several examples in which exp(A + B) = exp(A)exp(B) fails to hold for
noncommuting matrices A and B, as well as examples of cases where exp(A+B) = exp(A)exp(B)
holds even though A and B do not commute. The matrix exponential function is a substantial
interest in different branches of mathematics. This essay presents some applications in which the
matrix exponential has a natural role.
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1. Introduction

The concept of matrices is one of the early development of mathematics. The term matrix is
known to be the Latin word for womb was first introduced in mathematics by J. J. Sylvester in
1850 to describe an array of numbers (Higham, 2016). Following the introduction of matrices,
the concept has recorded remarkable contributions which have seen it to its current form. Authors
including Lagrange, Cayley, Schwerdtfeger and many more can be listed as contributors. Matrices
have found its way into many fields of study other than mathematics (Smalls, 2007). We can
list applications such as in physics, in chemistry, in economics, in data encryption, in geology, in
biology and many more (Higham, 2008). In mathematics, matrices appear frequently in algebra
in many forms. One can describe data encryption using matrix. Matrix is the key point of linear
algebra. In matrix theory there exist different matrix functions such as matrix exponential, matrix
inverse, and more (Banerjee and Roy, 2014).

In 1978 Molar Van Loan Sirev mentioned different nineteen Dubious ways of computing matrix
exponential (Higham, 2016). In this essay, we study matrix exponential. We define the exponen-
tial map on matrices and how we can represent exponential of a complex number using matrix
exponential function. We are interested to show that if the matrix exponential is a homomor-
phism, or not from Mn(C,+) to GLn(C, .). If not, what are the main condition that can make
it be homomorphism? Also, we shall see if n = 1 the exponential will be homomorphism. In this
essay, we seek to give an account of the concept of exponential maps of complex matrices.

In this essay, we used literature research for more understanding. This essay also considers some
of the mathematical literature that deals with cases where A and B do not commute because,
even in such cases, it is sometimes possible that the matrix exponential maps sums to products
hold (Bourgeois, 2014). We also provide explicit computations and give an application on how
to solve the differential equation and how to find a nuclear magnetic moment.

This essay is structured as follows: chapter 2 is devoted to explaining some basic terminologies
on matrix and exponential map. In chapter 3, the computations of matrix exponential are de-
rived. We present different proofs on the eA+B = eAeB = eBeA and mathematical literature for
the eA+B = eAeB and some example and counter-example in chapter 4. Chapter 5 gives the
applications of the matrix exponential. We then finally conclude.

1
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2. Preliminaries

In this chapter, we review some basic concepts which will be used extensively in subsequent
chapters. The first section gives a succinct explanation of some necessary terminologies and
ideas of matrices. In the second section, we introduce the exponential map.

2.1 Matrices

There are much literature that give detailed discussions on matrices (Meyer, 2000; Horn and
Johnson, 1990). We present in this section some key concepts which are needed for later discussion
and allow the reader to see for further details. The most of terminologies used in this section are
derived from (Horn and Johnson, 1990; Rod, 2018). We shall use the notation GL(n,C) denotes
the set of complex n × n invertible matrices which forms a group under multiplication. In our
case, we will consider n × n matrices with entries from C abbreviated by M(n,C). We write a
matrix A ∈M(n,C) as A = [aij] where aij are the entries and the subscripts the ith and the jth

represent row and the column respectively.

2.1.1 Definition. A matrix A is said to be diagonal if all non zero entries lie on the main diagonal
(aii).

2.1.2 Example. A vital example of diagonal matrices is the identity matrix In with all non zero
entries 1.

An interesting observation is the following proposition.

2.1.3 Proposition. All diagonal matrices of equal dimensions commute under multiplication.

2.1.4 Definition. A matrix A is said to be an upper (lower) triangular matrix if all entries below
(above) the main diagonal (aii) are zeros.

2.1.5 Definition. Determinant of a matrix is a number that can be computed from a square
matrix. The determinant of a matrix A is denoted by det(A) or |A|. Determinant can be
computed as

detA =

∣∣∣∣∣∣∣∣∣
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

∣∣∣∣∣∣∣∣∣ .
Therefore,

|A| = Ai1(−1)i+1 detAi1 + · · ·+ ain(−1)i+n detAin.

Where Aik is the sub matrix gained from A by eliminating the ith row and kth column.

The determinant of the matrix is very helpful for solving the system of linear equations and to
find the inverse of a matrix and more.

2

GSJ: Volume 10, Issue 7, July 2022 
ISSN 2320-9186 383

GSJ© 2022 
www.globalscientificjournal.com



2.1.6 Definition. (Cayley-Hamilton Theorem). The eigenvalues of a matrix A are the roots
of the characteristic polynomial associated with A. The set of all eigenvalues of A is called the
spectrum of A denoted by s(A).

The polynomial defined by det(A − λI) is called the characteristic polynomial of A. By solving
det(A − λI) = 0, we find the eigenvalues. By computing the null space of (A − λiI)v, we get
the eigenvectors.

2.1.7 Definition. Let A and B be two matrices. A is said to be similar to B if there is an
invertible (non-singular) matrix P such that A = P−1BP.

2.1.8 Proposition. Suppose A ∈ M(n,C). Then A is diagonalisable if A is similar to the
diagonal matrix D of its eigenvalues, that is A = PDP−1.

Proof. Using the definition of similarity of matrices A and D implies that D = P−1AP. By
multiplying the invertible matrix P to the left for each sides, that is PD = PP−1AP = AP. If
we multiply the inverse of matrix P to right of each side, then PDP−1 = APP−1.

Therefore, A = PDP−1.

The matrix P is formed by the column matrix of eigenvectors .

2.1.9 Definition. A square matrix N is said to be nilpotent if N q = 0 for q ∈ Z+
∗ .

2.1.10 Example. Every triangular matrix (either upper or lower) with zeros along the main
diagonal is nilpotent. For example the matrix

M =

0 a b
0 0 c
0 0 0


is nilpotent since M3 = 0.

2.1.11 Definition. An n× n matrix J is said to be in Jordan canonical form if it is a matrix
of the form

J =


Jλ1

Jλ2
. . .

Jλi

 .

Where each block Jλi is a square matrix of the form

Jλi =


λ1 1 0 · · · 0
0 λ2 1 · · · 0
...

...
. . .

...
...

0 0 0 λi−1 1
0 0 0 0 λi

 ∈ Cn×n.
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Jλi is called Jordan block of size n with eigenvalues λi.

Refer to Golub and Wilkinson (1976), a square matrix A with complex elements, there exists a
non singular matrix X such X−1AX = J , AX = XJ where J is Jordan canonical form of A.

2.1.12 Example. Given matrix A =

 6 2 2
−2 2 0
0 0 2

 .

The eigenvalues of A are the solution of the polynomial characteristic det(A−λI) = 0.Thus,s(A) =
{2, 4}. The eigenvector can be computed from (A − λI)v = 0 where v is the column vector.

For λ = 2, the eigenvector v1 =
[
0 −1 1

]T
. For λ = 4, the eigenvector v2 =

[
2 −2 0

]T
.

As λ = 4 has multiplicity 2 means that it must have two linear independent eigenvectors, so for

λ = 4 we take the generalized eigenvector v3 =
[
1 0 0

]T
.

The matrix of eigenvectors P [v1v2v3] =

 0 2 1
−1 −2 0
1 0 0

, its inverse is P−1 =

0 0 1
0 −1

2
−1
2

1 1 1

 .

Jordan canonical form is,

J = P−1AP =

2 0 0
0 4 1
0 0 4

 .

2.1.13 Proposition (Lebovitz (2016)). Let A ∈ M(n,C), a matrix norm of A denoted by
‖A‖, is the map A 7−→ R which is a real-valued. ‖ A ‖= maxi6j6n (

∑
i=0 ‖ aij ‖) .

A matrix norm is defined in different ways, but all definitions share the following properties:

1) ‖ A ‖> 0.

2) ‖ A ‖= 0 if A = 0

3) ‖ αA ‖= |α| ‖ A ‖ .

4) ‖ A+B ‖6‖ A ‖ + ‖ B ‖ .

5) ‖ AB ‖6‖ A ‖‖ B ‖ .

2.2 The Exponential maps

In this section we introduce the exponential map on real or complex numbers and the exponential
matrix. The excerpts here are stated to suit the scope of our study.
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2.2.1 The exponential on real or complex numbers. Refer to Ahlfors (1953), the exponential
function exp : C→ C, defined by

exp(z) = ez =
∞∑
k=0

zk

k!
, for z ∈ C,

on the closed disk
D(0, R) := {z ∈ |z| 6 R} .

Using that definition,

| 1
k!
zk| 6 1

k!
Rk.

and the series
∑∞

k=0
Rk

k!
converge for any R > 0.Thus, exp(z) is normally convergent series of

continuous functions and z 7−→ exp(z) is a continuous function from C to C. Also is one of the
most important of all mathematical functions in real and complex analysis.

The exponential a function has the useful feature of mapping sums to products:

ez+w = ezew, for z, w ∈ C.

A key feature of the real and complex numbers is the commutative nature of multiplication:
zw = wz, for all complex numbers.

2.2.2 The Exponential Matrix. Refer to Bourgeois (2014), the exponential matrix is a function
defined from M(n,C) to GL(n,C) as

exp :M(n,C) 7→ GL(n,C)

X  exp(X) =
∞∑
k=0

Xk

k!

If n = 1, then exp(X) = eX . That is exponential of real or complex numbers.

If n = 1, then exponential map is a homomorphism for Mn(C,+) to GLn(C, .). But for n > 2,
the exponential map is not a homomorphism, because if we assume that (A,B) ∈Mn(C,+),

exp(A + B) = exp(A)exp(B)

is not always true.

By using the fifth property of matrix norm, we can say

‖ 1

k!
Ak ‖6 1

k!
‖ A ‖k, ∀k ∈ N.

So that the series
∑∞

k=0
1
k!
Xk converges absolutely for any X ∈Mn(C).

In this project we write for short eX = exp(X). For n = 1 the notation is consistent as eX .
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3. The computation of exponential map

This chapter focuses on the different ways of computing the exponential map. The First section
is devoted to the type of matrices which is easier to compute their exponential. We used Smalls
(2007) and Meyer (2000).

In the second section, we focus on some methods of computing the exponential maps. We are
following the paper of Moler and Van Loan (2003); Bellman (1997); Oberhettinger and Badii
(1973).

3.1 Special cases of Computing the matrix Exponential

There exist some matrices which are easier to find their exponential. We are interested in comput-
ing the exponential of a diagonal matrix, nilpotent matrices, and matrices which is transformed
in Jordan canonical form.

3.1.1 Diagonalizable matrix. If matrix A = [aij] is diagonal, then exponential of A can be
written as eA = [eλij ].

Proof. Let D = [λij] denote a diagonal matrix.

The power of a diagonal matrix is equal to the power of entries, that is Dn = (λnij), so

eD =
∞∑
n=0

Dn

n!
=

[
∞∑
n=0

λnij
k!

]
.

Therefore,
eD =

[
eλij
]
.

3.1.2 Proposition. Let A and P be complex n×n matrices, if P is invertible, then eA = PeDP−1.

Proof. Assume that A = PDP−1.

A2 = PDP−1PDP−1 = PD2P−1, A3 = PD2P−1PDP−1 = PD3P−1, ...., Ak = PDkP−1.

In fact,

exp(A) =
∞∑
k=0

Ak

k!
. (3.1.1)

Replacing the power of A in (3.1.1), we have: exp(A) =
∑∞

k=0
PDkP−1

k!
.

6
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Generally,

exp(At) = P

∞∑
k=0

tkDk

k!
P−1 = P exp(tD)P−1.

3.1.3 Exponential of Nilpotent matrix. If M is nilpotent such that M q = 0 with q ∈ N, then
the exponential of M is

eMt = I + tM +
t2M2

2!
+ ...+

tq−1M q−1

(q − 1)!
+
tqM q

q!
=

q∑
k=1

tk−1Mk−1

(k − 1)!
.

3.1.4 Exponential of the matrix which can be transformed into Jordan canonical form.
Jordan canonical form allows us to write the matrix as diagonal and nilpotent matrices.

3.1.5 Example. Suppose that we want to compute the exponential of matrix M =

2 −1 1
0 3 −1
2 1 3

 .

The eigenvalues of M are 4 and 2 (multiplicity 2).

Let us first calculate exp(J) where J = J1(λ1)⊕ J2(λ2). That is J = J1(4)⊕ J2(2).

J1(4) has eigenvalue 4 multiplicity 1 its exponential is matrix of 1× 1 dimension.Thus ,

exp(J1(4) = e4.

J2(2) has eigenvalue 2 multiplicity two, it’s exponential can be written as sum of diagonal and
nilpotent matrix respectively.

J2(2) =

(
2 1
0 2

)
=

(
2 0
0 2

)
+

(
0 1
0 0

)
.

Therefore,

exp(J) =

e4 0 0
0 e2 e2

0 0 e2

 .

The exponential of the matrix M is

exp(M) = P

e4 0 0
0 e2 e2

0 0 e2

P−1 =
1

2

e4 − 2e2 −2e2 e4 − e2
3e2 − e4 4e2 e2 − e4
e4 + e2 2e2 e4 + e2


where P is column matrix of eigenvectors.
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3.2 Computation methods

We emphasize on four methods of computing the exponential of the matrix where we look
for: Inverse Laplace transform, Polynomial method, a method of eigenvectors and we shall use
differential equation.

3.2.1 Inverse Laplace transformation. Refer to Oberhettinger and Badii (1973), suppose that
we have x′(t) = Ax(t). Laplace transform says that L[x′] = sX(s)− x(0),

we can write
sX(s)− x(0) = AX(s)⇔ sX(s)− AX(s) = x(0).

In fact,
X(s) = (sI − A)−1x(0).

By using inverse Laplace transform, we can write x(t) = L−1 [(sI − A)−1]x(0) = eAtx(0).
Therefore

eAt = L−1
[
(sI − A)−1

]
.

3.2.2 Example. Given B =

0 0 0
3 0 0
5 1 0

, compute eAt using Laplace transformation.

Firstly, sI −B =

 s 0 0
−3 s 0
−5 −1 s

. We use L[eBt] = (sI −B)−1, to find the exponential of B.

Does (sI −B)−1 exist?

A Matrix has the inverse if and only its determinant is different from zero. Because (sI − B)
is lower triangular matrix, its determinant is the product of main diagonal entries. That is
det(sI −B) = s3 for s 6= 0 , we can use Inverse Laplace transform.

Let write M as (sI −B), its inverse is M−1 =

 1
s

0 0
3
s

1
s

0
5
s2
+ 3

s3
1
s2

1
s

 .

We can find eBt = L−1 (M−1) . From inverse Laplace transformation

L−1
{

n!

sn+1

}
= tn.

We can compute the inverse Laplace transformation for each entries

L−1
{

1
s

}
= 1, n = 0, t0 = 1.

L−1
{

1
s2

}
= t, n = 1, t1 = t.

L−1
{

3
s3

}
= 3

2
and L−1

{
1.2!
s3

}
= 3

2
t2, n = 2.
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Therefore, exponential of matrix B can be written as

eBt = L−1
(
M−1) =

 1 0 0
3t 1 0

5t+ 3
2
t2 t 1

 .

3.2.3 Polynomial method . To evaluate the exponential of matrix A using polynomial method,
we have to find the characteristics polynomial and use Cayley-Hamilton theorem and we write

eAt =
n−1∑
l=0

cl(t)A
l.

Proof. Consider a square matrix A with n dimension, the characteristic polynomial of A is

C(λ) = det(λI − A) = λn −
n−1∑
k=0

ckλ
k. (3.2.1)

Cayley-Hamilton theorem says that if we replace λ in characteristic polynomial by matrix A, then
we get the zero matrix

C(A) = 0. (3.2.2)

From(3.2.1), we replace λ by A

c(A) = An −
n−1∑
k=0

ckA
k.

Using (3.2.3), we can write An −
∑n−1

k=0 ckA
k = 0. Explicitly, An =

∑n−1
k=0 ckA

k.

Power of matrix A can be writen as

An = c0I + c1A+ c2A
2 + ...+ cn−1A

n−1.

By changing the indices we can write

Ak =
n−1∑
l=0

γklA
l. (3.2.3)

While

eAt =
∞∑
k=0

tkAk

k!
. (3.2.4)

Replace (3.2.3) into (3.2.4), the we can write

eAt =
∞∑
k=0

(
n−1∑
l=0

γklA
l t
k

k!

)
=

n−1∑
l=0

(
∞∑
k=0

γkl
tk

k!

)
Al.
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Assume that cl(t) =
(∑∞

k=0 γkl
tk

k!

)
.

Consequently,

eAt =
n−1∑
l=0

cl(t)A
l. (3.2.5)

3.2.4 Example. Given A =

(
2 1
1 2

)
, by using polynomial method compute eAt.

The power of matrix A can be written as linear combination

Ak = c0(t)I + c1(t)A.

From (3.2.5)

eAt = c0(t)I + c1(t)A. (3.2.6)

The characteristic equations are determined from the set of equations given by the eigenvalues
of A, that is

eλit =
n−1∑
k=0

ckλ
k
i .

As A is the matrix of order 2, we can write

eλit = c0(t) + c1(t)λi.

The eigenvalue can be computed by using this equation, det(A− λI) = 0.

The characteristic equation is (2− λ)2 − 1 = 0.

The roots are λ1 = 1 and λ2 = 3.

For λ1 = 1, we have

et = c0(t) + c1(t). (3.2.7)

For λ2 = 3, we have

e3t = c0(t) + 3c1(t). (3.2.8)

The linear system of (3.2.7) and (3.2.8) can be solved by taking (3.2.7) subtract to (3.2.8):

c1(t) =
e3t−et

2
and c0(t) =

3et−e3t
2

.

By replacing the value of c1(t) and c0(t) into (3.2.6) we get,

eAt =

(
et+e3t

2
e3t−et

2
e3t−et

2
e3t+et

2

)
.
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3.2.5 Remark. Assume that we have 2× 2 matrix, if the eigenvalues are the same then we have
only one algebraic equation as

λk1 = c0(t) + c1(t)λ1. (3.2.9)

To find the value c0 and c1 we derive (3.2.9) with respect to λ1. That is

d

dλ1

(
λk1 = c0(t) + c1(t)λ1

)
⇔ kλk−11 = c1(t).

Having obtained c1(t), from (3.2.9) we can write

c0(t) = λk1 − c1(t)λ1 = λk1 − kλk1 = λk1(1− k).

Therefore exponential can be obtained as

eAt = kλk−11 I + λk1(1− k)A.

Where k is the multiplicity of eigenvalue.

3.2.6 Using Eigenvectors. Suppose that A and P are n× n complex matrices for which P is
column vector of eigenvectors and is invertible.Then eP

−1AP = P−1eAkP (Klain, 2017).

Proof. For integers k > 0, we have (P−1AP )k = P−1AkP . The exponential can be computed
as

eP
−1AP = I + P−1AP +

P−1AP
2

2!
+ ...

= I + P−1AP +
P−1A2P

2!
+ ...

= P−1
(
I + A+

A2

2!
+ ...)

)
P = P−1eAP.

Therefore,
eP

−1AP = P−1eAP.

If the matrix A is diagonalizable is such that A = PDP−1 then, eA = PeDP−1.

3.2.7 Example. Find exp(At), where A =

 5 −6 −6
−1 4 2
3 −6 −4

 .

Compute the eigenvalues by using det(A− λI) = 0.∣∣∣∣∣∣
5− λ −6 −6
−1 4− λ 2
3 −6 −4− λ

∣∣∣∣∣∣ = 0.
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The characteristics polynomial is −λ3 + 5λ2 − 8λ+ 4 = 0.

We can find the roots of that characteristics polynomial.

Roots are 1 and 2 (with multiplicity two), that are the eigenvalues.

The eigenvectors can be computed around the eigenvalues.

For λ = 15− 1 −6 −6
−1 4− 1 2
3 −6 −4− 1

xy
z

 =

0
0
0

⇔
 4 −6 −6
−1 3 2
3 −6 −5

xy
z

 =

0
0
0

 .

To solve this system we can use reduction of row.

Let write the matrix of the homogeneous system as 4 −6 −6
−1 3 2
3 −6 −5

 .

Let us define, R1 as the first row, R2 as the second row and R3 as the third row.

R′1 =
R1

2
, R′2 = 2R2 +R′1, R

′
3 = −2R3 + 3R′1.

We write 2 −3 −3
0 3 1
0 3 1

−−−−−−−−−−−→R′′3 = R′2 −R′3

2 −3 −3
0 3 1
0 0 0

 .

After reduction of row, we can write the homogeneous system as

2 −3 −3
0 3 1
0 0 0

xy
z

 =

0
0
0

 .

Therefore,

2x− 3y − 3y = 0 (3.2.10)

0x+ 3y + z = 0 (3.2.11)

0x+ 0y + 0z = 0. (3.2.12)

Let z be a parameter.

From (3.2.11), 3y + z = 0 ⇔ y = −1
3
z.

From (3.2.10), we can replace the value y and z: 2x− 3y − 3z = 0 ⇔ 2x− 3(−1
3
z)− 3z = 0.

That is,

2x+ z − 3z = 0⇔ 2x− 2z = 0⇔ x = z.
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The first eigenvector can be written as,

v1 =

xy
z

 =

 z
−1
3
z
z

 =
1

3
z

 3
−1
3

 , z ∈ R.

Hence, v1 =

 3
−1
3

 .

We can compute the eigenvector for λ = 2. By using the same procedure we can write the
homogeneous system equation as


−x+ 2y + 2z = 0

−x+ 2y + 2z = 0

−x+ 2y + 2z = 0.

All equations are the same,
x = 2y + 2z.

The second eigenvector has two linear independent vectors which are

v =

xy
z

 =

2y + 2z
y
z

 .

For y, z ∈ R.

v = y

2
1
0

+ z

2
0
1

 .

Therefore, v2 =

2
1
0

 and v3 =

2
0
1

 .

The matrix formed by linear independent eigenvectors P = [v1v2v3] is P =

 3 2 2
−1 1 0
3 0 1

 .

The inverse of P matrix is P−1 =

−1 2 2
−1 3 2
3 −6 −5

 .

eAt = P−1etDP =

 3 2 2
−1 1 0
3 0 1

et 0 0
0 e2t 0
0 0 e2t

−1 2 2
−1 3 2
3 −6 −5


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eAt =

−3et + 4e2t 6et − 6e2t 6et − 62t

et − e2t −2et + 3e2t −2et + 2e2t

−3et + 3e2t 6t − 6e2t 6et − 5e2t

 .

3.2.8 Remark. Refer to Lebovitz (2016), there is the short cut for matrix of order 2 while we
compute their exponential using the eigenvectors.

Eigenvalues of A exp(At)
λ1, λ2 real distinct eλ1t 1

λ1−λ2 (A− λ2I)− e
λ2t 1

λ1−λ2 (A− λ1I)
λ repeated twice eλtI + eλtt(A− λI)

λ is conjugate complex roots, that is α± iβ eαt cos(βt)I + 1
β
eαt sin(βt)(A− αI)

3.2.9 Using differential equation. Generally when matrix A is diagonalizable,the general so-
lution of ~x′ = A~x is given by

~x(t) = c1e
λ1t ~v1 + ...+ cne

λnt ~vn.

We want to solve the initial value problem,

~x′ = A~x, ~x(0) = x0.

we choose c1, .., cn for which x(0) = c1 ~v1+ ...+ cn ~vn = x0. The constants ci are the coordinates
for the vectors ~x0 in the basis ~v1, ..., ~vn.

Consequently each term eλit~vi in the solution is actually etAvi. In fact jth column of the matrix
etA is given by etA~ej where {~e1, .., ~en} is the canonical basis. To compute the exponential of
matrix we proceed those processes with condition ~x0 = ~ej where j = 1, .., n.

This method is very interesting because when matrix A is not diagonalizable this method works.
The only difference is that some of the vectors ~vi are generalized eigenvectors (Wahln, 2016).

3.2.10 Example. Given matrix A =

(
1 2
2 1

)
, compute eAt by using differential equation.

Characteristic polynomial is (λ+1)(λ− 3), by solving the characteristic equation we get s(A) =
{−1, 3} . In that case we can find the eigenvector by solving (A− λI)v = 0.

For λ = −1, ~v1 =
[
1 −1

]T
. Also for λ = 3, ~v2 =

[
1 1

]T
.

As the general solution of the system ~x′ is given by

~x(t) = c1e
−tv1 + c2e

3tv2.

It can be also written as

~x(t) = c1e
−t
(

1
−1

)
+ c2e

3t

(
1
1

)
.

The matrix A is of order 2, the solution is founded from ~x(0) = ~e1 and ~x(0) = ~e2.
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By solving the initial value problem we found the value of c1 and c2.

For ~x(0) = ~e1, we have c1

(
1
−1

)
+ c2

(
1
1

)
=

(
1
0

)
. That is

{
c1 + c2 = 1

−c1 + c2 = 0
⇔ c1 = c2 =

1
2
.

For ~x(0) = ~e2, we have c1

(
1
−1

)
+ c2

(
1
1

)
=

(
0
1

)
.

That is

{
c1 + c2 = 0

−c1 + c2 = 1
⇔ c1 =

−1
2
, c2 =

1
2
.

We can use those constants to find the exponential A.

eAt~e1 =
1

2
e−t
(

1
−1

)
+

1

2
e3t
(
1
1

)
=

1

2

(
e−t + e3t

−e−t + e3t

)
.

eAt~e2 =
−1
2
e−t
(

1
−1

)
+

1

2
e3t
(
1
1

)
=

1

2

(
−e−t + e3t

e−t + e3t

)
.

Significantly,

eAt =
1

2

(
e−t + e3t −e−t + e3t

−e−t + e3t e−t + e3t

)
.
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4. The exponential of complex matrices.

This chapter divided into three main sections. In the first section we use different proofs to prove
that the matrix exponential maps sums to the product, if the matrices commute. In the second
section, we look for some mathematical literature that deals with the cases where the exponential
of matrices which are commuting or not. Finally, we work on the example and counter-example
for where matrices commute or not to verify the equality on the exponential maps sums to the
product.

4.1 The exponential maps sums to product

4.1.1 Proposition. For the purpose of A and B are commuting matrices of Mn(C) then

eA+B = eBeA = eAeB (4.1.1)

Giamarchi (2004) pointed out this formula

eAeB = eA+Be
1
2
[A,B].

This formula is the simplification of Zassenhaus formula where A and B are two matrices and
[A,B] = AB − BA. what is the importance of the commuting matrices? If those matrices are
commuting then [A,B] = 0. Therefore

eAeB = eA+B.

Proof. [1] According to (Baker, 2012, page 47), the series of the exponential A and B are
absolutely convergent, notably

exp(A) =
∑∞

k=0
Ak

k!
and exp(B) =

∑∞
s=0

Bs

s!
.

Its product can be written as

expAexpB =

(
∞∑
k=0

Ak

k!

)(
∞∑
s=0

Bs

s!

)
=

∞∑
s,k=0

AkBs

s!k!
.

By assuming that A and B commute, we can rearrange and collect terms while expanding
1
n!
(A+B)n to get

exp(A+B) =
∞∑
n=0

1

n!
(A+B)n =

∞∑
n=0

1

n!

(
n∑
k=0

n!

k!(n− k)!
AkBn−k

)
=

∞∑
s,k=0

AkBs

s!k!
.

In fact,
exp(A+B) = expAexpB.

16
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4.1.2 Proposition. Refer to (Smalls, 2007, page 15), if A and B commute, then eAtB = BeAt.

Before proving this proposition, let us recall PicardLindelöf theorem.

PicardLindelöf theorem ensures the presence and uniqueness of the solution x∗(t) of the dif-
ferential equation ẋ(t) = f(x(t), t) with initial condition x(0) = x∗(0) for small t.

Proof. Assume that x1(t) = eAtBX0 and x2(t) = BeAtX0 where X0 denotes the column vector.
By differentiating x1(t) and x2(t), we have:

x′1(t) = AeAtBX0 = Ax1(t)

and

x′2(t) = BAeAtX0 = Ax2(t).

Because x1(0) = x2(0) = X0 , and according to the uniqueness of the solution from PicardLin-
delöf theorem, that is x1(t) = x2(t). This implies that

eAtB = BeAt. (4.1.2)

Using (4.1.2), we use the same idea to prove the proposition (4.1.1) .

Proof. [2] Let assume that f(t) = eAteBtX0 and g(t) = e(A+B)tX0. we are interested to show
that f(t) = g(t) for all t.

As from the previous proof we have seen that eAtB = BeAt for AB = BA.

If we assume that h(t) = eBtX0, then f(t) can be written as

f(t) = eAth(t). (4.1.3)

By differentiating (4.1.3) we get:

f ′(t) = AeAteBtX0 + eAtBeBtX0 = Af(t) +Bf(t) = (A+B)f(t)

and
g′(t) = (A+B)g(t).

Since f(0) = g(0) = X0, then by PicardLindelöf theorem we get,

f(t) = g(t)

for all t.
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Proof. [3] Infinite matrix power series

The infinite power series of the matrix is written as:

I + A+
1

2!
A2 +

1

3!
A3 + ...+

1

k!
AK .

The sum of the infinite series is called the matrix exponential.

The matrix exponential of A is absolutely convergent that is ‖ A ‖<∞. Let A,BMn(C), then

exp(A) = I + A+
A2

2!
+ ...

and

exp(B) = I +B +
B2

2!
+ ...

exp(A)exp(B) = (I +A+ A2

2!
+ ...)(I +B+ B2

2!
+ ...) = I +(A+B)+ 1

2!
(A2 +2AB+B2)+ ...

exp(A)exp(B) = I + (A+B) + 1
2!
(A+B)2 + ...

Therefore,
exp(A)exp(B) = exp(A + B).

Proof. [4] According to (Lee, 2009, page3), the Baker-Campbell-Hausdorff allow us to compute
the product of the exponentials of two operators A and B.

exp(A)exp(B) = exp(A + B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [A,B]] + ...) (4.1.4)

Respectively the definition and the property of commutator: [A,B] = AB − BA, consequently
[A, 0] = [0, B] = 0.

If A and B commute, then [A,B] = AB −BA = 0. In fact the Equation(4.1.4) becomes

exp(A)exp(B) = exp(A + B +
1

2
0 +

1

12
[A, 0] +

1

12
[B, 0] + ...)

Therefore,
exp(A)exp(B) = exp(A + B).

4.1.3 Definition.

The following definitions are derived from Bourgeois (2014).

• Let A,B ∈ Mn(C). A and B are simultaneously triangularizable (denoted by ST), P ∈
GLn(C) such that P−1AP and P−1BP are upper triangular matrices.

• Assume that A ∈ Mn(C) and s(A) = {γ, β}. s(A) is 2iπ congruence -free (denoted
by 2iπ CF) if γ − β /∈ 2iπZ∗. Refer to Paliogiannis (2003), s(A) said to be 2iπ CF if
s(A) ∩ s(s(A) + 2kπi) = ∅ for k ∈ Z∗.
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4.2 Some mathematical literature to the exponential maps
sums to product

4.2.1 Theorem. Refer to Paliogiannis (2003), let A,B ∈ Mn(C) provided that s(A) and s(B)
or s(A+B) are 2iπ CF then, eAeB = eBeA = eA+B.

Proof. If s(A) is 2iπ then, eA = In the same for s(B). While s(A) ∈ 2kπi then A ∈ 2πi the
same for s(B). Under those circumstances s(A + B) ∈ (2πi) then eA+B = In. For this reason
eAeB = eBeA = eA+B.

Generally speaking, to prove this theorem the condition of commuting matrices does not neces-
sarily hold.

4.2.2 Proposition. Bourgeois (2014) argued that the square complex matrices A and B which
are 2× 2 or 3× 3 hold this condition.

∀k ∈ N,

exp(kA + B) = exp(kA)exp(B) = exp(B)exp(kA) (4.2.1)

are ST.

That proposition is not true because the following counter example of Jean -Louis Tu shows :

consider the matrices A1 = 2iπ

1 0 0
0 2 0
0 0 0

 and B1 = 2iπ

2 1 1
1 3 −2
1 1 0

 those matrices are not

ST because they dont have the same eigenvector.

However A is diagonal matrix in 2iπZ implies that eA = I3 also matrix B is diagonalizable its
exponential is I3.

For every k ∈ C, the characteristic equation of kA+B is λ(λ−2iπ( k+2))(λ−2iπ(2 k+3)) by
solving it, for k ∈ N, the matrix kA+B has distinct eigenvalues in 2iπZ. With this intention,
matrix kA + B is diagonalizable due to that, e kA+B = I3. This shows that condition (4.2.1)
holds.

4.2.3 Definition. Motzkin and Taussky (1952) introduced the property L, by definition a pair
(X, Y ) ∈ Mn(C2) is said to have the property L if for a special ordering of the eigenvalues
(λi)i6n, (µi)i6n of X,Y such that for all (a, b) ∈ C2, s(aX + bY ) = (aλi + bµi)i6n.

4.2.4 Proposition. If A and B are commuting matrices, then the pair (A,B) has property L.

Proof. Let λ be an eigenvalue of A and let ξ be an eigenvector corresponding to λ; thus, ξ 6= 0
and Aξ = λξ. Therefore,

λBξ = B(λξ) = B(Aξ) = A(Bξ)
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implies that Bξ = 0 or Bξ is a (nonzero) eigenvector of A corresponding to λ. Therefore, B1 =
{v1, v2, . . . , vn} is a basis of Cn whose first element is v1 = ξ, then the matrix representations
of A and B have the form

A =

[
λ A0

0 A1

]
and B =

[
µ B0

0 B1

]
,

where µ, λ ∈ C, A1 and B1 are (n− 1)× (n− 1) matrices, A0 and B0 are 1× (n− 1) matrices,
and 0 is the zero (n− 1)× 1 matrix. Thus,

AB =

[
λµ ∗
0 A1B1

]
and BA =

[
µλ ∗
0 B1A1

]
.

Therefore, the equation AB = BA leads to A1B1 = B1A1. Now repeat this argument to A1

and B1 to express A and B (with respect to a new basis) as

A =

 λ1 ∗ ∗
0 λ2 ∗
0 0 A2

 and B =

 µ1 ∗ ∗
0 µ2 ∗
0 0 B2

 ,
where λi and µj are scalars and where A2 and B2 are commuting (n − 2) × (n − 2) matrices.
Repeating this argument leads to a basis in which A and B have upper triangular forms (with
respect to a specific basis)

A =


λ1 ∗ ∗ ∗
0 λ2

. . .
...

...
. . . . . . ∗

0 . . . 0 λn

 and B =


µ1 ∗ ∗ ∗
0 µ2

. . .
...

...
. . . . . . ∗

0 . . . 0 µn

 .
Therefore, for every x, y ∈ C, the eigenvalues of λA+µB are given by xλj+yµj, for j = 1, . . . , n.
Hence, the pair (A,B) has property L.

4.2.5 Proposition. Given (A,B) ∈Mn(C)2. If A andB hold (4.2.1), then has property L.

According to Bourgeois (2014) this proposition is not true always. For k = 1, (4.2.1) can be
written as eAeB = eBeA = eA+B and (A,B) has property L in view of (4.2.1), but this is not
true. With attention to the pairs (A1,−2B1) from the matrices communicated by Jean-Louis Tu
has property L. Notably exp(A1) = exp(−2B1) = I3.

With this in mind, one has exp( kA1 − 2B1) = I3 if and only if ∀ k ∈ N\{2, 3, 4} this shows
that (4.2.1) does not hold for this pair.

For this reason, Bourgeois (2014) gave another condition.

∀N > 2,∃U ⊂ N such that ∀ k ∈ N\U ,

exp( kA + B) = exp( kA)exp(B) = exp(B)exp( kA). (4.2.2)
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4.2.6 Theorem. A pair (A,B) ∈ Mn(C)2, fulfill (4.2.2) if and only if eA+B = eAeB = eBeA

and has property L.

Proof. Refer to Bourgeois (2014), there exists k0 ∈ N that satisfies (4.2.2) for every k > k0. In
regards to (4.2.1), the pair (K0A,B) has property L and (A,B) too.

Assume that A and B do not commute. According Schmoeger (2000), s(A) and s(B) are not
2iπCF and, since n = 2,A,B are diagonalizable.

An homothecy can be added to A or B and we can assume A =

(
2iπα 0
0 0

)
and B = {2iπγ, 0}

, where α, γ ∈ Z∗. Also n = 2, A and B are ST , we suppose that B =

(
2iπγ 1
0 0

)
. However

eA+B = eAeB if and only if γ + α 6= 0. If k ∈ N, we have ekAeB = eBekA = ekA+B, for t 6= −α
γ
.

4.2.7 Remark. Refer to Bourgeois (2014) there is pair of complex matrices which hold the
condition eA+B = eAeB = eBeA but has not property L.

For instances A = iπ

(
1 0
0 −1

)
and B = π

(
−11i 6
16 11i

)
.

4.2.8 Proposition. According to Bourgeois (2014), assume that A = diag(λ1, ...λn) ∈ Mn(C)
has n distinct eigenvalues in 2iπZ that B = [bjk] ∈ Mn(C) (where for every j 6 n, bjj ∈ 2iπZ)
is diagonalizable and that the pair (A,B) has property L. Then the pair (A,B) satisfies (4.2.2).

Proof. Provided that A = 2iπ[λ1, ..., λn] for λn ∈ Z and B = [bjk] where s(B) = 2iπ[bjj],
then eA = In. Indeed, B is diagonalizable that is eB = PeDP−1, eB = In. We can use
definition of property L which is referenced by Motzkin and Taussky (1952), for every k ∈ C,
s( kA+B) = ( kλj + bjj)j6n.

For k ∈ N, kA+B has n distinct eigenvalues in 2iπZ, in that case

exp( kA + B) = In.

Therefore (4.2.2) holds.

4.3 Example and Counter-example.

4.3.1 Example. Given A =

(
2 0
0 1

)
and B =

(
−2 0
0 2

)
.

A and B commute because are diagonal matrices, their exponential can be written as

eA =

(
e2 0
0 e

)
and eB =

(
e−2 0
0 e2

)
.

As matrix A and B are diagonal matrices. Then, eAeB = eBeA =

(
1 0
0 e3

)
.
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The sum A+B can be written as

(
0 0
0 3

)
, its exponential is

(
1 0
0 e3

)
.

Therefore, eAeB = eBeA = eA+B. Also A and B commute.

4.3.2 Example. If the matrix A can be written uniquely as A = D + N , where D is diagonal
and N is Nilpotent matrix and DN = ND then, eA = eD+N = eDeN .

Given that A =

(
1 2
0 1

)
, the matrix A can be decomposed as the sum of D =

(
1 0
0 1

)
and

N =

(
0 2
0 0

)
respectively.

The matrix N is nilpotent that is, N2 =

(
0 0
0 0

)
.

The exponential of N and D are computed respectively,

eN = I +N =

(
1 2
0 1

)
and eD =

(
e 0
0 e

)
.

Also we can compute eDeN =

(
e 2e
0 e

)
. Hence, eA =

(
e 2e
0 e

)
.

4.3.3 Remark. It is necessary that N and D commute in order to follow that procedure. Follow

the matrix A =

(
2 1
0 1

)
. This matrix can be decomposed as sum of diagonal and nilpotent matrix

respectively but diagonal matrix and nilpotent matrix do not commute.That is eA 6= eD+N 6=
eDeN .
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4.3.4 Counter-example.

Let A and B be the matrices communicated by Jean-Louis Tu that is the matrices which holds
exp(A)exp(B) = exp(B)exp(A) = exp(A + B) but AB 6= BA.

A = 2iπ

1 0 0
0 2 0
0 0 0

 and B = 2iπ

2 1 1
1 3 −2
1 1 0

 .

Does A and B commute? AB = −4π2

2 1 1
2 6 −4
0 0 0

 and BA = −4π2

2 2 0
1 6 0
1 2 0

 .

Therefore AB 6= BA means that A and B do not commute.

A is diagonal matrix,

expA =

e2iπ 0 0
0 e4iπ 0
0 0 e0

 .

From Euler’s formula ein = cosn+ i sinn, implies that

e2iπ = cos 2π + i sin 2π = 1 and e4iπ = cos 4π + i sin 4π = 1.

In fact,

expA =

1 0 0
0 1 0
0 0 1

 = I.

For matrix B, the eigenvalue can be computed by solving this equation det(B − λI) = 0. That
is (2− λ) (λ2 − 3λ+ 2) = 0.

The roots are λ = 1, λ = 2 ( multiplicity two).

The eigenvalues are 2iπ and 4iπ (multiplicity two). The matrix B has distinct eigenvectors for
this reason the matrix B is diagonalizable, means that exp(B) = P exp(D)P−1.

exp(B) = P

e2iπ 0 0
0 e4iπ 0
0 0 e4iπ

P−1 = P

1 0 0
0 1 0
0 0 1

P−1 = PIP−1 = PP−1 = I.

Consequently,
exp(B)exp(A) = exp(B)exp(A) = I.

Let looking for sum: A+B = 2iπ

3 1 1
1 5 −2
1 1 0

 .

Let assume that A+B =M , the exponential of M can be computed by following those process.

Firstly, we solve the characteristic equation from det(M − λI) = 0.
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The characteristic equation is
λ
(
−λ2 + 8λ− 15

)
= 0.

The roots are λ1 = 0, λ2 = 6 and λ3 = 10.

By multiplying 2πi to the roots, the eigenvalues are λ1 = 0, λ2 = 6iπ and λ3 = 10iπ.

Matrix has distinct eigenvalues, that is matrix M is diagonalizable.

Under those circumstances eM = PeDP−1,

eM = P

e0 0 0
0 e10iπ 0
0 0 e6iπ

P−1 = P

1 0 0
0 1 0
0 0 1

P−1 = I.

Therefore,

eBeA = eAeB = eA+B, AB 6= BA.
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5. The Applications

The exponential matrix has different applications. In this section, we shall look for how to solve
ordinary differential equation and nuclear magnetic resonance (NMR).

5.1 Linear differential equations

The exponential matrix has applications to system of linear differential equations. If the given dif-
ferential equation is for higher order differential equation with constant coefficient. We transform
it into a linear system and solve it by using exponential matrix.

5.1.1 Homogeneous . In first-order ODEs, we say that a differential equation in the form

dy

dx
= f(x, y).

is said to be homogeneous if the functionf(x, y) can be expressed in the form f( y
x
), and then

solved by the substitution z = y
x

in higher-order ODEs, for example we say that differential
equation in the form

ay′′ + by′ + cy = f(x)

is said to be homogeneous if f(x) = 0.

5.1.2 Example. Solve
y′′′ + 2y′′ − y′ − 2y = 0.

We transform it into system of linear ordinary differential equation by assuming that y = x1,
y′ = x′1 = x2 and y′′ = x′2 = x3. Then

y′′′ = −2y′′ + y′ + 2y. In fact, x′3 = 2x1 + x2 − 2x3.

The system can be written as 
x′1 = x2

x′2 = x3

x′3 = −2x3 + x2 + 2x1.

Assume that U ′(t) =

x′1x′2
x′3

 and U(t) =

x1x2
x3

 .

By using matrix we can write the system of ordinary differential equations asx′1x′2
x′3

 =

0 1 0
0 0 1
2 1 −2

x1x2
x3

 .

25
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It can be written as U ′(t) = AU(t), implies that

A =

0 1 0
0 0 1
2 1 −2

 .

The characteristic equation can be computed through

det(A− λI) =

∣∣∣∣∣∣
−λ 1 0
0 −λ 1
2 1 −2− λ

∣∣∣∣∣∣ = 0.

The characteristic equation will be λ3 + 2λ2 − λ − 2 = 0. The roots are λ1 = 1, λ2 = −1 and
λ2 = −2. It is easy to find the eigenvectors associated to each eigenvalue and the matrix P of
column eigenvectors is written as

P =

 1 1 4
1 −1 −2
−1 1 1

 .

Its inverse is

P−1 =
1

2

1 1 0
3 5 −2
0 −2 −2

 .

As the matrix A is invertible eAt = P−1eDtP ,

eAt =
1

2

et + 3e−t − 2e−2t et − 3e−t + 2e−2t 4et − 6e−t + 2e−2t

et + 5e−t − 6e−2t et − 5e−t + 6e−2t 4et − 10e−t + 6e−2t

−2e−t + 2e−2t 2e−t − 2e−2t 4e−t − e−2t

 .

We can write U(t) = eAtU0 where U0 = (C1, C2, C3)
T .

In fact the solution is,x1x2
x3

 =
1

2

C1

et + 3e−t − 2e−2t

et + 5e−t − 6e−2t

−2e−t + 2e−2t

+ C2

et − 3e−t + 2e−2t

et − 5e−t + 6e−2t

2e−t − 2e−2t

+ C3

 4et − 6e−t + 2e−2t

4et − 10e−t + 6e−2t

4e−t − e−2t

 .

5.1.3 Inhomogeneous. The matrix exponential can also be used to solve the inhomogeneous
equation

d

dt
y(t) = Ay(t) + b(t), y(0) = y0 ⇔ y′(t)− Ay(t)− b(t) = 0.

Generally if we have O.D.E of the form

y′ + p(y) + q = 0
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then we use the integrating factor as

µ = e
∫
p(y)dy.

For our case µ = e
∫
−Ad(t) = e−At.

By multiplying to the ODE that the integrating factor, we have:

e−Aty′t − e−Aty(t) = e−Atb(t)⇔ d(e−Aty(t)) = e−Atb(t).

We can integrate both side by writing∫
d(e−Aty(t)) =

∫
e−Atb(t)dt⇔ e−Aty(t) =

∫ t

0

e−uAb(u)d(u) + C.

Thus,

y(t) = eAt
∫ t

0

e−uAb(u)d(u) + eAtC.

Refer to (Pihlak, 2004, page317), the matrix Y : r×s is called the matrix integral of Z = Z(X) :
pr × sq where X : p× q if, Z = dY

dX
. For instance

Y =

∫
Rpq

dY.

dY =

∫
Rpq

dX.Z.

dY =


d(Y11) ... d(Y1p)
. .
. .
. .

d(Yp1) ... d(Ypq)

 .

We integrate each entry in the domain of p× q.

5.1.4 Example.

Given the system

{
x′ = x+ e2t

y′ = −2y + et.

From that system we can write the matrix A =

(
1 0
0 −2

)
and b(t) =

(
e2t

et

)
.

Exponential of A can be written as

eAt =

(
et 0
0 e−2t

)
.
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The exponential matrix e−uA = (euA)−1.

Notably, e−uA =

(
e−u 0
0 e2u

)
.

As

y(t) = eAt
∫ t

0

e−uAb(u)du+ eAtC = eAt
∫ t

0

(
e−u 0
0 e2u

)(
e2u

eu

)
du+

(
et 0
0 e−2t

)(
C1

C2

)
.

By expanding it, we can write it as

y(t) = eAt
[(

eu
1
3
e3u

)]t
0

+

(
C1e

t

C2e
−2t

)
.

Therefore,

y(t) =

(
et (et − 1)

1
3
(et − e−2t)

)
+

(
C1e

t

C2e
−2t

)
.

Simply the solution can be written as

y(t) =

(
e2t + (C1 − 1)et

1
3
et + (C2 − 1

3
)e−2t

)
.

5.2 Nuclear Magnetic Resonance

According to (Awojoyogbe and Boubaker, 2009, page 278-283). The phenomenon of Nuclear
Magnetic Resonance(NRM) is the most used in modern physics and is based on bulk magnetic
properties of the materials made up of certain isotopes. Bloch equation is fundamental to nuclear
magnetic resonance. The matrix form of Bloch equation is written as

d

dt

Mx

My

Mz

 =

 −1
T2

γβz −γβy
−γβz −1

T2
γβx

γβy −γβx −1
T1

Mx

My

Mz

+

 0
0
M0

T2

 .

Where M(t) = (Mx(t),My(t),Mz(t)) is nuclei magnetization moment, T2 is the relaxation
spin-spin time, T1 is the relaxation spin-Lattice time, γ is the gyromagnetic ratio, β(t) =
(βx(t), βy(t), βz(t)) is the magnetic field experience by the nuclei and M0 is steady state nu-
clear magnetization moment.

In compact form we can write Bloch equation as

M ′(t) = RM(t) + f(t). (5.2.1)

Solom equation is used to make easier the equation (5.2.1), refer to (Higham, 2008, page 37)
the two-dimensional nuclear resonance spectroscopy is a tool for determining the structure and
dynamic of molecules in solution. The basic theory for the nuclear overhauser effect experiment

GSJ: Volume 10, Issue 7, July 2022 
ISSN 2320-9186 409

GSJ© 2022 
www.globalscientificjournal.com



specifies that a matrix of intensities M(t) is related to symmetric, diagonal dominant matrix R,
known as the relaxation matrix.

dMx

dt
=
−Mx

T2
dMy

dt
=
−My

T2
.

Which can be written in matrix form asdMx

dt

dMy

dt

 = −
( 1
T2

0

0 1
T2

)(
Mx

My

)
.

In compact form it can be written as M ′(t) = −RM(t).

Where M(t) = (Mx(t),My(t)) and R =

( 1
T2

0

0 1
T2

)
.

By assuming that M0 = I2, we can say that

M(t) = e−Rt.
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6. The Conclusion

This essay was based on showing that the exponential matrix is not a homomorphism in general
case and determining the main conditions such that the exponential matrix is a homomorphism.
Also, this work was concentrated on computing the exponential matrix using different methods
and we provided some applications.

Firstly, we have seen some technical terms which help us in some computations of this project,
we also discussed the exponential function as it is defined on complex matrices and complex
number. The characteristic feature of taking sums to products does not hold in general, that is
the matrix exponential is not a homomorphism, it does hold for commuting matrices also if the
pairs of matrices are 2iπZ CF.

Secondly, we have discussed on computations of the exponential matrix using the different method
and we have provided some matrix which is easier to compute their exponential. Also, we have
done some examples for each method.

Next, we concentrated on showing that the exponential matrix sums to products for commuting
matrices, this essay has provided a number of worked examples and counterexamples. This essay
has described weaker properties (such as Property L) that commuting matrices possess and some
noncommuting matrices also possess, and we have described what the literature tells us about
the equation eA+B = eAeB.

Finally, this essay has described applications on how to solve an ordinary differential equation and
how to use nuclear magnetic resonance for finding the nuclear magnetic moment.

We are unable to determine which method is the best for computing the exponential matrix and
without further investigation, we are unable to determine causes of the weak property L. We are
unable to use Bloch equation to find a nuclear magnetic moment. For further research, we can
extend this work by finding which method is the best for computing the matrix exponential and
its necessarily to show other applications in mathematics, physics and more.

30
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