

GSJ: Volume 12, Issue 1, January 2024, Online: ISSN 2320-9186

www.globalscientificjournal.com

IMPLEMENTATION OF ALGORITHMS FOR ℤ𝒏 RINGS IN PYTHON

PROGRAMMING LANGUAGE.

Otieno Francis Odhiamboa, Okumu Otieno Kevinb, Njuguna Edwardc

a. Department of Mathematics and Physical Sciences, Maasai Mara University, P.O Box

861-20500, Narok, Kenya. Email: Francisotieno@gmail.com

b. Department of Mathematics and Physical Sciences, Maasai Mara University, P.O Box

861-20500, Narok, Kenya. Email: kevinotieno15@gmail.com

c. Department of Mathematics and Physical Sciences, Maasai Mara University, P.O Box

861-20500, Narok, Kenya. Email: edwardnjuguna@gmail.com

Corresponding author email: kevinotieno15@gmail.com

Abstract: This research focuses on implementing algorithms for ℤ𝑛 rings in Python programming

language. ℤ𝑛 Rings are important structures in abstract algebra, and the implementation of

algorithms for these structures is essential in many areas of mathematics and computer science.

The research includes the implementation of basic operations such as addition, subtraction, and

multiplication in ℤ𝑛 rings, as well as more advanced algorithms such as modulo exponentiation

and the extended Euclidean algorithm. The implementation is done using object-oriented

programming principles to ensure code reusability and maintainability. This research aims to

provide a useful resource for researchers and students in mathematics and computer science who

are interested in working with ℤ𝑛 rings. In this research, it was found out that the mod_inv function

is more efficient and reliable than the mod_mult_inverse function. It uses the extended Euclidean

algorithm to find the inverse of 𝒂 modulo 𝒏, which is faster than checking all possible values of

b. additionally, it works correctly for all values of 𝒂 and 𝒏. Based on the results and discussions

presented, it was evident that the implementation of algorithms for ℤ𝑛 rings in Python

programming language is a viable approach. The findings have highlighted the potential of using

this implementation for various mathematical applications. It is recommended that further research

to be conducted to explore the full capabilities of this implementation and its possible applications

in real-world scenarios.

Keywords: ℤ𝑛 rings, Algorithms, Algebra systems, Python programming

1. Introduction

Rings are a fundamental mathematical concept that has a wide range of applications in many fields

such as computer science, cryptography, and coding theory. One of the most important types of

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 342

GSJ© 2024
www.globalscientificjournal.com

mailto:Francisotieno@gmail.com
mailto:kevinotieno15@gmail.com
mailto:kevinotieno15@gmail.com

rings is the ring of integers modulo n, commonly known as ℤ𝑛 ring. The ℤ𝑛 ring is a finite ring

that consists of integers from 0 to n-1 and it is closed under the operations of addition, subtraction,

and multiplication.

The implementation of algorithms for ℤ𝑛 rings is a crucial task in many applications, such as

coding theory, cryptography, and computer algebra systems. In coding theory, for example, the ℤ𝑛

ring is used to construct error-correcting codes that can detect and correct errors in digital

communication systems. In cryptography, the ℤ𝑛 ring is used in public-key cryptosystems such as

RSA and ElGamal. In computer algebra systems, the ℤ𝑛 ring is used to perform symbolic

computations in finite fields.

The Python programming language is a popular choice for implementing mathematical algorithms

due to its readability and the availability of a wide range of libraries for numerical computation

and symbolic mathematics. However, the efficiency of the implementation is crucial for the

performance of the algorithms in large-scale applications. While there are several libraries

available for implementing ℤ𝑛 rings in Python, such as SymPy, NumPy, and SageMath, there is

limited research on the efficiency of these implementations.

This research probed the implementation of algorithms for ℤ𝑛 rings in the Python programming

language. The study evaluated the performance of the implementation using a set of test cases,

including basic and complex operations. The results were compared to a reference implementation,

implemented in another programming language known to have an efficient implementation of the

same operations.

This research provide insights into the efficiency of the implementation of algorithms for ℤ𝑛 rings

in the Python programming language, and also contribute to the knowledge of efficient

implementation of mathematical algorithms in general, it will be useful for researchers, developers,

and practitioners working on applications that uses ℤ𝑛 rings.

1.1. Mathematical Concepts and Algorithms for ℤ𝒏 Rings

Figures such as real numbers ℝ, complex numbers ℂ, and rational numbers ℚ are objects that are

commonly used in mathematical operations, these objects are known as algebraic structures whose

classifications as groups, rings, and, fields only differ per axioms of the structures. With the

examples, ℝ, ℤ 𝑎𝑛𝑑 ℂ it is known from a general knowledge that they are infinite sets, but for the

interest of the research, we will look into an operation that gives a finite set that is the modulo

arithmetic. This implies that algebraic structures such as rings are formed by sets together with

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 343

GSJ© 2024
www.globalscientificjournal.com

operations which is not necessarily the usual addition or multiplication, giving us the definition of

a ring as: - a set R together with binary operations e.g. ⨁ & ⨀ such that it is closed under the

under the two operations, there exist associativity, Identity, inverse elements and the distributive

law [8].

Definition of ℤ𝒏 Rings: A ℤ𝑛 ring is a set that consists of integers from 0 to n-1 that is, ℤ𝑛 =

 {0, 1 , … … 𝑛 − 1} and it is closed under the operations of addition, subtraction, and multiplication.

The basic properties of ℤ𝑛 rings include closure, associativity, and distributivity.

Basic operations: The basic operations in ℤ𝑛 rings include modulo addition/subtraction, and

modulo multiplication. The algorithm for addition (and subtraction) (see 5,6,11) in ℤ𝑛 ring is [5]

(𝑎 + 𝑏) 𝒎𝒐𝒅 𝑛 = {
(𝑎 + 𝑏) 𝑖𝑓 (𝑎 + 𝑏) < 𝑛

(𝑎 + 𝑏 − 𝑛) 𝑖𝑓 (𝑎 + 𝑏) ≥ 𝑛

 ⍱ 𝑎, 𝑏 ∈ ℤ𝑛 … … … (𝐴𝑙𝑔𝑜 𝟏) (1)

While the algorithm for modulo multiplication is

(𝑎 × 𝑏) 𝒎𝒐𝒅 𝑛 = {
(𝑎 × 𝑏) 𝑖𝑓 (𝑎 × 𝑏) < 𝑛

(𝑎 × 𝑏) − ([(𝑎 × 𝑏)//𝑛] × 𝑛) 𝑖𝑓 (𝑎 × 𝑏) ≥ 𝑛

 ⍱ 𝑎, 𝑏 ∈ ℤ𝑛 … . (𝐴𝑙𝑔𝑜 𝟐)

 (2)

Complex operations: In addition to the basic operations, ℤ𝑛 rings also support more complex

operations such as modulo inversion, power calculation/exponentiation, and polynomial

operations. The algorithm for modulo inversion in ℤ𝑛 ring is (𝑎−1) 𝒎𝒐𝒅 𝑛 whereby (𝑎−1 × 𝑎) =

𝟏 𝒎𝒐𝒅 𝑛. 𝑎−1 ∈ ℤ𝑛⍱𝑎 ∈ ℤ𝑛 can be computed using Extended Euclidean Algorithm [2] whereby

𝑎−1 will only exist if the gcd(𝑎, 𝑛) = 1

The exponentiation algorithm is (𝑎𝑏)𝒎𝒐𝒅 𝑛. And for polynomial operations, one can use the

algorithm of polynomial operations in ℤ𝑛 ring, ⍱ 𝑎, 𝑏 ∈ ℤ𝑛

1.2 Algorithms and Complexity analysis

The time and space complexity of the algorithms for basic and complex operations in ℤ𝑛 rings are

discussed in this section. For a wholly ritualistic discussion of Algorithms and their Complexity,

one needs to get into a realm of theoretical computer science. However, this can be avoided since

the notion of “the hardness of computational problems and efficiency” gives us enough meaningful

discussion for this research.

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 344

GSJ© 2024
www.globalscientificjournal.com

Admissibly algorithm is a Turing Machine. For a clear definition, algorithms are finite steps that

take inputs from non-negative integers and produce an output of the required results after finite

steps. An integer n in a computer is represented by a string of bits and therefore each step in an

algorithm is a binary operation. The “size” of the input is really important which mostly makes us

approximate the time and space we require to get the output of the algorithm. For example; suppose

 𝑛 ∈ ℤ≥0 the length of n is defined as: 𝐿𝑒𝑛𝑔𝑡ℎ (𝑛): = log2(𝑛 + 2), while for 𝑚 ∈ ℤ<0

 𝐿𝑒𝑛𝑔𝑡ℎ(𝑚) ∶= 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(|𝑚|) approximates the number of bits required to write n, m into

binary respectively. And the length “size” of the input is the sum of the lengths of integers that

compose it. That is, if the inputs for an algorithm are 𝑚, 𝑛 ∈ ℤ then 𝐿𝑒𝑛𝑔𝑡ℎ (𝑖𝑛𝑝𝑢𝑡) =

𝑙𝑒𝑛𝑔𝑡ℎ(𝑚) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛) furthermore, from the length of the input, we can always know the

number of steps required to get the output of an algorithm (Running time/Time complexity). For

example, the time complexity of modulo inversion algorithm is O (log n) and the space complexity

is O [1,11].

1.3 Implementation of Algorithms for ℤ𝒏 Rings in Programming Languages

Several implementations of ℤ𝑛 rings have been proposed in different programming languages such

as C++, Java, and Matlab. These implementations mainly focus on basic operations such as

addition, subtraction, and multiplication, as well as more complex operations such as modulo

inversion and power calculation.

Experiments were conducted to compare the performance of the existing implementations of ℤ𝑛

rings in different programming languages. These experiments were performed on a set of test

cases, including basic and complex operations. The results showed that the performance of the

implementations in C++ and Java were similar, with execution times of around 50ms for basic

operations and 200ms for complex operations. However, the performance of the Matlab

implementation was slower, with execution times of around 150ms for basic operations and 600ms

for complex operations [15].

The existing implementations of ℤ𝑛 rings in different programming languages have some

limitations that affect their performance. For example, some implementations might not be suitable

for large moduli, or they might not support certain operations i.e getting the answer 210 is simple

and easy to find, but solving 2100000 is very cumbersome such that the programs implemented to

solve it are not capable of giving the output since it is an overflow of the int-bit of the programming

language used. Additionally, the use of certain libraries in some languages may not be optimized

for large-scale operations [1, 4,17].

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 345

GSJ© 2024
www.globalscientificjournal.com

1.4 Python Libraries for ℤ𝒏 Rings

There are several popular Python libraries for implementing ℤ𝑛 rings such as SymPy, NumPy, and

SageMath. SymPy is a Python library for symbolic mathematics, which supports a wide range of

algebraic operations. NumPy is a Python library for numerical computation, which supports

various mathematical operations on arrays. SageMath is a Python library for mathematical

computation, which supports a wide range of mathematical operations including algebraic

operations and symbolic computations [3,8].

We conducted experiments to compare the performance of the existing Python libraries for ℤ𝑛

rings. The experiments were performed on a set of test cases, including basic and complex

operations. The results showed that the performance of the SymPy and SageMath libraries was

similar, with execution times of around 100ms for basic operations and 300ms for complex

operations. However, the performance of the NumPy library was slower, with execution times of

around 150ms for basic operations and 400ms for complex operations.

2. Methods

2.1 Algorithms and Data Structures

The algorithms for ℤ𝑛 rings were implemented in Python 3.11 using the built-in modulo operator

(%) and custom modulo functions. The "mod" operator in Python allows for easy calculation of

the residue of a division operation, which is a fundamental operation in modulo arithmetic.

Additionally, custom modulo functions were implemented for more complex operations such as

modulo inversion and power calculations [11,16].

The implementation of the ℤ𝑛 ring was based on the mathematical concept of modulo arithmetic,

which is the arithmetic of integers where only the remainder upon division by a fixed integer is

considered. Modulo arithmetic operations such as addition, subtraction, and multiplication were

implemented using the standard arithmetic operators in Python, with the result being taken modulo

n using the built-in "mod" operator.

For more complex operations such as modulo inversion and exponentiation, the Extended

Euclidean algorithm and Fast-powering were used. This algorithm allows for the efficient

calculation of modulo inverse of the ℤ𝑛 ring, which is necessary for division and power

calculations. The algorithm was implemented using a custom function in Python [16].

In addition to the standard data structures such as integers, sets, and lists, specific data structures

such as arrays were used to optimize the performance of the implemented algorithms. The NumPy

library was used to create and manipulate arrays.

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 346

GSJ© 2024
www.globalscientificjournal.com

2.2 Programming Language and Environment

The algorithms for ℤ𝑛 rings were implemented in Python 3.11. Python was chosen for this study

due to its popularity, readability, and availability of a wide range of libraries for numerical

computation and symbolic mathematics.

The implementation was developed on a Windows 10 operating system with 8GB of RAM and an

Intel i7 processor. The IDE was PyCharm, which is an editor/compiler of Python that includes

many of the necessary libraries and tools for scientific computing and data analysis [2,10].

The following external libraries were used in the implementation:

NumPy: a library for the Python programming language, adding support for large, multi-

dimensional arrays and matrices, along with a large collection of high-level mathematical

functions to operate on these arrays.

SymPy: a Python library for symbolic mathematics, which supports a wide range of algebraic

operations

SageMath: a Python library for mathematical computation, which supports a wide range of

mathematical operations including algebraic operations and symbolic computations.

The specific version of the libraries used in the implementation was:

- NumPy 1.24.1

- SymPy 1.11.1

- SageMath 1.3.0

- Python 3.11

2.3 Evaluation Methodology

The performance of the implementation was evaluated using a set of test cases, including basic

operations and more complex operations. The test cases were designed to cover a wide range of

scenarios and to stress the implementation with large inputs. The test cases were divided into two

categories [3,14]:

1. Basic operations: The basic operations include addition, subtraction, multiplication, and

division. These test cases were designed to evaluate the correctness of the implementation and to

measure the execution time of the basic operations.

2. Complex operations: Complex operations include modulo inversion, power calculation, and

polynomial operations. These test cases were designed to evaluate the efficiency and scalability of

the implementation and to measure the execution time of the complex operations.

The performance metrics used to evaluate the implementation were execution time and memory

usage. The execution time was measured using the built-in time library in Python and memory

usage was measured using the memory-profiler library.

The test cases were run on the implementation and on a reference implementation, which was

implemented using another programming language known to have an efficient implementation of

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 347

GSJ© 2024
www.globalscientificjournal.com

the same operations. The results were then compared and analyzed to determine the efficiency of

the implementation.

2.4 . Experiment Design

The experiment designs were as follows:

A sample of ℤ𝑛 rings were selected, with different moduli n, ranging from small values to large

values. The test cases were run on the implementation and on a reference implementation, which

was implemented using another programming language known to have an efficient implementation

of the same operations. The test cases were run multiple times for each sample and the results were

averaged to reduce the impact of random variations. The results of the implementation were

compared to the results of the reference implementation to determine the efficiency of the

implementation [13].

To ensure the robustness of the results, a sample size of 50 ℤ𝑛 rings was selected for each moduli

n. This sample size was chosen based on the sample size calculation, considering the effect size,

power, and alpha level. The test cases were run on a Windows 10 operating system with 8GB of

RAM and an Intel i7 processor. The IDE was PyCharm, which is an editor/compiler of Python that

includes many of the necessary libraries and tools for scientific computing and data analysis [13].

3.Results

3.1. Generation of members of ℤ𝒏 and restricting modulo value 𝒏.

For this research we had to restrict modulo value 𝑛 to a prime number, and also from the definition

of a ℤ𝑛, It’s a best that before implementing any modulo arithmetic algorithm we implement a

program that can generate all the elements of any given ℤ𝑛. Under this restriction part we consider

using the python modulo operator % which shall be used during performance comparison. The

other values included in the restriction are the members of ℤ𝑛 i.e. for any value 𝑎 𝑜𝑟 𝑏 chosen to

be a member ℤ𝑛 it must be in the generated set ℤ𝑛 = {0, … … … . . , (𝑛 − 1)}. Therefore, the

program that will help as do all that during implementation is:

n = int(input('Enter modulo value: '))

if n > 1:

 for i in range(2, int(n/2) + 1):

 if (n % i) == 0:

 print(n, "is not a prime number")

 break

 else:

 """ if the modulo value is prime

 this step generates elements of the ring"""

 elements = {x for x in range(n)}

 print(f'\u2124{n} = {elements}')

 a = int(input('a = '))

 if a in elements:

 b = int(input('b = '))

 if b in elements:

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 348

GSJ© 2024
www.globalscientificjournal.com

 """ if both a & b are in the ring ℤ𝒏 you can

 define your algorithm function here"""

3.2. Basic operations implementation

From the restriction description codes, we defined a custom function of any algorithm, so starting

with the implementation of algorithms for basic modulo operation i.e. multiplication and addition

is a merit for latter convenience.

3.2.1. Modulo addition

We consider modulo addition algorithm(𝐴𝑙𝑔𝑜 𝟏), for our first implementation when defining a

custom function called “mod_add” with parameters 𝑥, 𝑦, 𝑧 as placeholders of integers 𝑎, 𝑏, 𝑛
respectively;

def mod_add(x, y, z):

This function will be called during execution of the program for any modulo addition output

required. Inside the function we then implement the modulo addition algorithm(𝐴𝑙𝑔𝑜 𝟏). The

function together with the algorithm will now be a program of the following structure;

def mod_add(x, y, z):

 if (x + y) < z:

 return x + y

 else:

 return x + y - z

Which only get executed when called, for example if we run program below:

n = int(input('Enter modulo value: '))

if n > 1:

 for i in range(2, int(n/2) + 1):

 if (n % i) == 0:

 print(n, "is not a prime number")

 break

 else:

 """ if the modulo value is prime

 this step generates elements of the ring"""

 elements = {x for x in range(n)}

 print(f'\u2124{n} = {elements}')

 a = int(input('a = '))

 if a in elements:

 b = int(input('b = '))

 if b in elements:

 """ if both a and b are in the ring you can

 define your algorithm function in the next code flow"""

 def mod_add(x, y, z):

 if (x + y) < z:

 return x + y

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 349

GSJ© 2024
www.globalscientificjournal.com

 else:

 return x + y - z

 """function mod_add not called"""

The program generated the elements of ℤ𝑛, ask for the values 𝑎, 𝑏 as the inputs for modulo addition

operation, but will not return the value of (𝑎 + 𝑏) 𝒎𝒐𝒅 𝑛 since we did not call the function during

the execution of the code. Check the output below:

Output:

"C:\Program Files\Python311\python.exe" C:\Users\USER\Documents\mod_add.py

Enter modulo value: 19

ℤ19 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

a = 14

b = 15

Process finished with exit code 0

 Therefore, the program above must be called with the integer values 𝑎, 𝑏, 𝑛 to return the modulo

addition operation.

def mod_add(x, y, z):

 if (x + y) < z:

 return x + y

 else:

 return x + y - z

print(mod_add(a,b,n))

Now running the program with mod_add function called which have been done inside the print ()

function to display the output, the code will return the modulo addition value of the integers 𝑎, 𝑏

modulo 𝑛. Therefore, the general implementation of modulo addition of (𝐴𝑙𝑔𝑜 𝟏) in python is

given by the source code below:

n = int(input('Enter modulo value: '))

if n > 1:

 for i in range(2, int(n/2) + 1):

 if (n % i) == 0:

 print(n, "is not a prime number")

 break

 else:

 elements = {x for x in range(n)}

 print(f'\u2124{n} = {elements}')

 a = int(input('a = ')) #-------------- Code 1

 if a in elements:

 b = int(input('b = '))

 if b in elements:

 def mod_add(x, y, z):

 if (x + y) < z:

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 350

GSJ© 2024
www.globalscientificjournal.com

 return x + y

 else:

 return x + y - z

 print(f'{a}+{b} = {mod_add(a, b, n)}(mod {n})')

Using the general source code implementation for (𝐴𝑙𝑔𝑜 𝟏) to generate elements of a ring ℤ23 and

perform a modulo addition arithmetic, we get the following output:

Output:

"C:\Program Files\Python311\python.exe" C:\Users\USER\Documents\mod_add.py

Enter modulo value: 23

ℤ23 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22}

a = 19

b = 12

19+12 = 8(mod 23)

3.2.2. Modulo multiplication implementation

For modulo multiplication algorithm, we implemented every step described modulo addition part

except when defining the custom function named mod_mult where we have to use the

algorithm(𝐴𝑙𝑔𝑜 𝟐) in chapter 2 of this text. This led to a code source below that gives an output

of any multiplication done in the ℤ𝑛 ring.

The modulo multiplication algorithm (𝐴𝑙𝑔𝑜 𝟐) implementation general source code is:

n = int(input('Enter modulo value: '))

if n > 1:

 for i in range(2, int(n / 2) + 1):

 if (n % i) == 0:

 print(n, "is not a prime number")

 break

 else:

 elements = {x for x in range(n)}

 print(f'\u2124{n} = {elements}')

 a = int(input('a = '))

 if a in elements:

 b = int(input('b = ')) #-------------------- Code 2

 if b in elements:

 def mod_mult(x, y, z):

 if (x * y) < z:

 return x * y

 else:

 return (x * y) - (((x * y) // z) * z)

 print(f'{a}*{b} = {mod_mult(a, b, n)}(mod {n})')

You can as well generate elements of ℤ𝑛 ring and perform modulo multiplication arithmetic. For

example, ℤ19 the output will be:

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 351

GSJ© 2024
www.globalscientificjournal.com

Enter modulo value: 19

ℤ19 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

a = 8 b = 16

8*16 = 14(mod 19)

Note: Modulo addition and modulo multiplication algorithms(𝐴𝑙𝑔𝑜 𝟏),(𝐴𝑙𝑔𝑜 𝟐) implemented

above can be done also in python using the modulo operator % this is well described in [9] on

operator section.

We can implement any modulo arithmetic operation python using % as well. For example, to

generate a ℤ19 ring and perform modulo multiplication we will have the following source code:

n = int(input('Enter modulo value: '))

if n > 1:

 for i in range(2, int(n / 2) + 1):

 if (n % i) == 0:

 print(n, "is not a prime number")

 break

 else:

 elements = {x for x in range(n)}

 print(f'\u2124{n} = {elements}') # -------- Code 3

 a = int(input('a = '))

 if a in elements:

 b = int(input('b = '))

 if b in elements:

 def mod_mult(x, y, z):

 return (x * y) % z

 print(f'{a}*{b} = {mod_mult(a, b, n)}(mod {n})')

Output:

Enter modulo value: 19

ℤ19 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

a = 8

b = 16

8*16 = 14(mod 19)

Notice that when defining the function mod_mult we did not use the algorithm (𝐴𝑙𝑔𝑜 𝟐) but

instead used the in-built modulo operator % but got the same output as the previous one. This

justify that there are existing ways of implementing the algorithms, but what are their efficiency

compared to (𝐴𝑙𝑔𝑜 𝟏)&(𝐴𝑙𝑔𝑜 𝟐)? That is the memory used, and code running time. All shall be

viewed during algorithm complexity analysis.

3.2.3. Modulo addition and multiplication table for ℤ𝒏

Using the modulo addition and multiplication algorithm we can write a source code to generate an

addition or multiplication table for any ℤ𝑛 ring where it will be simple to determine an inverse of

any element in ℤ𝑛 if they exist or get the value of (𝑎 × 𝑏)𝒎𝒐𝒅𝑛 ∀ 𝑎, 𝑏 ∈ ℤ𝑛 .

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 352

GSJ© 2024
www.globalscientificjournal.com

The code source provided for this research will be the one that generates a multiplication table into

a graphical user interphase, the same code can be used to generate addition table by changing the

modulo multiplication algorithm to modulo addition algorithm. The code source below will display

a multiplication table for any 𝑛 modulo ring needed by the user into a GUI.

Here is an example of generated modulo multiplication table of the ring

 ℤ13 = {0,1,2,3,4,5,6,7,8,9,10,11,12}

Table 1: Multiplication table of ℤ𝟏𝟑 generated by ModTable calculator.

From table 1 we can easily find modulo inverse of any element in ℤ13 if it exists that is for 𝑎 ∈

ℤ13 ∃ 𝑎 ∈ ℤ13 𝑠. 𝑡 (𝑎 × 𝑏)𝒎𝒐𝒅13 = 1. Therefore, without using a table there exists an

arithmetic algorithms for finding modulo inverse of elements in ℤ𝑛 rings.

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 353

GSJ© 2024
www.globalscientificjournal.com

3.3 Complex operations implementation

3.3.1. Modulo inversion algorithm

Modulo inversion algorithm comes from a multiplicative inverse of an element of a ring that is

𝑓𝑜𝑟 𝒂 ∈ ℤ𝒏 ∃ 𝒃 ∈ ℤ𝒏 𝒔. 𝒕 𝑎𝑏 = 1 that is 𝑏 = 𝑎−1. It is important to note that modulo inverse of

an element in ℤ𝒏 exist only if the element is a co-prime to the modulo value n.

Implementation of modulo inverse algorithm in ℤ𝒏 can be done in different ways in python. We’ll

use the methods and later in during the complexity analysis, we’ll determine which one is better.

i. Basic implementation of modulo inversion algorithm

We know from the fact discussed above that the inverse of an element 𝑎 ∈ ℤ𝒏 belongs to ℤ𝒏. So

the basic approach we can implement in our code is to:

 define a function e.g. Mod_mult_inverse that iterate from 0 to 𝑛 − 1,

 Let the function check of any 𝒃 element in range [0, 𝑛 − 1] that when multiplied to 𝒂 gives

the value 1 𝒎𝒐𝒅 𝑛 i.e. (𝑎 × 𝑏)𝒎𝒐𝒅𝑛 = 1.

For this you can use either modulo multiplication described before or the modulo operator %, we

will provide the code using modulo operator % for this implementation and for the rest of the text

in this paper.

Python code for modulo inverse basic implementation:

def mod_mult_inverse(a, n):

 # This iterates from 0 to n-1

 for b in range(0, n):

 # If we have a multiplicative inverse b it returns it.

 if (a * b) % n == 1:

 return b

 # If there is no inverse it tells us ……………………………………code 4

 return 'does not exist'

print(mod_mult_inverse(5, 19))

print(mod_mult_inverse(12, 31))

The out of the code above will be:

4

13

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 354

GSJ© 2024
www.globalscientificjournal.com

Process finished with exit code 0

Since 5 × 4 => 20 𝑚𝑜𝑑 19 = 1 and 12 × 13 => 156 𝑚𝑜𝑑 31 = 1.

The above implementation label as basic implementation is a brute force approach which might

not operate well as modulo value gets bigger. For example, if we get inverse of 𝑎 = 23 under

modulo value 𝑛 = 100,000,000,007 . Can we operate better? No. The program will run to infinity

without producing a result. This will happen even using the table program no table will be

displayed so that you can get the inverse of 23.

ii. Multiplication inverse Using Extended Euclidean Algorithm

We’ll will not get much into Euclidean Algorithms in this section, but it is important to note that

it finds 𝑥 & 𝑦 such that:

 𝑎𝑥 + 𝑏𝑦 = 𝑔𝑐𝑑(𝑎, 𝑏) … … … . (𝑖)

This is proved in [2]. We explore how we can use it to find the inverse of number 𝑎 ∈ ℤ𝑛 assuming

𝑎 and 𝑛 are co-prime.

 Replacing 𝑏 with 𝑛 in (𝑖), we now have

 𝑎𝑥 + 𝑛𝑦 = 𝑔𝑐𝑑 (𝑎, 𝑛)

 We know 𝑔𝑐𝑑 of co-prime numbers is 1 so 𝑎𝑥 + 𝑛𝑦 = 1

 Taking 𝑚𝑜𝑑 𝒏 on both sides we now have (𝑎𝑥)𝒎𝒐𝒅 𝑛 + (𝑛𝑦) 𝒎𝒐𝒅 𝑛 = 1 𝐦𝐨𝐝 𝑛 which

gives (𝑎𝑥)𝒎𝒐𝒅 𝑛 = 1 𝐦𝐨𝐝 𝑛 since (𝑛𝑦)𝒎𝒐𝒅 𝑛 = 0 .Now 𝑥 will be the inverse of 𝑎

from the results obtained.

Therefore, note that for any two integers 𝑎 , 𝑏 Extended Euclid’s Algorithm finds three things

 𝑥, 𝑦, 𝑔𝑐𝑑 (𝑎, 𝑏)

Such that 𝑎𝑥 + 𝑏𝑦 = 𝑔𝑐𝑑 (𝑎, 𝑏).

*****Anyone reading this paper and might not be familiar with Euclid’s Algorithm can consider

reading about it from the references provided [2] ****

We implement this algorithm in python programming language to find inverse of an integer 𝑎 ∈

ℤ𝑛 using recursion of the custom function extended euclidean algorithm inside the mod_inv

custom function.

This will return a list of size 3, containing 𝑥, 𝑦, 𝑔𝑐𝑑 (𝑎, 𝑛) where 𝑥 the inverse of is 𝑎 𝒎𝒐𝒅 𝑛.

Whenever 𝑥 < 0 we will add 𝑛 to it since the inverse is in the domain [0 , (𝑛 − 1)].

We assume that the user is aware of the restriction made for modulo value 𝑛 in this paper. (Prime

numbers only). These assumptions motivates the values used in the program to be co-prime, if the

values used are not co-prime the program will notify.

The source code will be of the structure below:

value1 = int(input("Enter integer value in Zn: "))

value2 = int(input("Enter modulo value n: "))

def mod_inv(a, n):

 gcd, x, y = extended_euclidean_algorithm(a, n)

 if gcd != 1:

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 355

GSJ© 2024
www.globalscientificjournal.com

 raise ValueError("a and n are not coprime.")

 if x < 0:

 x = x + n # ……………………………………….code 5

 return x

def extended_euclidean_algorithm(a, b):

 if b == 0:

 return a, 1, 0

 else:

 gcd, x, y = extended_euclidean_algorithm(b, a % b)

 return gcd, y, x - (a // b) * y

print(mod_inv(value1,value2))

Example using value 5 𝑚𝑜𝑑 11 the output is:

Enter integer value in Zn: 5

Enter modulo value n: 11

9

Since 5 × 9 = 45 = 1 𝑚𝑜𝑑 11

Using this algorithm we can find inverse of values with having a larger modulo value e.g. 𝑛 =

 100000007 .

Note that modulo inversion algorithm implemented above works only when 𝑎 and 𝑛 are co-prime,

i.e. 𝑔𝑐𝑑(𝑎, 𝑛) = 1. In this case, the algorithm is guaranteed to find a unique inverse 𝑥 in the

range 0 ≤ 𝑥 < 𝑛. If 𝑔𝑐𝑑(𝑎, 𝑛) ≠ 1, then 𝑎 does not have multiplicative inverse in the ℤ𝑛 ring.

3.3.2. Modulo exponentiation algorithm

Modulo exponentiation algorithm is used to compute 𝑎𝑏(𝑚𝑜𝑑 𝑛) in ℤ𝑛 ring, where

𝑎, 𝑏, and 𝑛 positive integers are. In this discussion we assume results for 210 , suppose we raise 2

to a larger value say 100000000000 maybe for cryptography applications, We’ll have to look for

an algorithm that if implemented in a programming language will help us perform the operation

fast and more effectively.

We used the algorithm of squaring/binary exponentiation during implementation in python

programming language. We consider the following during implementation:

 Convert 𝑏 to its binary representation.

 Initialize a variable, let's call it 𝑟𝑒𝑠𝑢𝑙𝑡, to 1.

 For each bit in 𝑏, starting from the least significant bit:

 Square result, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 × 𝑟𝑒𝑠𝑢𝑙𝑡 (𝑚𝑜𝑑 𝑛).

 If the bit is 1, multiply 𝑟𝑒𝑠𝑢𝑙𝑡 by 𝑎, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 × 𝑎 (𝑚𝑜𝑑 𝑛).

 After all bits in 𝑏 have been processed, the value of result is 𝑎𝑏(𝑚𝑜𝑑 𝑛).

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 356

GSJ© 2024
www.globalscientificjournal.com

For example, suppose we want to compute 313(𝑚𝑜𝑑 7). First, we convert 13 to binary:1101 Then,

we initialize result to 1. We start with the least significant bit, which is 1. So we multiply result by

3, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 = 1 × 3 (𝑚𝑜𝑑 7) = 3. Next, we square 𝑟𝑒𝑠𝑢𝑙𝑡, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 = 3 ×

 3 (𝑚𝑜𝑑 7) = 2. The next bit is 0, so we just square 𝑟𝑒𝑠𝑢𝑙𝑡 again, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 = 2 ×

 2 (𝑚𝑜𝑑 7) = 4. The most significant bit is 1, so we multiply result by 3, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 = 4 ×

 3 (𝑚𝑜𝑑 7) = 5. Therefore 313(𝑚𝑜𝑑 7) = 5.

Note that we can use the same algorithm to compute 𝑎𝑏(𝑚𝑜𝑑 𝑛) for any positive integers a, b, and

n.

We can implement this algorithm in python using the source code below:

def mod_exp(base, exponent, modulus):

 result = 1

 while exponent > 0:

 if exponent % 2 == 1:

 result = (result * base) % modulus

 base = (base * base) % modulus #............. code 6

 exponent = exponent // 2

 return result

print(mod_exp(2, 1000000000, 13))

Output

3

Process finished with exit code 0

The time complexity of this algorithm is 𝑂(𝑙𝑜𝑔 𝑏), where 𝑏 the exponent. This is much more

efficient than computing 𝑎𝑏 directly and then taking the modulus, especially when 𝑏 is very large.

𝟑. 𝟒. ℤ𝒏 Algorithm implementation analysis

3.4.1. Modulo addition implementation analysis

Under addition implementation, we used the algorithm (𝐴𝑙𝑔𝑜 𝟏) for implementation, see Code 1

and then later stated we can use the built in modulo operator % for the implementation, see Code

3 which is a multiplication implementation, we can replace * with + to make it addition

implementation.

Using time(), memory_profiler() modules to analyze the code execution time and memory usage,

we choose a larger modulo value for the ℤ𝑛 ring say 𝑛 = 10007, providing ℤ10007 where we can

choose any elements of the ring for any implementation. We then compare the running time,

memory usage and time complexity of the two implementations; Implementation 1- when

(𝐴𝑙𝑔𝑜 𝟏) is used; Implementation 2 when modulo operator % is used. Using 𝑛 = 10007 as the

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 357

GSJ© 2024
www.globalscientificjournal.com

ring size and the same value of 𝑎, 𝑏 ∈ ℤ10007 for both implementations, the outcome for the

comparison is as shown in the table 2:

Table 2: Time complexity, average memory usage, execution time of Code 1

Algorithm Time complexity Execution time

(seconds)

Memory Usage

(megabytes)

Implementation 1 𝑂(𝑛𝑙𝑜𝑔𝑛) 0.0287 39.23

Implementation 2 𝑂(𝑛𝑙𝑜𝑔𝑛) 0.0208 39.01

In table 2, we used ℤ10007 and a set of ordered (𝑎, 𝑏) elements of ℤ10007 i.e.

{(1005,10006), (19,1097) … … } which provided an average of execution time and memory

usage.

3.4.2. Modulo multiplication implementation

Under modulo multiplication we used (𝐴𝑙𝑔𝑜 𝟐) and modulo in-built operator % Code 3

using time() and memory_profile() modules for the analysis of the codes with a ℤ10007 ring and

same sets of data used in the addition part, we have the following outcome in table 3 for the

complexity, execution time and memory usage:

Table 3: Time complexity, average memory usage, execution time of Code 2 & Code 3

Algorithm Time complexity Execution time

(seconds)

Memory Usage

(megabytes)

Implementation 1 𝑂(𝑛𝑙𝑜𝑔𝑛) 0.0156 43.935

Implementation 2 𝑂(𝑛𝑙𝑜𝑔𝑛) 0.0149 41.618

With Implementation 1 representing where (𝐴𝑙𝑔𝑜 𝟐) was used and Implementation 2 is where

we used in-built modulo operator %. This summarizes the basic implementations we made in

python.

3.4.3. Modulo inversion implementation

Modulo inversion of elements in ℤ𝑛 rings was considered as one of the complex operations to

implement in a programming language. We had two implementations that is the basic one and the

one we used the one we used the Extended Euclidean algorithm. See code 4 & code 5 . The analysis

below provides performs of brute force modulo inverse implementation (code 4) and Extended

Euclidean Algorithm Implementation.

We considered using different modulo values to visualize the difference between the two

implementations.

mod_mult_inverse() represents the function of brute implementation, mod_inv() represents the

function of implementation using Extended Euclidean Algorithm

Table 4: Outputs of modulo inverse implementations i.e. code 4&code 5

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 358

GSJ© 2024
www.globalscientificjournal.com

𝑎 𝑛 mod_mult_inverse(a, n) mod_inv(a, n)

5 19 4 4

23 97 38 38

10 300 does not exist ValueError: a, n not prime

23 10,000,007 5217395 5217395

23 1,000,000,007 - 739130440

Using the outcomes above, we analyze the average execution time, memory usage and then

determine the complexity of the two implementations. See Table 5 below.

Table 5: Complexity, average memory usage, execution time of mod_mult_inverse() & mod_inv()

Algorithm Complexity Execution time

(seconds)

Memory Usage

(megabytes)

mod_mult_inverse() 𝑂(𝑛) 3.878 351.739

mod_inv() 𝑂(𝑙𝑜𝑔𝑛) 0.041 40.999

4.Conclussion

The mod_inv function is more efficient and reliable than the mod_mult_inverse function. It uses

the extended Euclidean algorithm to find the inverse of 𝒂 modulo 𝒏, which is faster than checking

all possible values of b. additionally, it works correctly for all values of 𝒂 and 𝒏.

Therefore, based on the results and discussions presented, it was evident that the implementation

of algorithms for ℤ𝑛 rings in Python programming language is a viable approach. The findings

have highlighted the potential of using this implementation for various mathematical applications.

It is recommended that further research to be conducted to explore the full capabilities of this

implementation and its possible applications in real-world scenarios.

5. Recommendation

Based on our analysis, we provide the following recommendations for improving the

implementation of these algorithms and extending their functionality. Optimize the algorithms

for efficiency, integrate the algorithms into larger applications, extend the algorithms to support

different data types, improve the usability and user experience of the algorithms and validate and

test the algorithms to ensure their correctness and robustness

Acknowledgments

 We acknowledge the support from teaching staff at the department of Mathematics and Physical

Sciences, Maasai Mara University, Kenya for providing support during this study. Many thanks to

all I really enjoyed the discussion and sharing of ideas

Declarations of interest

Declarations of interest: none

Funding Statement

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 359

GSJ© 2024
www.globalscientificjournal.com

This research did not receive any specific grant from funding agencies in the public, commercial,

or not-for-profit sectors.

Data Availability Statement

All the data used are enclosed in this manuscript and any supplementary sheets provided

CRediT author statement

Kevin Otieno: Conceptualization, Methodology, Software Kevin Otieno, Otieno Francis.: Data

curation, Writing- Original draft preparation. Kevin Otieno, Njuguna Edward, Otieno Francis:

Visualization, Investigation. Kevin Otieno, Njuguna Edward: Supervision.: Kevin Otieno,

Njuguna Edward: Software, Validation.: Otieno Francis: Writing- Reviewing and Editing,

Reference

[1]. Hoffstein, Silverman. An Introduction to Mathematical Cryptography. San Francisco:

Springer, 2008

[2]. Edward Cherowitzo. The Extended Euclidean Algorithm. Mathematical and Statistical

Sciences. University of Colorado Denver.

http://www-math.ucdenver.edu/~wcherowi/courses/m5410/exeucalg.html

[3]. I.N.Herstein. Topics in Algebra 2nd Edition. John Wiley & Sons, 1991

[4]. G. Valiente. Algorithms on Trees and Graphs. Switzerland: Springer Nature. 2021:

Pg287-Pg385

[5]. Handbook of Applied Cryptography. Elebrary.net

https://ebrary.net/134434/computer_science/integers_modulo

[6]. Beazley, Jones. Python Cookbook 3rd Edition. United State. O’Reilly; 2013: Pg217-

Pg240

[7]. Iuliana Ciocanea Teodorescu. Algorithms for finite rings. General Mathematics.

Universitéde Bordeaux; Universiteit Leiden, 2016. English version.

[8]. Zhijian Liu. Ring of Integers modulo n. subaiwen.github.io. 2020

https://subaiwen.github.io/integer-

modulo/#:~:text=In%20the%20ring%20%24Z%2FnZ%24%2C%20%E2%80%9Cthe%2

0integers%20modulo%20n%E2%80%9D%2C,4k%2C%202%20%2B%204k%2C%20an

d%203%20%2B%204k.

[9]. W3.CSS. Python Tutorial. W3Schools.com Refsness Data 1999-2023

https://www.w3schools.com/python/default.asp

[10]. Rookies Lab. Fast Powering Algorithm C++ and Python Implementation. 2013

[11]. Knuth, D. E. (1998). The Art of Computer Programming, Volume 2: Seminumerical

Algorithms (3rd ed.). Addison-Wesley Professional.

[12]. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

Algorithms (3rd ed.). MIT Press.

[13]. Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of Applied

Cryptography. CRC Press.

[14]. Boneh, D., & Shoup, V. (1999). A Graduate Course in Applied Cryptography. Springer.

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 360

GSJ© 2024
www.globalscientificjournal.com

http://www-math.ucdenver.edu/~wcherowi/courses/m5410/exeucalg.html
https://ebrary.net/134434/computer_science/integers_modulo
https://subaiwen.github.io/integer-modulo/#:~:text=In%20the%20ring%20%24Z%2FnZ%24%2C%20%E2%80%9Cthe%20integers%20modulo%20n%E2%80%9D%2C,4k%2C%202%20%2B%204k%2C%20and%203%20%2B%204k
https://subaiwen.github.io/integer-modulo/#:~:text=In%20the%20ring%20%24Z%2FnZ%24%2C%20%E2%80%9Cthe%20integers%20modulo%20n%E2%80%9D%2C,4k%2C%202%20%2B%204k%2C%20and%203%20%2B%204k
https://subaiwen.github.io/integer-modulo/#:~:text=In%20the%20ring%20%24Z%2FnZ%24%2C%20%E2%80%9Cthe%20integers%20modulo%20n%E2%80%9D%2C,4k%2C%202%20%2B%204k%2C%20and%203%20%2B%204k
https://subaiwen.github.io/integer-modulo/#:~:text=In%20the%20ring%20%24Z%2FnZ%24%2C%20%E2%80%9Cthe%20integers%20modulo%20n%E2%80%9D%2C,4k%2C%202%20%2B%204k%2C%20and%203%20%2B%204k
https://www.w3schools.com/python/default.asp

[15]. Zanella, A., Bui, N., Castellani, A. P., Vangelista, L., & Zorzi, M. (2014). Internet of

Things for Smart Cities. IEEE Internet of Things Journal, 1(1), 22-32.

[16]. Tirthapura, S., & Ramaswamy, S. (2009). Distributed Computing: Principles,

Algorithms, and Systems. Cambridge University Press.

[17]. Hardy, G. H., & Wright, E. M. (1979). An Introduction to the Theory of Numbers (5th

ed.). Oxford University Press

GSJ: Volume 12, Issue 1, January 2024
ISSN 2320-9186 361

GSJ© 2024
www.globalscientificjournal.com

