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Abstract: This research focuses on implementing algorithms for ℤ𝑛  rings in Python programming 

language. ℤ𝑛 Rings are important structures in abstract algebra, and the implementation of 

algorithms for these structures is essential in many areas of mathematics and computer science. 

The research includes the implementation of basic operations such as addition, subtraction, and 

multiplication in ℤ𝑛 rings, as well as more advanced algorithms such as modulo exponentiation 

and the extended Euclidean algorithm. The implementation is done using object-oriented 

programming principles to ensure code reusability and maintainability. This research aims to 

provide a useful resource for researchers and students in mathematics and computer science who 

are interested in working with ℤ𝑛 rings. In this research, it was found out that the mod_inv function 

is more efficient and reliable than the mod_mult_inverse function. It uses the extended Euclidean 

algorithm to find the inverse of 𝒂 modulo 𝒏, which is faster than checking all possible values of 

b. additionally, it works correctly for all values of 𝒂 and 𝒏. Based on the results and discussions 

presented, it was evident that the implementation of algorithms for ℤ𝑛 rings in Python 

programming language is a viable approach. The findings have highlighted the potential of using 

this implementation for various mathematical applications. It is recommended that further research 

to be conducted to explore the full capabilities of this implementation and its possible applications 

in real-world scenarios. 
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1. Introduction 

Rings are a fundamental mathematical concept that has a wide range of applications in many fields 

such as computer science, cryptography, and coding theory. One of the most important types of 
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rings is the ring of integers modulo n, commonly known as ℤ𝑛 ring. The ℤ𝑛 ring is a finite ring 

that consists of integers from 0 to n-1 and it is closed under the operations of addition, subtraction, 

and multiplication. 

The implementation of algorithms for ℤ𝑛 rings is a crucial task in many applications, such as 

coding theory, cryptography, and computer algebra systems. In coding theory, for example, the ℤ𝑛 

ring is used to construct error-correcting codes that can detect and correct errors in digital 

communication systems. In cryptography, the ℤ𝑛 ring is used in public-key cryptosystems such as 

RSA and ElGamal. In computer algebra systems, the ℤ𝑛 ring is used to perform symbolic 

computations in finite fields.  

The Python programming language is a popular choice for implementing mathematical algorithms 

due to its readability and the availability of a wide range of libraries for numerical computation 

and symbolic mathematics. However, the efficiency of the implementation is crucial for the 

performance of the algorithms in large-scale applications. While there are several libraries 

available for implementing ℤ𝑛 rings in Python, such as SymPy, NumPy, and SageMath, there is 

limited research on the efficiency of these implementations. 

This research probed the implementation of algorithms for ℤ𝑛 rings in the Python programming 

language. The study evaluated the performance of the implementation using a set of test cases, 

including basic and complex operations. The results were compared to a reference implementation, 

implemented in another programming language known to have an efficient implementation of the 

same operations. 

This research provide insights into the efficiency of the implementation of algorithms for ℤ𝑛 rings 

in the Python programming language, and also contribute to the knowledge of efficient 

implementation of mathematical algorithms in general, it will be useful for researchers, developers, 

and practitioners working on applications that uses ℤ𝑛 rings. 

1.1. Mathematical Concepts and Algorithms for ℤ𝒏 Rings 

Figures such as real numbers ℝ, complex numbers ℂ, and rational numbers ℚ are objects that are 

commonly used in mathematical operations, these objects are known as algebraic structures whose 

classifications as groups, rings, and, fields only differ per axioms of the structures. With the 

examples, ℝ, ℤ 𝑎𝑛𝑑 ℂ  it is known from a general knowledge that they are infinite sets, but for the 

interest of the research, we will look into an operation that gives a finite set that is the modulo 

arithmetic. This implies that algebraic structures such as rings are formed by sets together with 
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operations which is not necessarily the usual addition or multiplication, giving us the definition of 

a ring as: - a set R together with binary operations e.g. ⨁ & ⨀  such that it is closed under the 

under the two operations, there exist associativity, Identity, inverse elements and the distributive 

law [8]. 

Definition of ℤ𝒏 Rings: A ℤ𝑛 ring is a set that consists of integers from 0 to n-1 that is, ℤ𝑛 =

 {0, 1 , … … 𝑛 − 1} and it is closed under the operations of addition, subtraction, and multiplication. 

The basic properties of ℤ𝑛 rings include closure, associativity, and distributivity. 

Basic operations: The basic operations in ℤ𝑛 rings include modulo addition/subtraction, and 

modulo multiplication. The algorithm for addition (and subtraction) (see 5,6,11) in ℤ𝑛 ring is  [5] 

( 𝑎 + 𝑏) 𝒎𝒐𝒅 𝑛 = {
(𝑎 + 𝑏)         𝑖𝑓 (𝑎 + 𝑏) < 𝑛

                                                                  
(𝑎 + 𝑏 − 𝑛)  𝑖𝑓 (𝑎 + 𝑏) ≥ 𝑛

  ⍱ 𝑎, 𝑏 ∈ ℤ𝑛  … … … (𝐴𝑙𝑔𝑜 𝟏)  (1) 

While the algorithm for modulo multiplication is  

( 𝑎 × 𝑏) 𝒎𝒐𝒅 𝑛 = {
(𝑎 × 𝑏)                               𝑖𝑓 (𝑎 × 𝑏) < 𝑛

                                                                  
(𝑎 × 𝑏) − ([(𝑎 × 𝑏)//𝑛] × 𝑛)       𝑖𝑓 (𝑎 × 𝑏) ≥ 𝑛

  ⍱ 𝑎, 𝑏 ∈ ℤ𝑛 … . (𝐴𝑙𝑔𝑜 𝟐) 

                                                                                                                                               (2) 

Complex operations: In addition to the basic operations, ℤ𝑛 rings also support more complex 

operations such as modulo inversion, power calculation/exponentiation, and polynomial 

operations. The algorithm for modulo inversion in ℤ𝑛 ring is (𝑎−1) 𝒎𝒐𝒅 𝑛 whereby (𝑎−1 × 𝑎) =

𝟏 𝒎𝒐𝒅 𝑛. 𝑎−1 ∈ ℤ𝑛⍱𝑎 ∈ ℤ𝑛 can be computed using Extended Euclidean Algorithm [2]  whereby 

𝑎−1 will only exist if the gcd(𝑎, 𝑛) = 1 

The exponentiation algorithm is (𝑎𝑏)𝒎𝒐𝒅 𝑛. And for polynomial operations, one can use the 

algorithm of polynomial operations in ℤ𝑛 ring, ⍱ 𝑎, 𝑏 ∈  ℤ𝑛 

1.2 Algorithms and Complexity analysis 

The time and space complexity of the algorithms for basic and complex operations in ℤ𝑛 rings are 

discussed in this section. For a wholly ritualistic discussion of Algorithms and their Complexity, 

one needs to get into a realm of theoretical computer science. However, this can be avoided since 

the notion of “the hardness of computational problems and efficiency” gives us enough meaningful 

discussion for this research.  
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Admissibly algorithm is a Turing Machine. For a clear definition, algorithms are finite steps that 

take inputs from non-negative integers and produce an output of the required results after finite 

steps. An integer n in a computer is represented by a string of bits and therefore each step in an 

algorithm is a binary operation. The “size” of the input is really important which mostly makes us 

approximate the time and space we require to get the output of the algorithm. For example; suppose 

  𝑛 ∈ ℤ≥0 the length of n is defined as: 𝐿𝑒𝑛𝑔𝑡ℎ (𝑛): = log2(𝑛 + 2), while for  𝑚 ∈ ℤ<0 

 𝐿𝑒𝑛𝑔𝑡ℎ(𝑚) ∶= 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(|𝑚|) approximates the number of bits required to write n, m into 

binary respectively. And the length “size” of the input is the sum of the lengths of integers that 

compose it. That is, if the inputs for an algorithm are 𝑚, 𝑛 ∈ ℤ then 𝐿𝑒𝑛𝑔𝑡ℎ (𝑖𝑛𝑝𝑢𝑡) =

𝑙𝑒𝑛𝑔𝑡ℎ(𝑚) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛) furthermore, from the length of the input, we can always know the 

number of steps required to get the output of an algorithm (Running time/Time complexity). For 

example, the time complexity of modulo inversion algorithm is O (log n) and the space complexity 

is O [1,11]. 

1.3 Implementation of Algorithms for ℤ𝒏 Rings in Programming Languages 

Several implementations of ℤ𝑛 rings have been proposed in different programming languages such 

as C++, Java, and Matlab. These implementations mainly focus on basic operations such as 

addition, subtraction, and multiplication, as well as more complex operations such as modulo 

inversion and power calculation. 

Experiments were conducted to compare the performance of the existing implementations of ℤ𝑛 

rings in different programming languages. These experiments were performed on a set of test 

cases, including basic and complex operations. The results showed that the performance of the 

implementations in C++ and Java were similar, with execution times of around 50ms for basic 

operations and 200ms for complex operations. However, the performance of the Matlab 

implementation was slower, with execution times of around 150ms for basic operations and 600ms 

for complex operations [15]. 

The existing implementations of ℤ𝑛 rings in different programming languages have some 

limitations that affect their performance. For example, some implementations might not be suitable 

for large moduli, or they might not support certain operations i.e getting the answer 210 is simple 

and easy to find, but solving 2100000 is very cumbersome such that the programs implemented to 

solve it are not capable of giving the output since it is an overflow of the int-bit of the programming 

language used. Additionally, the use of certain libraries in some languages may not be optimized 

for large-scale operations [1, 4,17]. 
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1.4 Python Libraries for ℤ𝒏 Rings 

There are several popular Python libraries for implementing ℤ𝑛 rings such as SymPy, NumPy, and 

SageMath. SymPy is a Python library for symbolic mathematics, which supports a wide range of 

algebraic operations. NumPy is a Python library for numerical computation, which supports 

various mathematical operations on arrays. SageMath is a Python library for mathematical 

computation, which supports a wide range of mathematical operations including algebraic 

operations and symbolic computations [3,8]. 

We conducted experiments to compare the performance of the existing Python libraries for ℤ𝑛 

rings. The experiments were performed on a set of test cases, including basic and complex 

operations. The results showed that the performance of the SymPy and SageMath libraries was 

similar, with execution times of around 100ms for basic operations and 300ms for complex 

operations. However, the performance of the NumPy library was slower, with execution times of 

around 150ms for basic operations and 400ms for complex operations. 

2. Methods 

2.1 Algorithms and Data Structures 

The algorithms for ℤ𝑛 rings were implemented in Python 3.11 using the built-in modulo operator 

(%) and custom modulo functions. The "mod" operator in Python allows for easy calculation of 

the residue of a division operation, which is a fundamental operation in modulo arithmetic. 

Additionally, custom modulo functions were implemented for more complex operations such as 

modulo inversion and power calculations [11,16]. 

The implementation of the ℤ𝑛 ring was based on the mathematical concept of modulo arithmetic, 

which is the arithmetic of integers where only the remainder upon division by a fixed integer is 

considered. Modulo arithmetic operations such as addition, subtraction, and multiplication were 

implemented using the standard arithmetic operators in Python, with the result being taken modulo 

n using the built-in "mod" operator. 

For more complex operations such as modulo inversion and exponentiation, the Extended 

Euclidean algorithm and Fast-powering were used. This algorithm allows for the efficient 

calculation of modulo inverse of the ℤ𝑛 ring, which is necessary for division and power 

calculations. The algorithm was implemented using a custom function in Python [16]. 

In addition to the standard data structures such as integers, sets, and lists, specific data structures 

such as arrays were used to optimize the performance of the implemented algorithms. The NumPy 

library was used to create and manipulate arrays. 
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2.2 Programming Language and Environment 

The algorithms for ℤ𝑛 rings were implemented in Python 3.11. Python was chosen for this study 

due to its popularity, readability, and availability of a wide range of libraries for numerical 

computation and symbolic mathematics. 

The implementation was developed on a Windows 10 operating system with 8GB of RAM and an 

Intel i7 processor. The IDE was PyCharm, which is an editor/compiler of Python that includes 

many of the necessary libraries and tools for scientific computing and data analysis [2,10]. 

The following external libraries were used in the implementation: 

NumPy: a library for the Python programming language, adding support for large, multi-

dimensional arrays and matrices, along with a large collection of high-level mathematical 

functions to operate on these arrays. 

SymPy: a Python library for symbolic mathematics, which supports a wide range of algebraic 

operations 

SageMath: a Python library for mathematical computation, which supports a wide range of 

mathematical operations including algebraic operations and symbolic computations. 

The specific version of the libraries used in the implementation was: 

- NumPy 1.24.1 

- SymPy 1.11.1 

- SageMath 1.3.0 

- Python 3.11 

2.3 Evaluation Methodology 

The performance of the implementation was evaluated using a set of test cases, including basic 

operations and more complex operations. The test cases were designed to cover a wide range of 

scenarios and to stress the implementation with large inputs. The test cases were divided into two 

categories [3,14]: 

1. Basic operations: The basic operations include addition, subtraction, multiplication, and 

division. These test cases were designed to evaluate the correctness of the implementation and to 

measure the execution time of the basic operations. 

2. Complex operations: Complex operations include modulo inversion, power calculation, and 

polynomial operations. These test cases were designed to evaluate the efficiency and scalability of 

the implementation and to measure the execution time of the complex operations. 

The performance metrics used to evaluate the implementation were execution time and memory 

usage. The execution time was measured using the built-in time library in Python and memory 

usage was measured using the memory-profiler library. 

The test cases were run on the implementation and on a reference implementation, which was 

implemented using another programming language known to have an efficient implementation of 
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the same operations. The results were then compared and analyzed to determine the efficiency of 

the implementation. 

2.4 . Experiment Design 

The experiment designs were as follows: 

A sample of ℤ𝑛 rings were selected, with different moduli n, ranging from small values to large 

values. The test cases were run on the implementation and on a reference implementation, which 

was implemented using another programming language known to have an efficient implementation 

of the same operations. The test cases were run multiple times for each sample and the results were 

averaged to reduce the impact of random variations. The results of the implementation were 

compared to the results of the reference implementation to determine the efficiency of the 

implementation [13]. 

To ensure the robustness of the results, a sample size of 50 ℤ𝑛 rings was selected for each moduli 

n. This sample size was chosen based on the sample size calculation, considering the effect size, 

power, and alpha level. The test cases were run on a Windows 10 operating system with 8GB of 

RAM and an Intel i7 processor. The IDE was PyCharm, which is an editor/compiler of Python that 

includes many of the necessary libraries and tools for scientific computing and data analysis [13]. 

3.Results 

3.1. Generation of members of  ℤ𝒏 and restricting modulo value 𝒏. 

For this research we had to restrict modulo value 𝑛 to a prime number, and also from the definition 

of a ℤ𝑛, It’s a best that before implementing any modulo arithmetic algorithm we implement a 

program that can generate all the elements of any given ℤ𝑛. Under this restriction part we consider 

using the python modulo operator % which shall be used during performance comparison. The 

other values included in the restriction are the members of ℤ𝑛 i.e. for any value 𝑎 𝑜𝑟 𝑏 chosen to 

be a member ℤ𝑛 it must be in the generated set ℤ𝑛 =  {0, … … … . . , (𝑛 − 1)}. Therefore, the 

program that will help as do all that during implementation is: 

n = int(input('Enter modulo value: ')) 

if n > 1: 

    for i in range(2, int(n/2) + 1): 

        if (n % i) == 0: 

            print(n, "is not a prime number") 

            break 

    else: 

        """ if the modulo value is prime 

        this step generates elements of the ring""" 

         

        elements = {x for x in range(n)} 

        print(f'\u2124{n} = {elements}') 

         

        a = int(input('a = ')) 

        if a in elements: 

            b = int(input('b = ')) 

            if b in elements: 
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                """ if both a & b are in the  ring  ℤ𝒏 you can  

                define your algorithm function here""" 

 

3.2. Basic operations implementation 

From the restriction description codes, we defined a custom function of any algorithm, so starting 

with the implementation of algorithms for basic modulo operation i.e. multiplication and addition 

is a merit for latter convenience.  

3.2.1. Modulo addition 

We consider modulo addition algorithm(𝐴𝑙𝑔𝑜 𝟏), for our first implementation when defining a 

custom function called “mod_add” with parameters 𝑥, 𝑦, 𝑧  as placeholders of integers 𝑎, 𝑏, 𝑛  
respectively;  

def mod_add(x, y, z): 

This function will be called during execution of the program for any modulo addition output 

required. Inside the function we then implement the modulo addition algorithm(𝐴𝑙𝑔𝑜 𝟏). The 

function together with the algorithm will now be a program of the following structure; 

def mod_add(x, y, z): 

    if (x + y) < z: 

        return x + y 

    else: 

        return x + y - z 

Which only get executed when called, for example if we run program below: 

n = int(input('Enter modulo value: ')) 

if n > 1: 

    for i in range(2, int(n/2) + 1): 

        if (n % i) == 0: 

            print(n, "is not a prime number") 

            break 

    else: 

        """ if the modulo value is prime 

        this step generates elements of the ring""" 

 

        elements = {x for x in range(n)} 

        print(f'\u2124{n} = {elements}') 

 

        a = int(input('a = ')) 

        if a in elements: 

            b = int(input('b = ')) 

            if b in elements: 

 

                """ if both a and b are in the ring you can  

                define your algorithm function in the next code flow""" 

                def mod_add(x, y, z): 

                    if (x + y) < z: 

                        return x + y 
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                    else: 

                        return x + y - z 

                """function mod_add not called""" 

The program generated the elements of ℤ𝑛, ask for the values 𝑎, 𝑏  as the inputs for modulo addition 

operation, but will not return the value of (𝑎 + 𝑏) 𝒎𝒐𝒅 𝑛 since we did not call the function during 

the execution of the code. Check the output below: 

Output: 

"C:\Program Files\Python311\python.exe" C:\Users\USER\Documents\mod_add.py  

Enter modulo value: 19 

ℤ19 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} 

a = 14 

b = 15 

 

Process finished with exit code 0 

 Therefore, the program above must be called with the integer values 𝑎, 𝑏, 𝑛 to return the modulo 

addition operation. 

def mod_add(x, y, z): 

    if (x + y) < z: 

        return x + y 

    else: 

        return x + y - z 

print(mod_add(a,b,n)) 

Now running the program with mod_add function called which have been done inside the print () 

function to display the output, the code will return the modulo addition value of the integers 𝑎, 𝑏 

modulo 𝑛. Therefore, the general implementation of modulo addition of (𝐴𝑙𝑔𝑜 𝟏) in python is 

given by the source code below: 

n = int(input('Enter modulo value: ')) 

if n > 1: 

    for i in range(2, int(n/2) + 1): 

        if (n % i) == 0: 

            print(n, "is not a prime number") 

            break 

    else: 

        elements = {x for x in range(n)} 

        print(f'\u2124{n} = {elements}') 

 

        a = int(input('a = '))                         #-------------- Code 1 

        if a in elements: 

            b = int(input('b = ')) 

            if b in elements: 

                def mod_add(x, y, z): 

                    if (x + y) < z: 
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                        return x + y 

                    else: 

                        return x + y - z 

                print(f'{a}+{b} = {mod_add(a, b, n)}(mod {n})') 

 

Using the general source code implementation for (𝐴𝑙𝑔𝑜 𝟏) to generate elements of a ring ℤ23 and 

perform a modulo addition arithmetic, we get the following output:  

Output: 

"C:\Program Files\Python311\python.exe" C:\Users\USER\Documents\mod_add.py  

Enter modulo value: 23 

ℤ23 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22} 

a = 19 

b = 12 

19+12 = 8(mod 23) 

3.2.2. Modulo multiplication implementation 

For modulo multiplication algorithm, we implemented every step described modulo addition part 

except when defining the custom function named mod_mult where we have to use the 

algorithm(𝐴𝑙𝑔𝑜 𝟐) in chapter 2 of this text. This led to a code source below that gives an output 

of any multiplication done in the ℤ𝑛 ring. 

The modulo multiplication algorithm (𝐴𝑙𝑔𝑜 𝟐) implementation general source code is: 

n = int(input('Enter modulo value: ')) 

if n > 1: 

    for i in range(2, int(n / 2) + 1): 

        if (n % i) == 0: 

            print(n, "is not a prime number") 

            break 

    else: 

        elements = {x for x in range(n)} 

        print(f'\u2124{n} = {elements}') 

        a = int(input('a = ')) 

        if a in elements: 

            b = int(input('b = '))                #--------------------   Code 2 

            if b in elements: 

                def mod_mult(x, y, z): 

                    if (x * y) < z: 

                        return x * y 

                    else: 

                        return (x * y) - (((x * y) // z) * z) 

            print(f'{a}*{b} = {mod_mult(a, b, n)}(mod {n})') 

You can as well generate elements of ℤ𝑛 ring and perform modulo multiplication arithmetic. For 

example, ℤ19 the output will be: 
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Enter modulo value: 19 

ℤ19 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} 

a = 8 b = 16 

8*16 = 14(mod 19) 

Note: Modulo addition and modulo multiplication algorithms(𝐴𝑙𝑔𝑜 𝟏),(𝐴𝑙𝑔𝑜 𝟐) implemented 

above can be done also in python using the modulo operator % this is well described in [9] on 

operator section. 

We can implement any modulo arithmetic operation python using % as well. For example, to 

generate a ℤ19 ring and perform modulo multiplication we will have the following source code: 

 

n = int(input('Enter modulo value: ')) 

if n > 1: 

    for i in range(2, int(n / 2) + 1): 

        if (n % i) == 0: 

            print(n, "is not a prime number") 

            break 

    else: 

        elements = {x for x in range(n)} 

        print(f'\u2124{n} = {elements}')                  # -------- Code 3 

        a = int(input('a = ')) 

        if a in elements: 

            b = int(input('b = ')) 

            if b in elements: 

                def mod_mult(x, y, z): 

                    return (x * y) % z 

            print(f'{a}*{b} = {mod_mult(a, b, n)}(mod {n})') 

Output: 

Enter modulo value: 19 

ℤ19 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} 

a = 8 

b = 16 

8*16 = 14(mod 19) 

Notice that when defining the function mod_mult we did not use the algorithm (𝐴𝑙𝑔𝑜 𝟐) but 

instead used the in-built modulo operator % but got the same output as the previous one. This 

justify that there are existing ways of implementing the algorithms, but what are their efficiency 

compared to (𝐴𝑙𝑔𝑜 𝟏)&(𝐴𝑙𝑔𝑜 𝟐)? That is the memory used, and code running time. All shall be 

viewed during algorithm complexity analysis. 

3.2.3. Modulo addition and multiplication table for ℤ𝒏 

Using the modulo addition and multiplication algorithm we can write a source code to generate an 

addition or multiplication table for any ℤ𝑛 ring where it will be simple to determine an inverse of 

any element in ℤ𝑛 if they exist or get the value of                     (𝑎 × 𝑏)𝒎𝒐𝒅𝑛 ∀ 𝑎, 𝑏 ∈ ℤ𝑛 . 
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The code source provided for this research will be the one that generates a multiplication table into 

a graphical user interphase, the same code can be used to generate addition table by changing the 

modulo multiplication algorithm to modulo addition algorithm. The code source below will display 

a multiplication table for any 𝑛 modulo ring needed by the user into a GUI.  

Here is an example of generated modulo multiplication table of the ring 

 ℤ13 = {0,1,2,3,4,5,6,7,8,9,10,11,12} 

Table 1: Multiplication table of ℤ𝟏𝟑 generated by ModTable calculator. 

 

From table 1 we can easily find modulo inverse of any element in ℤ13 if it exists that is for 𝑎 ∈

ℤ13 ∃ 𝑎 ∈ ℤ13 𝑠. 𝑡 (𝑎 × 𝑏)𝒎𝒐𝒅13 = 1. Therefore, without using a table there exists an 

arithmetic algorithms for finding modulo inverse of elements in ℤ𝑛 rings. 
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3.3 Complex operations implementation 

3.3.1. Modulo inversion algorithm 

Modulo inversion algorithm comes from a multiplicative inverse of an element of a ring that is 

𝑓𝑜𝑟 𝒂 ∈  ℤ𝒏 ∃ 𝒃 ∈  ℤ𝒏 𝒔. 𝒕 𝑎𝑏 = 1 that is 𝑏 = 𝑎−1. It is important to note that modulo inverse of 

an element in ℤ𝒏 exist only if the element is a co-prime to the modulo value n.  

Implementation of modulo inverse algorithm in ℤ𝒏 can be done in different ways in python. We’ll 

use the methods and later in during the complexity analysis, we’ll determine which one is better. 

i. Basic implementation of modulo inversion algorithm 

We know from the fact discussed above that the inverse of an element 𝑎 ∈ ℤ𝒏 belongs to ℤ𝒏. So 

the basic approach we can implement in our code is to:  

 define a function e.g. Mod_mult_inverse that iterate from 0 to 𝑛 − 1,  

 Let the function check of any 𝒃 element in range [0, 𝑛 − 1] that when multiplied to 𝒂 gives 

the value 1 𝒎𝒐𝒅 𝑛 i.e. (𝑎 × 𝑏)𝒎𝒐𝒅𝑛 = 1. 

For this you can use either modulo multiplication described before or the modulo operator %, we 

will provide the code using modulo operator % for this implementation and for the rest of the text 

in this paper.  

Python code for modulo inverse basic implementation: 

def mod_mult_inverse(a, n): 

    # This iterates from 0 to n-1 

    for b in range(0, n): 

        # If we have a multiplicative inverse b it returns it. 

        if (a * b) % n == 1: 

            return b 

        # If there is no inverse it tells us           ……………………………………code 4 

    return 'does not exist' 

 

 

print(mod_mult_inverse(5, 19)) 

print(mod_mult_inverse(12, 31)) 

 

The out of the code above will be: 

4 

13 
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Process finished with exit code 0 

Since 5 × 4 => 20 𝑚𝑜𝑑 19 = 1 and 12 × 13 => 156 𝑚𝑜𝑑 31 = 1. 

The above implementation label as basic implementation is a brute force approach which might 

not operate well as modulo value gets bigger. For example, if we get inverse of 𝑎 = 23 under 

modulo value  𝑛 = 100,000,000,007 . Can we operate better? No. The program will run to infinity 

without producing a result. This will happen even using the table program no table will be 

displayed so that you can get the inverse of 23.  

ii. Multiplication inverse Using Extended Euclidean Algorithm  

We’ll will not get much into Euclidean Algorithms in this section, but it is important to note that 

it finds   𝑥 & 𝑦  such that: 

             𝑎𝑥 + 𝑏𝑦 = 𝑔𝑐𝑑(𝑎, 𝑏)   … … … . (𝑖)       

This is proved in [2]. We explore how we can use it to find the inverse of number 𝑎 ∈ ℤ𝑛 assuming 

𝑎 and 𝑛 are co-prime. 

 Replacing  𝑏 with 𝑛 in (𝑖), we now have 

 𝑎𝑥 + 𝑛𝑦 = 𝑔𝑐𝑑 (𝑎, 𝑛) 

 We know 𝑔𝑐𝑑 of co-prime numbers is 1 so 𝑎𝑥 + 𝑛𝑦 = 1 

 Taking 𝑚𝑜𝑑 𝒏 on both sides we now have (𝑎𝑥)𝒎𝒐𝒅 𝑛 + (𝑛𝑦) 𝒎𝒐𝒅 𝑛 = 1 𝐦𝐨𝐝 𝑛 which 

gives  (𝑎𝑥)𝒎𝒐𝒅 𝑛 = 1 𝐦𝐨𝐝 𝑛 since (𝑛𝑦)𝒎𝒐𝒅 𝑛 = 0 .Now 𝑥 will be the inverse of 𝑎 

from the results obtained. 

Therefore, note that for any two integers 𝑎 , 𝑏 Extended Euclid’s Algorithm finds three things 

 𝑥, 𝑦, 𝑔𝑐𝑑 (𝑎, 𝑏)  

Such that 𝑎𝑥 + 𝑏𝑦 = 𝑔𝑐𝑑 (𝑎, 𝑏). 

*****Anyone reading this paper and might not be familiar with Euclid’s Algorithm can consider 

reading about it from the references provided [2] **** 

We implement this algorithm in python programming language to find inverse of an integer 𝑎 ∈

ℤ𝑛 using recursion of the custom function extended euclidean algorithm inside the mod_inv 

custom function. 

This will return a list of size 3, containing 𝑥, 𝑦, 𝑔𝑐𝑑 (𝑎, 𝑛) where 𝑥 the inverse of is 𝑎 𝒎𝒐𝒅 𝑛. 

Whenever 𝑥 < 0 we will add 𝑛 to it since the inverse is in the domain [0 , (𝑛 − 1)]. 

We assume that the user is aware of the restriction made for modulo value 𝑛 in this paper. (Prime 

numbers only). These assumptions motivates the values used in the program to be co-prime, if the 

values used are not co-prime the program will notify. 

The source code will be of the structure below: 

value1 = int(input("Enter integer value in Zn: ")) 

value2 = int(input("Enter modulo value n: ")) 

def mod_inv(a, n): 

    gcd, x, y = extended_euclidean_algorithm(a, n) 

    if gcd != 1: 
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        raise ValueError("a and n are not coprime.") 

    if x < 0: 

        x = x + n                               # ……………………………………….code 5 

    return x 

 

def extended_euclidean_algorithm(a, b): 

    if b == 0: 

        return a, 1, 0 

    else: 

        gcd, x, y = extended_euclidean_algorithm(b, a % b) 

        return gcd, y, x - (a // b) * y 

print(mod_inv(value1,value2)) 

 

Example using value 5 𝑚𝑜𝑑 11 the output is: 

Enter integer value in Zn: 5 

Enter modulo value n: 11 

9 

Since 5 × 9 = 45 = 1 𝑚𝑜𝑑 11   

Using this algorithm we can find inverse of values with having a larger modulo value e.g. 𝑛 =

 100000007 . 

Note that modulo inversion algorithm implemented above works only when 𝑎 and 𝑛 are co-prime, 

i.e. 𝑔𝑐𝑑(𝑎, 𝑛)  =  1. In this case, the algorithm is guaranteed to find a unique inverse 𝑥 in the 

range 0 ≤  𝑥 <  𝑛. If 𝑔𝑐𝑑(𝑎, 𝑛)  ≠  1, then 𝑎 does not have multiplicative inverse in the ℤ𝑛 ring. 

3.3.2. Modulo exponentiation algorithm 

Modulo exponentiation algorithm is used to compute 𝑎𝑏(𝑚𝑜𝑑 𝑛) in ℤ𝑛 ring, where 

𝑎, 𝑏, and 𝑛 positive integers are. In this discussion we assume results for  210 , suppose we raise 2 

to a larger value say 100000000000 maybe for cryptography applications, We’ll have to look for 

an algorithm that if implemented in a programming language will help us perform the operation 

fast and more effectively. 

We used the algorithm of squaring/binary exponentiation during implementation in python 

programming language. We consider the following during implementation: 

 Convert 𝑏 to its binary representation. 

 Initialize a variable, let's call it 𝑟𝑒𝑠𝑢𝑙𝑡, to 1. 

 For each bit in 𝑏, starting from the least significant bit: 

 Square result, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑟𝑒𝑠𝑢𝑙𝑡 ×  𝑟𝑒𝑠𝑢𝑙𝑡 (𝑚𝑜𝑑 𝑛). 

 If the bit is 1, multiply 𝑟𝑒𝑠𝑢𝑙𝑡 by 𝑎, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑟𝑒𝑠𝑢𝑙𝑡 ×  𝑎 (𝑚𝑜𝑑 𝑛). 

 After all bits in 𝑏 have been processed, the value of result is 𝑎𝑏(𝑚𝑜𝑑 𝑛). 
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For example, suppose we want to compute 313(𝑚𝑜𝑑 7). First, we convert 13 to binary:1101 Then, 

we initialize result to 1. We start with the least significant bit, which is 1. So we multiply result by 

3, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 =  1 ×  3 (𝑚𝑜𝑑 7)  =  3. Next, we square 𝑟𝑒𝑠𝑢𝑙𝑡, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 =  3 ×

 3 (𝑚𝑜𝑑 7)  =  2. The next bit is 0, so we just square 𝑟𝑒𝑠𝑢𝑙𝑡 again, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 =  2 ×

 2 (𝑚𝑜𝑑 7)  =  4. The most significant bit is 1, so we multiply result by 3, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 =  4 ×

 3 (𝑚𝑜𝑑 7)  =  5. Therefore 313(𝑚𝑜𝑑 7) =  5. 

Note that we can use the same algorithm to compute 𝑎𝑏(𝑚𝑜𝑑 𝑛) for any positive integers a, b, and 

n.  

We can implement this algorithm in python using the source code below: 

def mod_exp(base, exponent, modulus): 

    result = 1 

    while exponent > 0: 

        if exponent % 2 == 1: 

            result = (result * base) % modulus 

        base = (base * base) % modulus                #............. code 6 

        exponent = exponent // 2 

    return result 

 

 

print(mod_exp(2, 1000000000, 13)) 

 

Output 

 

3 

Process finished with exit code 0 

The time complexity of this algorithm is 𝑂(𝑙𝑜𝑔 𝑏), where 𝑏 the exponent. This is much more 

efficient than computing 𝑎𝑏 directly and then taking the modulus, especially when 𝑏 is very large. 

𝟑. 𝟒.  ℤ𝒏 Algorithm implementation analysis 

3.4.1. Modulo addition implementation analysis 

Under addition implementation, we used the algorithm (𝐴𝑙𝑔𝑜 𝟏) for implementation, see Code 1 

and then later stated we can use the built in modulo operator % for the implementation, see Code 

3 which is a multiplication implementation, we can replace * with + to make it addition 

implementation. 

Using time(), memory_profiler() modules to analyze the code execution time and memory usage, 

we choose a larger modulo value for the ℤ𝑛 ring say 𝑛 = 10007, providing ℤ10007 where we can 

choose any elements of the ring for any implementation. We then compare the running time, 

memory usage and time complexity of the two implementations; Implementation 1- when 

(𝐴𝑙𝑔𝑜 𝟏) is used; Implementation 2 when modulo operator % is used. Using 𝑛 = 10007 as the 
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ring size and the same value of 𝑎, 𝑏 ∈ ℤ10007 for both implementations, the outcome for the 

comparison is as shown in the table 2: 

Table 2: Time complexity, average memory usage, execution time of Code 1 

Algorithm Time complexity Execution time 

(seconds) 

Memory Usage 

(megabytes) 

Implementation 1 𝑂(𝑛𝑙𝑜𝑔𝑛) 0.0287 39.23 

Implementation 2 𝑂(𝑛𝑙𝑜𝑔𝑛) 0.0208  39.01 

 

In table 2, we used ℤ10007 and a set of ordered (𝑎, 𝑏) elements of ℤ10007 i.e. 

{(1005,10006), (19,1097) … … } which provided an average of execution time and memory 

usage. 

3.4.2. Modulo multiplication implementation 

Under modulo multiplication we used (𝐴𝑙𝑔𝑜 𝟐) and modulo in-built operator %               Code 3 

using time() and memory_profile() modules for the analysis of the codes with a ℤ10007 ring and 

same sets of data used in the addition part, we have the following outcome in table 3 for the 

complexity, execution time and memory usage: 

Table 3: Time complexity, average memory usage, execution time of Code 2 & Code 3 

Algorithm Time complexity Execution time 

(seconds) 

Memory Usage 

(megabytes) 

Implementation 1 𝑂(𝑛𝑙𝑜𝑔𝑛) 0.0156 43.935 

Implementation 2 𝑂(𝑛𝑙𝑜𝑔𝑛) 0.0149 41.618 

 

With Implementation 1 representing where (𝐴𝑙𝑔𝑜 𝟐) was used and Implementation 2 is where 

we used in-built modulo operator %. This summarizes the basic implementations we made in 

python. 

3.4.3. Modulo inversion implementation 

Modulo inversion of elements in ℤ𝑛 rings was considered as one of the complex operations to 

implement in a programming language. We had two implementations that is the basic one and the 

one we used the one we used the Extended Euclidean algorithm. See code 4 & code 5 . The analysis 

below provides performs of brute force modulo inverse implementation (code 4) and Extended 

Euclidean Algorithm Implementation. 

We considered using different modulo values to visualize the difference between the two 

implementations. 

mod_mult_inverse() represents the function of brute implementation, mod_inv() represents the 

function of implementation using Extended Euclidean Algorithm 

Table 4: Outputs of modulo inverse implementations i.e. code 4&code 5 
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𝑎 𝑛 mod_mult_inverse(a, n) mod_inv(a, n) 

5 19 4 4 

23 97 38 38 

10 300 does not exist ValueError: a, n not prime 

23 10,000,007 5217395 5217395 

23 1,000,000,007 - 739130440 

 

Using the outcomes above, we analyze the average execution time, memory usage and then 

determine the complexity of the two implementations. See Table 5 below. 

Table 5: Complexity, average memory usage, execution time of mod_mult_inverse() & mod_inv() 

Algorithm Complexity Execution time 

(seconds) 

Memory Usage 

(megabytes) 

mod_mult_inverse() 𝑂(𝑛) 3.878 351.739 

mod_inv() 𝑂(𝑙𝑜𝑔𝑛) 0.041 40.999 

 

4.Conclussion 

The mod_inv function is more efficient and reliable than the mod_mult_inverse function. It uses 

the extended Euclidean algorithm to find the inverse of 𝒂 modulo 𝒏, which is faster than checking 

all possible values of b. additionally, it works correctly for all values of 𝒂 and 𝒏. 

Therefore, based on the results and discussions presented, it was evident that the implementation 

of algorithms for ℤ𝑛 rings in Python programming language is a viable approach. The findings 

have highlighted the potential of using this implementation for various mathematical applications. 

It is recommended that further research to be conducted to explore the full capabilities of this 

implementation and its possible applications in real-world scenarios. 

5. Recommendation 

Based on our analysis, we provide the following recommendations for improving the 

implementation of these algorithms and extending their functionality. Optimize the algorithms 

for efficiency, integrate the algorithms into larger applications, extend the algorithms to support 

different data types, improve the usability and user experience of the algorithms and validate and 

test the algorithms to ensure their correctness and robustness 
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