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ABSTRACT 
Heat transfer from a surface to surrounding fluid has a wide range of application in engineering. This is often achieved using extended sur-
faces or fins. Extended surfaces involve heat transfer by conduction within a solid coupled with heat transfer by convection from the boun-
daries of the solid. This study considers a one-dimensional heat transfer in a fin with circular cross-section. The governing equation was dis-
cretized by the finite volume approach. The temperature distribution along the length of fin was investigated. The effect of thermal proper-
ties of engineering materials on the temperature distribution was also studied. The study shows that temperature during convection is 
higher than that obtained considering an adiabatic condition. A higher thermal conductivity results in higher heat transfer to the surround-
ings. 
 
 
NOMENCLATURE 

𝐾𝐾 = 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝐴𝐴 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
ℎ = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑇𝑇𝑎𝑎 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
𝑄̇𝑄𝑥𝑥 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 
 
 
1.0 INTRODUCTION 

In the study of heat transfer, a Fin is a surface that extends from an object to increase the rate of heat transfer to or from the envi-
ronment by increasing convection. The amount of Heat conduction, convection, or radiation of an object determines the amount of 
heat it transfers. [1], [2]. Fins are probably the most common method of enhancing heat dissipation from a hot surface. The principle 
of operation is to provide a larger area over which convective heat transfer may occur than the original surface area. Pin fins are ra-
ther common for example, as cooling devices for micro chips.[1], [3] 
A numerical solution of the coupled fin conduction equation and the laminar, forced convective boundary layer equations for a cylin-
drical fin has been carried out. The fin temperature becomes less uniform as R0. decreases due to lower fin conductance. Thus, the 
fin effectiveness will decrease with decreasing R0.[4]. Saheed [5] studied the analytical and numerical solution of one-dimensional 
rectangular fin with an additional heat source it was found out that If the heat generation is smaller the variation becomes small and 
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the percentage of the temperature variation becomes too small; however if the heat source larger the variation becomes larger and 
the percentage of the temperature gap becomes larger. 
Tao et al. [6] studied the heat transfer of the rib in the internal cooling Rectangular channel, using separation of variables, analytical 
solutions of three dimensional steady-state heat conduction in rectangular ribs are given by solving three dimensional steady-state 
function of the rectangular ribs And the high dimensionless temperature field extends when Bi. The advanced mathematical schemes 
for analyzing the temperature profile of the Conductive-Convective rectangular linear fin of straight profile which is the solution of 
second order differential equation. Linear Differential fin equations are solved through Bessel functions, which gave standard Exact 
solution then solved by Approximated method, Numerical methods either iterative or non- iterative i.e. Power Series Solution, Finite 
Difference Technique and modern methods like Differential Transformation Method (DTM) further comparison is made from results 
obtained by different method in tabular and graphical form.[7]. 
A Fourier series approach to solve the two-dimensional rectangular fin. The temperature distribution in the rectangular fin with arbi-
trary variable heat transfer coefficient has been written in terms of a summation of series.[8]. Basri et al. [9]studied the temperature 
distribution in insulated-tip and convection-tip 1-D rectangular fin are computed numerically using FEM.  
Moitsheki [10] did the exact solutions for the longitudinal fin of triangular and parabolic profiles. Both thermal conductivity and heat 
transfer coefficients are given as power law temperature dependent. In this study, the finite volume method was used to solve a cir-
cular fin subjected to adiabatic or convective condition.  
 
2.0 MATHEMATICAL MODEL  
Consider a circular fin as shown in Figure 1. The circular fin is fixed at base and free at the tip where it is subjected to either adiabatic 
or convection. At the fixed end, the Temperature is 𝑇𝑇𝐵𝐵 =   the fin is surrounded by ambient temperature𝑇𝑇𝑎𝑎  , the length of the fin va-
ries from 𝑥𝑥 = 0 𝑡𝑡𝑡𝑡 𝐿𝐿. Two conditions were considered for the tip that is adiabatic and convection.  
Assumptions  

1. One- dimensional  
2. Steady state condition with no heat generation  
3. thermal conductivity is constant  
4. convective heat transfer coefficient is unifom over the surface  
5. radiation from the surface is negligibl 

Governing Equation  
�𝐾𝐾𝐾𝐾𝑑𝑑2𝑇𝑇

𝑑𝑑𝑥𝑥2 � − ℎ𝑃𝑃(𝑇𝑇 − 𝑇𝑇𝑎𝑎) = 0       (1) 
Let 𝑚𝑚2 = ℎ𝑃𝑃

𝐾𝐾𝐾𝐾
          (2) 

𝑑𝑑2𝑇𝑇
𝑑𝑑𝑥𝑥2 −𝑚𝑚2(𝑇𝑇 − 𝑇𝑇𝑎𝑎) = 0        (3) 
Boundary Condition  
At the base  
𝑇𝑇𝐵𝐵 = 1000c          (4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 : A circular fin  
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At the tip  
 Adiabatic  condition  
  
𝑄̇𝑄𝑥𝑥   = − 𝐾𝐾𝐾𝐾 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝑙𝑙

= 0       (5) 

 
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝑙𝑙

= 0      (6) 

 
Convection condition 
𝑄̇𝑄𝑥𝑥   = − 𝐾𝐾𝐾𝐾 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝑙𝑙

= ℎ𝐴𝐴(𝑇𝑇 − 𝑇𝑇a)      (7) 

  
 
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝑙𝑙

= −ℎ(𝑇𝑇−𝑇𝑇a)
𝑘𝑘

      (8) 

 
The above equations were discretized using the finite volume approach.  
Governing equations  
 
∫ 𝑑𝑑

𝑑𝑑𝑑𝑑  �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝛥𝛥𝛥𝛥 𝑑𝑑𝑑𝑑 − ∫ 𝑚𝑚2(𝑇𝑇 − 𝑇𝑇𝑎𝑎)𝛥𝛥𝛥𝛥 𝑑𝑑𝑑𝑑 = 0      (9) 
∫𝑑𝑑�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴 −  ∫𝑚𝑚2(𝑇𝑇 − 𝑇𝑇𝑎𝑎)𝑑𝑑𝑑𝑑       (10) 
��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑤𝑤

𝑒𝑒 − �𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎��𝑉𝑉       (11) 
𝑉𝑉 = 𝐴𝐴∆𝑥𝑥         (12) 
��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑤𝑤

𝑒𝑒 − �𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝐴𝐴∆𝑥𝑥� = 0      (13) 
��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑤𝑤

𝑒𝑒 − �𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝐴𝐴∆𝑥𝑥� = 0      (14) 
 
Interior nodes  
Nodal Point 𝑖𝑖 = 2  𝑡𝑡𝑡𝑡 𝑁𝑁 − 1 
��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑒𝑒
− ��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑤𝑤
− 𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝐴𝐴∆𝑥𝑥 = 0     (15) 

 
��𝑇𝑇𝐸𝐸−𝑇𝑇𝑃𝑃

∆𝑥𝑥
� − �𝑇𝑇𝑃𝑃−𝑇𝑇𝑊𝑊

∆𝑥𝑥
�� − 𝑚𝑚2𝑇𝑇𝑝𝑝∆𝑥𝑥 + 𝑚𝑚2𝑇𝑇𝑎𝑎∆𝑥𝑥 = 0     (16) 

 
2
∆𝑥𝑥
𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑊𝑊

∆𝑥𝑥
+ 𝑇𝑇𝐸𝐸

∆𝑥𝑥
+ 𝑚𝑚2𝑇𝑇𝑎𝑎∆𝑥𝑥 − 𝑚𝑚2𝑇𝑇𝑝𝑝∆𝑥𝑥      (17) 

𝑎𝑎𝑝𝑝𝑇𝑇𝑝𝑝 = 𝑎𝑎𝑤𝑤𝑇𝑇𝑤𝑤 + 𝑎𝑎𝐸𝐸𝑇𝑇𝐸𝐸 + 𝑆𝑆𝑢𝑢 + 𝑆𝑆𝑝𝑝𝑇𝑇𝑝𝑝       (18) 
 
Table 2.1: The interior nodes  
 

𝑎𝑎𝑤𝑤  𝑎𝑎𝑒𝑒  𝑠𝑠𝑝𝑝  𝑎𝑎𝑝𝑝  𝑠𝑠𝑢𝑢  
1
∆𝑥𝑥

 
1
∆𝑥𝑥

 −[𝑚𝑚2∆𝑥𝑥] 𝑎𝑎𝑤𝑤 + 𝑎𝑎𝑒𝑒 − 𝑠𝑠𝑝𝑝  [𝑚𝑚2∆𝑥𝑥]𝑇𝑇𝑎𝑎  

 
 
 
 
Boundary conditions  
At the base  
At node 𝑖𝑖 = 1 
��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑤𝑤

𝑒𝑒 − �𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝐴𝐴∆𝑥𝑥� = 0      (19) 
��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑒𝑒
− ��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑤𝑤
− 𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝐴𝐴∆𝑥𝑥 = 0     (20) 

��𝑇𝑇𝐸𝐸−𝑇𝑇𝑃𝑃
∆𝑥𝑥

� − �𝑇𝑇𝐵𝐵−𝑇𝑇𝑊𝑊∆𝑥𝑥
2

�� − 𝑚𝑚2𝑇𝑇𝑝𝑝∆𝑥𝑥 + 𝑚𝑚2𝑇𝑇𝑎𝑎∆𝑥𝑥 = 0    (21) 
� 1
∆𝑥𝑥

+ 2
∆𝑥𝑥
� 𝑇𝑇𝑝𝑝 = 2𝑇𝑇𝐵𝐵

∆𝑥𝑥
+ 𝑇𝑇𝐸𝐸

∆𝑥𝑥
+ 𝑚𝑚2𝑇𝑇𝑎𝑎∆𝑥𝑥 − 𝑚𝑚2𝑇𝑇𝑝𝑝∆𝑥𝑥     (22) 

𝑎𝑎𝑝𝑝𝑇𝑇𝑝𝑝 = 𝑎𝑎𝑤𝑤𝑇𝑇𝑤𝑤 + 𝑎𝑎𝐸𝐸𝑇𝑇𝐸𝐸 + 𝑆𝑆𝑢𝑢 + 𝑆𝑆𝑝𝑝𝑇𝑇𝑝𝑝       (23) 
 
Table 2.2 : At the base  
 

𝑎𝑎𝑤𝑤  𝑎𝑎𝑒𝑒  𝑠𝑠𝑝𝑝  𝑎𝑎𝑝𝑝  𝑠𝑠𝑢𝑢  
0 1

∆𝑥𝑥
 −�𝑚𝑚2∆𝑥𝑥 +

2
∆𝑥𝑥
� 𝑎𝑎𝑤𝑤 + 𝑎𝑎𝑒𝑒 − 𝑠𝑠𝑝𝑝  𝑚𝑚2∆𝑥𝑥𝑇𝑇𝑎𝑎 +

2𝑇𝑇𝐵𝐵
∆𝑥𝑥
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At the tip  
ADIABATIC  
At node 𝑖𝑖 = 𝑁𝑁 
��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑤𝑤

𝑒𝑒 − �𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝐴𝐴∆𝑥𝑥� = 0      (24)  
��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑒𝑒
− ��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  �𝐴𝐴�

𝑤𝑤
− 𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝐴𝐴∆𝑥𝑥 = 0     (25) 

�0 − �𝑇𝑇𝑃𝑃−𝑇𝑇𝑊𝑊
∆𝑥𝑥

�� − 𝑚𝑚2𝑇𝑇𝑝𝑝∆𝑥𝑥 + 𝑚𝑚2𝑇𝑇𝑎𝑎∆𝑥𝑥 = 0     (26) 
� 1
∆𝑥𝑥
� 𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑤𝑤

∆𝑥𝑥
+ 𝑚𝑚2𝑇𝑇𝑎𝑎∆𝑥𝑥 − 𝑚𝑚2𝑇𝑇𝑝𝑝∆𝑥𝑥      (27) 

𝑎𝑎𝑝𝑝𝑇𝑇𝑝𝑝 = 𝑎𝑎𝑤𝑤𝑇𝑇𝑤𝑤 + 𝑎𝑎𝐸𝐸𝑇𝑇𝐸𝐸 + 𝑆𝑆𝑢𝑢 + 𝑆𝑆𝑝𝑝𝑇𝑇𝑝𝑝       (28) 
 
Table 2.3 : At the tip adiabatic condition 
 

𝑎𝑎𝑤𝑤  𝑎𝑎𝑒𝑒  𝑠𝑠𝑝𝑝  𝑎𝑎𝑝𝑝  𝑠𝑠𝑢𝑢  
1
∆𝑥𝑥

 `0 −[𝑚𝑚2∆𝑥𝑥] 𝑎𝑎𝑤𝑤 + 𝑎𝑎𝑒𝑒 − 𝑠𝑠𝑝𝑝  𝑚𝑚2∆𝑥𝑥𝑇𝑇𝑎𝑎  

 
 
 

 CONVECTIVE 
 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 𝑁𝑁       (29) 
 
𝑑𝑑2𝑇𝑇
𝑑𝑑2𝑥𝑥

− 𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎� = 0       (30) 
 

∫ 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑 − ∫ 𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�∆𝑉𝑉∆𝑉𝑉 𝑑𝑑𝑑𝑑 = 0     (31) 

 

∫ 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�𝐴𝐴𝐴𝐴𝐴𝐴 − ∫ 𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�∆𝑉𝑉∆𝑉𝑉 𝑑𝑑𝑑𝑑 = 0     (32) 

 
�𝐴𝐴 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑤𝑤

𝑒𝑒
−  𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝑉𝑉 = 0      (33) 

 
�𝐴𝐴 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑒𝑒
− �𝐴𝐴 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
𝑤𝑤
−  𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝑉𝑉 = 0      (34) 

 
�𝐴𝐴 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑒𝑒
− 𝐴𝐴 �𝑇𝑇𝑝𝑝−𝑇𝑇𝑤𝑤

∆𝑥𝑥
� −  𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝑉𝑉 = 0     (35) 

 
𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐       (36) 
 
𝑄̇𝑄𝑥𝑥   =  −𝐾𝐾𝐾𝐾 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
               𝑄̇𝑄 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  = ℎ𝐴𝐴 (𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎 )    (37) 

 
�𝐴𝐴 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑒𝑒

= −ℎ𝐴𝐴
𝐾𝐾
�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�      (38) 

 
−ℎ𝐴𝐴
𝐾𝐾
�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎� − 𝐴𝐴 �𝑇𝑇𝑝𝑝−𝑇𝑇𝑤𝑤

∆𝑥𝑥
� −  𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝑉𝑉 = 0    (39) 

 
 
𝑉𝑉 = 𝐴𝐴∆𝑥𝑥      (40) 
 
 
−ℎ𝐴𝐴
𝐾𝐾
�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎� − 𝐴𝐴 �𝑇𝑇𝑝𝑝−𝑇𝑇𝑤𝑤

∆𝑥𝑥
� −  𝑚𝑚2�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎�𝐴𝐴∆𝑥𝑥 = 0    (41) 

 
ℎ𝑇𝑇𝑎𝑎
𝐾𝐾

+  𝑚𝑚2𝑇𝑇𝑎𝑎∆𝑥𝑥 +  𝑇𝑇𝑤𝑤
∆𝑥𝑥

= 𝑇𝑇𝑝𝑝 �
1
∆𝑥𝑥

+ ℎ
𝑘𝑘

+ 𝑚𝑚2∆𝑥𝑥�     (42) 
 
 
ℎ𝑇𝑇𝑎𝑎
𝐾𝐾

+  𝑚𝑚2𝑇𝑇𝑎𝑎∆𝑥𝑥 +  𝑇𝑇𝑤𝑤
∆𝑥𝑥
−  𝑇𝑇𝑝𝑝 �

ℎ
𝑘𝑘

+ 𝑚𝑚2∆𝑥𝑥� = 𝑇𝑇𝑝𝑝 �
1
∆𝑥𝑥
�    (43) 
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𝑎𝑎𝑝𝑝𝑇𝑇𝑝𝑝 = 𝑎𝑎𝑤𝑤𝑇𝑇𝑤𝑤 + 𝑎𝑎𝐸𝐸𝑇𝑇𝐸𝐸 + 𝑆𝑆𝑢𝑢 + 𝑆𝑆𝑝𝑝𝑇𝑇𝑝𝑝       (44) 
 
 
Table 2.4: At the tip convective condition  
 

𝑎𝑎𝑤𝑤  𝑎𝑎𝑒𝑒  𝑠𝑠𝑝𝑝  𝑎𝑎𝑝𝑝  𝑠𝑠𝑢𝑢  
0 1

∆𝑥𝑥
 −�

ℎ
𝑘𝑘

+ 𝑚𝑚2∆𝑥𝑥� 𝑎𝑎𝑤𝑤 + 𝑎𝑎𝑒𝑒 − 𝑠𝑠𝑝𝑝  �
ℎ
𝑘𝑘

+ 𝑚𝑚2∆𝑥𝑥� 𝑇𝑇𝑎𝑎  

 
 
2.0 RESULTS AND DISCUSSIONS  

To check the accuracy of the finite volume method, the result was compared with the analytical solution of a circular fin as shown in 
figure 2. The values were closely related to the analytical results. The finite volume approach is okay for this analysis.   
In Figures 3 and 4, the graph of the varying thermal conductivity in convective and adiabatic conditions, respectively. An increase in 
the thermal conductivity of the circular fin leads to an increase in the temperature distribution along the fin. The higher the thermal 
conductivity more heat is transfer, therefore, leading to a higher temperature along the length of the fin. An increase in the thermal 
conductivity results in a lower temperature gradient. 
 
The graph of temperature distribution comparing the adiabatic and convection condition is shown in Figure 5. From the base to the 
midpoint of the fin, the temperature of both conditions is the same, but it changes slightly from the midpoint to the tip of the fin. In 
convective, heat is conduct away by the atmospheric air resulting in a lower temperature. But in the adiabatic condition, there is no 
external influence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: the graph of numerical validation 
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Figure 3 :  the graph of the varying thermal conductivity in convective condition  

 
Figure 4:  The graph of varying thermal conductivity in adiabatic condition  

 
Figure 5 :  the graph of temperature distribution comparing  the adiabatic and convection condition  
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3.0 CONCLUSION  

This paper considered the temperature distribution in a circular fin subjected to adiabatic or convection at the tip. The finite volume 
was used to discretize the governing equation. It was discovered that the gradient of the graph reduces with an increase in thermal 
conductivity. The value of the temperature at the base of the fin is more for adiabatic than convective because heat is conducted 
away in the convective condition by the atmospheric air. 
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