HEAT ENERGY = (11/14) TEMPERATURE

Nrusingh Charan Mohapatra, M.Sc, M.Phil.
Rtd. Reader in Mathematics, B.P. College , Odisha , India

Abstract

:

The heat of an object is the total energy of all the molecular motion inside that object .Temperature is the measure of the average heat of the molecules in a substance.

The combined relation of volume, pressure and temperature of a given mass of gas can be derived from the combining law of (Boyle's law as well as Charle's law), (Boyle's law as well as Gay Lussac's law) and (Charle's law as well as Gay Lussac's law). The combined relation of pressure, volume and temperature of a given mass of gas can be derived from the motion of a wheel. Rotation is motion and vice versa. If a force is applied on a wheel and that force simultaneously converts to the centripetal force as well as the centrifugal force then the wheel moves forward. So every point on the wheel moves vertically on a curved path to cover horizontally on a straight line path.

The following laws are derived from the above facts as follows ,

LAW OF MOTION
(a) INERTIA OF REST : A body is at rest, until the applied force on it, converts to the centripetal force as well as the centrifugal force .
(b) INERTIA OF MOTION : A body is at motion, as long as the applied force on it, converts to the centripetal force as well as the centrifugal force .

The following law is derived from Nrusingh's $1^{\text {st }}$ law

THE FORCE OF ACTION IS ALWAYS EQUAL TO THE SUM OF OPPOSITE

This implies that ,

14 PARTS ACTION = 11 PARTS REACTION + 3 PARTS ABSORPTION

So
I PART ACTION $=(11 / 14)$ PART REACTION +

(3/14) PART ABSORPTION

The following laws are derived from Nrusingh's $2^{\text {nd }}$ law

Energy $=(11 / 14)$ mass (velocity of light) ${ }^{2} \quad---$ Nrusingh's $4^{\text {th }}$ law
 Pressure * Volume $=(11 / 14)$ Temperature --- Nrusingh's $5^{\text {th }}$ law
 Pressure $=(11 / 14)$ Force $/$ Area $---=$ Nrusingh's $6^{\text {th }}$ law Energy $=(11 / 14)$ Frequency --- Nrusingh's $7^{\text {th }}$ law Work $=(11 / 14)$ Force * Distance ---- Nrusingh's $8^{\text {th }}$ law
 APPLIED HEAT $=(3 / 14)$ ABSORBED HEAT + (11/14) WORK DONE HEAT

This implies that

$$
Q=(3 / 14) U+(11 / 14) W \quad---- \text { Nrusingh's } 11^{\text {th }} \text { law }
$$

The following law is derived from Nrusingh's $5^{\text {th }}$ law of general gas law

HEAT ENERGY $=(11 / 14)$ TEMPERATURE ---- Nrusingh's $13^{\text {th }}$ law

The above law implies that

THE HEAT ENERGY RADIATED FROM A MASS OF GAS IS DIRECTLY PROPORTIONAL TO ITS ABSOLUTE TEMPERATURE The law implies that Heat Energy \propto Temperature where $(11 / 14)$ is the constant of proportionality

KEY WORDS :

Heat Energy, Temperature, Energy, Force, Distance, Pressure, Volume, Constant of proportionality, Absorption, Action, Reaction, Centripetal force, Centrifugal force, Cycloid path, Straight line path

INTRODUCTION :

When a force is applied to a wheel so that the force is converted to the centripetal force as well as the centrifugal force ,

Then every point of the wheel moves vertically $\mathbf{8 r}$ length in the cycloid path by
the centripetal force and Simultaneously the same point covers $2 \boldsymbol{\pi} r$ length on the straight line path by the centrifugal force. Suppose $s_{1}=$ length of the cycloid path and $\quad s_{2}=$ length of the straight line path So $\quad s_{1}=8 \mathrm{r}$ and $s_{2}=2 \pi \mathrm{r}$ where r is the radius of the circle, which generates the cycloid. The cycloid is a curved path, which is traced out by a point on a circle that rolls on a straight line.

Hence $\mathbf{8 r}>\mathbf{2 \pi r} \quad=>\boldsymbol{s}_{\mathbf{1}}>\boldsymbol{s}_{\mathbf{2}}$
As $s_{1}>s_{2}=>\frac{d s_{1}}{d t}>\frac{d s_{2}}{d t}$
Here $\frac{d s_{1}}{d t}=v_{1}=$ Velocity of any point on the cycloid path, and $\frac{d s_{2}}{d t}=v_{2}=$ Velocity of the same point on the straight line path

So $v_{1}>v_{2} \Rightarrow m v_{1}>m v_{2}$ $=>m \frac{d v_{1}}{d t}>m \frac{d v_{2}}{d t}=>m a_{1}>m a_{2}$
Here $\quad \frac{d v_{1}}{d t}=a_{1}=$ Acceleration of any point on the cycloid path
and $\quad \frac{d v_{2}}{d t}=a_{2}=$ Acceleration of the same point on the straight line path
Hence $m a_{1}>m a_{2}=>\boldsymbol{F}_{\mathbf{1}}>\boldsymbol{F}_{\mathbf{2}}$ where $\quad F_{1}=\mathrm{m} a_{1}$ and $F_{2}=\mathrm{m} a_{2}$ But the magnitude of the centripetal force is equal to the magnitude of the centrifugal force.

But here $\boldsymbol{F}_{\mathbf{1}}>\boldsymbol{F}_{\mathbf{2}}$
$\Rightarrow F_{1}-F_{2}=$ SOME ABSORBED FORCE
$\Rightarrow F_{1}=F_{2}+$ SOME ABSORBED FORCE
Here $\boldsymbol{F}_{\mathbf{1}}=$ CENTRIPETAL FORCE
= ACTION FORCE
And $\boldsymbol{F}_{\mathbf{2}}=$ REACTION FORCE
Hence centrifugal force

$$
=F_{2}+\text { SOME ABSORBED FORCE }
$$

= REACTION FORCE +
 SOME ABSORBED FORCE

=> ACTION FORCE = REACTION FORCE + ABSORPTION FORCE

This implies that,

ACTION = REACTION + ABSORPTION

SUBJECT MATTER:

The force is applied on a point of the wheel, So the point moves $8 \mathbf{8}$ length on the cycloid path by the centripetal force and simultaneously the same point covers $2 \pi r$ length on the straight line path by the centrifugal force .

This implies that $\quad \boldsymbol{F}_{\mathbf{1}}: \boldsymbol{F}_{\mathbf{2}}=$

$$
\begin{aligned}
& \text { ACTION OF CENTRIPETAL FORCE : } \\
& \text { REACTION OF CENTRIFUGAL FORCE } \\
& \text { So } \quad F_{1}: F_{2}=8 \mathrm{r}: 2 \pi \mathrm{r}=8: 2 \pi \\
& =8:(2 * 22 / 7)=(8 * 7 / 7):(2 * 22 / 7) \\
& =56 / 7: 44 / 7=56: 44=14: 11 \\
& \\
& \text { Hence } F_{1}: F_{2}=14: 11
\end{aligned}
$$

This implies that,
" TO EVERY 14 PARTS OF ACTION, THERE IS 11 PARTS OF REACTION"
The magnitude of the centripetal force is equal to the magnitude of the centrifugal force. So each one of centripetal force as well as the centrifugal force must do equal amount of work.
But here centripetal force does more work than the centrifugal force,
This implies that some amount of centrifugal force is absorbed on the road.

Hence 14 PARTS ACTION - 11 PARTS REACTION = 3 PARTS ABSORPTION

To every 14 parts of action, there is 11 parts of reaction and 3 parts of absorption .

This implies that

```
    14 PARTS ACTION = 11 PARTS
REACTION + 3 PARTS ABSORPTION .
```

 So 1 part action \(=(11 / 14)\) part
 reaction + (3/14) part absorption
Temperature is the average heat
energy of the matter .Temperature is
the degree of hotness or coldness of
a body. Heat is the sum of the
kinetic energy of atoms or
molecules .Heat is the form of
energy that transfers from a hot
body to a cold body

The heat energy is derived from the general gas law of volume ,pressure and temperature .

The general gas law is derived from the following various gas laws .

Boyle's law states that ,
The volume of given mass of a gas is inversely proportional to its pressure at constant temperature

Mathematically, Boyle's law can be expressed as follows

Volume \propto 1/Pressure
Charle's law states that,

Pressure remaining constant, the volume of the given mass of a gas is directly proportional to its Kelvin temperature .

Mathematically,
Charle's law can be expressed as follows Volume \propto Temperature

Gay Lussa's law states that,
The pressure of given mass of a gas is directly proportional to its Kelvin temperature at constant volume

Mathematically, Gay Lussac's law can be expressed as follows

Pressure \propto Temperature

CASE-I

Combining law of Boyle and Charle .
Boyle's law states that
Volume \propto 1/Pressure
And Charle's law states that
Volume \propto Temperature
So combining the laws of (4) and (5)
It is obtained that,
Volume \propto (Temperature / Pressure)
$=>$ Pressure \propto (Temperature / Volume)
where Volume $=\mathbf{V}$, Pressure $=\mathbf{P}$
and Temperature $=\mathbf{T}$
Here Pressure \propto T/V
\Rightarrow Force/Area \propto T/V
Since Force / Area = Pressure
Now Force/Area $\propto \mathbf{T} / \mathbf{V}$
\Rightarrow Force \propto Area (T / V)
=> Force $=$ k * Area (T / V)
Since (11/14) part of force is used only for the working purpose out of the 1 part of the applied force and the rest (3/14) part of the force is absorbed in the medium .

Hence for the working purpose of force, The constant of proportionality $=k$

And $k=(11 / 14)$

$$
\begin{aligned}
& \text { Hence Force }=k^{*} \text { Area }(\mathrm{T} / \mathrm{V}) \\
& \Rightarrow \text { Force }=(11 / 14)^{*} \text { Area }(\mathrm{T} / \mathrm{V}) \\
& \Rightarrow \text { Force/Area }=(11 / 14)(\mathrm{T} / \mathrm{V}) \\
& \Rightarrow \text { Pressure }=(11 / 14)(\mathrm{T} / \mathrm{V}) \\
& \Rightarrow \text { Pressure } * \mathrm{~V}=(11 / 14) \mathrm{T} \\
& \Rightarrow \text { Pressure }{ }^{*} \text { Volume } \\
& =(11 / 14) \text { Temperature }
\end{aligned}
$$

So the combining law of Boyle and Charle states that

```
PRESSURE* VOLUME
    = (11/14) TEMPERATURE
```

This implies that $\quad \mathbf{P} V=(11 / 14) T$

CASE -II

Combining law of Boyle \& Gay Lussac . Boyle's law states that

Volume $\propto 1 /$ Pressure
The converse of this statement is also true,
So Pressure $\propto 1 /$ Volume
And Gay lussac's law states that
Pressure \propto Temperature
So combining the laws of (4) and (6)

It is obtained that,
Pressure \propto Temperature / Volume
Since Pressure = Force/Area
So (Force/Area) \propto Temperature/Volume
=> Force \propto Area(Temperature /Volume)
This implies that Force $\propto \operatorname{Area}(\mathbf{T} / \mathbf{V})$

$$
\Rightarrow \text { Force }=k^{*} \operatorname{Area}(\mathbf{T} / \mathrm{V})
$$

Since ($11 / 14$) part of force is used only for the working purpose and the rest (3/14) part of the force is absorbed in the medium out of 1 part of the force.

So constant of proportionality= $k=11 / 14$
Hence Force $=\mathrm{k}^{*}$ Area (\mathbf{T} / V)
\Rightarrow Force $=(11 / 14)$ Area (T/V)
\Rightarrow Force/Area $=(11 / 14)(T / V)$
\Rightarrow Pressure $=(11 / 14)(T / V)$
=> Pressure * Volume
$=(11 / 14)$ Temperature
So the Combining law of Boyle and Gay Lussac states that

PRESSURE* VOLUME
= (11/14) TEMPERATURE

This implies that $\mathbf{P V}=(11 / 14) \mathbf{T}$

CASE -III

Combining law of Charle and Gay Lussac .

Charle's law states that
Volume \propto Temperature
The converse of this statement is also true, So Temperature \propto Volume

And Gay Lussac's law states that

Pressure \propto Temperature
The converse of this statement is also true,
So Temperature \propto Pressure
Hence combining the laws of (5) and (6),
it is obtained that
Temperature \propto Volume * Pressure
The converse of this statement is also true,
So Pressure * Volume \propto Temperature
=>Pressure α (Temperature/Volume)
=>(Force/Area) \propto Temperature/Volume
Since Force $/$ Area $=$ Pressure
=>Force \propto Area*(Temperature/Volume)

$$
\begin{aligned}
& \Rightarrow \text { Force } \propto \text { Area } *(T / V) \\
& \Rightarrow \text { Force }=k * \text { Area }(T / V)
\end{aligned}
$$

Since (11/14) part of force is used only for the working purpose out of the 1 part of the applied force and simultaneously the rest (3/14) part of the force is absorbed in the medium.

Hence for the working purpose of force $\mathrm{k}=$ constant of proportionality $=(11 / 14)$

Hence \quad Force $=k^{*}$ Area $(\mathbf{T} / \mathbf{V})$

$$
\begin{aligned}
& \Rightarrow \text { Force }=(11 / 14) \text { Area }(\mathbf{T} / \mathrm{V}) \\
& \Rightarrow(\text { Force/Area })=(11 / 14)(\mathbf{T} / \mathrm{V}) \\
& \Rightarrow \text { Pressure }=
\end{aligned}
$$

(11/14)(Temperature / Volume)
Since Force / Area = Pressure
Hence Pressure * Volume

$$
=(11 / 14) \text { Temperature }
$$

So the combining law of Charle and Gay Lussac states that

PRESSURE* VOLUME

= (11/14) TEMPERATURE
This implies that $\mathbf{P V}=(11 / 14) \mathbf{T}$
All the three combining laws of (Boyle's law as well as Charle's law), (Boyle's law as well as Gay Lussac's law)

And (Charle's law as well as Gay Lussac's law) state that

PRESSURE* VOLUME
= (11/14) TEMPERATURE

This implies that $\quad \mathbf{P} V=(11 / 14) T$
This is the general gas law of volume, pressure and temperature of a given mass of gas .

Nrusingh's $5^{\text {th }}$ law states that
Pressure * Volume = (11/14) Temperature

```
=> PV =(11/14) T => P = (11/14) T/ V
Since Pressure =
```

working pressure +Absorbing pressure
= (11/14)(T/V) + (3/14)(T/V)

Hence
(11/14) (T/V) part of Pressure is worked and the rest (3/14) (T/V) part of Pressure is absorbed out of 1 (T/V) part of pressure .
=> working pressure=(11/14) T/V
Basically the absorbing pressure
(3/14) T/V is not taken into account .
Multiplying the factor "Area" both the sides of the equation (7)

It is obtained that ,
=> Working pressure * Area

$$
=\{(11 / 14) \text { T/V }\}^{*} \text { Area }
$$

= (11/14) Area * Temperature / Volume
Since Working pressure * Area
$=$ Working force
So Working Force
= (11/14) Area * Temperature / Volume
Here Area $=($ Length $*$ Breadth $)$ and
Volume $=($ Length * Breadth * Height $)$
Hence Length, Breadth and Height are the distances along the X -axis , Y -axis and Z-axis respectively in the three dimensional space .So the Height is a distance along the Z-axis

Suppose Working Force = Force Hence Force
$=(11 / 14)$ Area (Temperature $/$ Volume)
$=(11 / 14)($ Area $*$ Temperature) / Volume $=(11 / 14)($ Length*Breadth)Temperature
/ (Length * Breadth *Height)

Hence Force =

=(11/14)(Length*Breadth)Temperature/
(Length * Breadth) * Height
Cancelling the factor (Length*Breadth) from the right hand side numerator and denominator of the equation (7)
it is obtained that,
Force $=(11 / 14)$ Temperature $/$ Height
$=>$ Force* Height $=(11 / 14)$ Temperature
Since Height is a distance on Z - axis i.e. \quad Height $=$ Distance

So Force*Height $=(11 / 14)$ Temperature
$=>$ Force $*$ Distance=(11/14) Temperature
As Force*Distance=Work done=Energy
So Force * Distance $=$ Energy
Hence Force * Distance $=$
(11/14) Temperature
=> Energy $=(11 / 14)$ Temperature
Since Temperature is the average heat energy of the matter.

So Energy = Heat Energy
Hence Energy =(11/14) Temperature
=> Heat Energy
= (11/14) Temperature
So the law of Heat Energy
$=(11 / 14)$ Temperature is derived
from the following general gas law
PRESSURE * VOLUME
= (11/14) TEMPERATURE
Hence the sun is radiating heat energy according to the law Heat Energy
= (11/14) Temperature

Five atoms of Hydrogen gas are fused together to form one atom of Helium gas in the sun .

Atomic weight of 5 hydrogen atoms
$5 \mathrm{H}=5(1.008)=5.040$ and
Atomic weight of 1 Helium atom $=$
$1 \mathrm{He}=4.002 \approx 4=2$ protons +2 neutrons
So Fusion in Sun takes place according to the following Nrusingh's $2^{\text {nd }}$ law

I PART ACTION
$=(11 / 14)$ PART REACTION
+(3/14) PART ABSORPTION

Fusion of 5 Hydrogen atoms $=1$ part of Action and Product of 1 Helium atom $=$ (11/ 14) part of Reaction.This implies that,

(11/14) PART REACTION

$=5.040(11 / 14)=3.960 \approx 4 \approx 4.002$
= Atomic weight of 1 Helium atom
and (3/14) PART ABSORPTION

$$
=5.040(3 / 14)=1.080
$$

= Absorbed atomic weight in the sun
This implies that,
when 5 hydrogen atoms of atomic weight 5.040 are fused together in the Sun, then $3.960 \approx 4=$ atomic weight of 1 helium atom is produced and simultaneously the rest 1.080 atomic weight is absorbed in the Sun .

Hence $3.960 \approx 4=$ atomic weight of 1 Helium atom gas is radiated as heat as well as light energy and simultaneously the rest 1.080 atomic weight is absorbed in the Sun out of 5.040 atomic weight of 5 hydrogen atoms.

The light and heat energy go together because light is emitted from a matter in the fixed temperature of it .

So heat energy is radiated from the Sun by the following law ,

Heat Energy

= (11/14) Temperature

CONCLUSION :

Heat Energy $=\mathbf{(1 1 / 1 4)}$ Temperature

Here (11/14) is the constant of proportionality.

So this implies that Heat Energy
\propto Temperature
This implies that,
The heat energy radiated from a given mass of gas is directly proportional to its absolute temperature in the Sun .

REFFERENCES:

The followings are the published papers of the IJSER journal - ISSN 2229-5518 and the GSJ journal -ISSN 2320-9186

1) Nrusingh's 1st law

IJSER,volume-10 ,issue-12, December-2019
2) Nrusingh's 2nd law

IJSER , volume-6, issue -7, July-2015
3) Nrusingh's 3rd law

IJSER , volume-11, issue- 3, March-2020
4) Nrusingh's 4th law

GSJ ,volume-8, issue-9, September-2020
5) Nrusingh's 5th law

GSJ ,volume-8, issue-12, December-2020
6) Nrusingh's 6th law

GSJ ,volume-8 ,issue-12, December-2020
7) Nrusingh's 7th law

GSJ , volume-9, issue-01, January-2021
8) Nrusingh's 8th law

GSJ ,volume-9 , issue-01, January-2021
9) Nrusingh's 11th law

GSJ ,volume-9, issue-02, February-2021
10) Nrusingh's 12th law

GSJ ,volume-9, issue-04, April-2021

