Global Scientific journals

GSJ: Volume 9, Issue 5, May 2021, Online: ISSN 2320-9186
www.globalscientificjournal.com

Interpretation of the Physical Significance of the Fourier Analysis of Signals using Complex Exponentials

By

A. Idi Aminu

Department of Basic Sciences, Adamawa State College of Agriculture, Ganye.
E-mail: auwaluidi16@gmail.com

Abstract

Fourier analysis amount to finding the Fourier coefficient of the signal in question and then substituting these coefficients into the general complex Fourier series $\left(C_{o}+C_{n} \sum_{-\infty}^{\infty} e^{j n x}\right)$ expression, from which the properties of the signal been analyzed can be deduced. Through this analysis, it was found that the saw-tooth wave form consists of a continuous sine series: $y(t)=p / 2+p / \pi\left\lfloor\operatorname{Sin} \omega t+\frac{1}{2} \operatorname{Sin} 2 \omega t+\frac{1}{3} \operatorname{Sin} 3 \omega t+\ldots . . \mid\right.$ and in the same manner the triangular wave form was analyzed and found to consist of discrete sine series: $y(t)=p / 2+2 p / \pi\left\lfloor\operatorname{Sin} x+\frac{1}{3} \operatorname{Sin} 3 x+\frac{1}{5} \operatorname{Sin} 5 x+\ldots ..\right\rfloor$. Through this work I have used the complex exponential $\left(e^{-j n x}\right)$

 method in finding the Fourier coefficients $\left(C_{n}=1 / 2 \pi \int_{-\pi}^{\pi} f(x) e^{-j n x} d x\right)$ and e then used trigonometric approach to authenticate my results. At the end of this work I have also used the Fourier analysis to analyze how well do the half and the full wave rectifier diode valve converts an A.C to a D.C. And for the half-wave rectifier diode the expression was: $I(t)=I_{o} / \pi-2 I_{o} / \pi\left\lfloor\frac{1}{3} \operatorname{Cos} 2 \omega t+\frac{1}{15} \operatorname{Cos} 4 \omega t+\ldots.\right\rfloor+\frac{1}{2} I_{o} \operatorname{Sin} \omega t$. While that of a full-wave rectifier the expression was: $I(t)=2 / \pi-4 / \pi\left\lfloor\frac{1}{3} \operatorname{Cos} 2 \omega t+\frac{1}{5} \operatorname{Cos} 4 \omega t+\ldots ..\right\rfloor$. Hopefully by the end of this work, the reader can be able to analyze a signal or an electronic gadgets such as the diode-valve and the like, by the use of Fourier analysis and predict with precision their behavior by just looking at the final expression, also called the design equation.
Keywords:

Fourier analysis, Fourier coefficients, complex exponentials, discrete sine series, discrete cosine series, full and half wave rectifier, diode valve, square wave, triangular wave, and the saw-tooth wave

DISCUSSIONS

Any periodic function or signal can be expressed as a sum of sinusoids e.g $f(x)=a_{o} / 2+a_{n} \operatorname{Cosn} x+b_{n} \operatorname{Sinn} x$. To explain this expression in a layman's language. Suppose you have a full loaf of bread and then divide this loaf of bread into two equal halves. Each half of the bread can be thought of as the average value of the
signal, D.C, $a_{0} / 2$, value (zero-frequency). Now keep one half of the bread as it is, but divide the other half into unequal pieces. Now if you continue to add the divided pieces of the bread to the other half of the bread, you will eventually get back full loaf of bread. And if you want to modify the shape of the bread, you will simply refuse to add the some divided pieces of the bread to the other half. Obviously now, you can modify the
shape of this bread into an infinite number of different shapes. Now you can think of the sine and cosine as the divided pieces of the bread. The same procedure is applied during audio compression, take or record a voice as a signal e.g an audio speech, decompose these into the average and the sine terms. You can now drop or neglect some of these sine terms and them recombined the remaining terms to give back the original signal. The argument is that, the human ear cannot be able to notice any difference between the original and the modified (sound). All these procedures are a function of the Fourier coefficients therefore all the reason why the concepts of finding the Fourier coefficients are important.

FOURIER ANALYSIS OF SIGNALS:

1. THE TRIANGULAR WAVE

(Fig. 1)
The triangular wave is defined by:

$$
\left|\begin{array}{lll}
Y=0 & \text { at } & t=0 \\
Y=p & \text { at } & t=T / 2 \\
Y=0 & \text { at } & t=T
\end{array}\right|
$$

And this repeats every period T , as shown in fig.
(1) from which we can deduce;
$y=\frac{2 p t}{T}(0<t<T / 2)$
And
$y=\frac{2 p(T-t)}{T}(T / 2<t<T)$
Recall that: the Fourier series in complex form is:
$f(x)=C_{o}+\sum_{n=\infty}^{\infty} C_{n} e^{j n x}$
Where C_{0} and C_{n} are the coefficients to be calculated.

Using: $C_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-j n x} d x$
So that,

$$
C_{n}=\frac{1}{\pi}\left[\int_{0}^{T / 2} \frac{2 p t}{T}+\int_{T / 2}^{T} \frac{2 p(T-t)}{T}\right] e^{-j \cdot 0.0 t} d t
$$

On integrating we get,

$$
C_{o}=\frac{2 p}{T^{2}}\left[\frac{t^{2}}{2}\right]_{0}^{T / 2}+\left[T(t)-\frac{t^{2}}{2}\right]_{T / 2}^{T}
$$

Substituting the limits we get,

$$
\begin{aligned}
& C_{o}=\frac{2 p}{T^{2}}\left[\frac{T^{2}}{8}\right]+\frac{2 p}{T^{2}}\left[T^{2}-\frac{T^{2}}{2}\right]-\frac{2 p}{T^{2}}\left[\frac{T^{2}}{2}-\frac{T^{2}}{8}\right] \\
& C_{o}=\frac{p}{4}+2 p-p-p+\frac{p}{4}=\frac{2 p}{4} \\
& \therefore C_{o}=\frac{p}{2}
\end{aligned}
$$

For C_{n} using

$$
C_{n}=\underbrace{\frac{2 p}{T^{2}} \int_{0}^{T / 2} t \cdot e^{-j n \omega t} d t}_{C_{n_{1}}}+\underbrace{\frac{2 p}{T^{2}} \int_{T / 2}^{T}(T-t) \cdot e^{-j n o t} d t}_{C_{n_{2}}}
$$

So that $C_{n}=C_{n_{1}}+C_{n_{2}}$
From,
$C_{n_{1}}=\frac{2 p}{T^{2}} \int_{0}^{T / 2} t \cdot e^{- \text {jnot }} d t$ (using integration by parts)
That is $I=U \int V-\int\left(U^{1}\right) \int V$

$$
C_{n_{1}}=\frac{2 p}{T^{2}}\left[\frac{t}{-j n \omega} \cdot e^{-j n \omega t}-\frac{1}{j^{2} n^{2} \omega^{2}} \cdot e^{-j n \omega t}\right]_{0}^{T / 2}
$$

Substituting the limit we get,
$=\frac{2 p}{T^{2}}\left[\frac{T}{-2 j n \omega} \cdot e^{-j n \omega^{T} / 2}-e^{-j n \omega^{T} / 2}-\left(0-\frac{1}{j^{2} n^{2} \omega^{2}}\right)\right]$
$=\frac{2 p}{T^{2}}\left[\frac{T \cdot(-1)}{-2 j n \omega}+\frac{(-1)^{n}}{n^{2} \omega^{2}}-\frac{1}{n^{2} \omega^{2}}\right]$ Where $\mathrm{j}^{2}=-1$
If $\mathrm{n}=$ odd then,

$$
C_{n_{1}}=\frac{2 p}{T^{2}}\left[\frac{T \cdot(-1)}{-2 j n \omega}+\frac{(-2)}{n^{2} \omega^{2}}\right]
$$

For $C_{n_{2}}$ we get
$C_{n_{2}}=\frac{2 p}{T^{2}} \int_{T / 2}^{T}(T-t) \cdot e^{-j n \omega t} d t$
After integrating, the first term and second term by part

$$
C_{n_{2}}=\left[\frac{T}{-j n \omega} \cdot e^{-j n \omega}\right]_{\frac{\pi}{2}}^{T}-\left[\frac{t}{-j n \omega} \cdot e^{-j n \omega \alpha}-\left(\frac{1}{j^{2} n^{2} \omega^{2}} \cdot e^{-j n \omega x}\right)\right]_{\frac{T}{2}}^{T} \times \frac{2 p}{T^{2}}
$$

Substituting the limits we get,
$C_{n_{2}}=\frac{2 p}{T^{2}}\left[\frac{T \cdot e^{-j \text { jioT }}}{-j n \omega}-\frac{T \cdot e^{-j n \omega T} / 2}{-j n \omega}\right]-\left[\frac{T \cdot e^{-j \omega T}}{-j n \omega}-\frac{1 \cdot e^{-j n \omega T}}{j^{2} n^{2} \omega^{2}}-\left(\frac{T \cdot e^{-j n \omega T / 2}}{-2 j n \omega}-\frac{1 \cdot e^{-j n \omega}}{j^{2} n^{2} v^{2}}\right)\right]$

For $\mathrm{n}=$ even

$$
C_{n_{2}}=\frac{2 p}{T^{2}}\left\{\left[\frac{2 T}{-j n \omega}\right]-\left[\frac{T(1)}{j n \omega}\right]-\left[\frac{T(-1)^{n}}{-j n \omega}-\frac{1}{j^{2} n^{2} \omega^{2}}-\frac{(-1)^{n}}{j^{2} n^{2} \omega^{2}}\right]\right\}
$$

For $\mathrm{n}=$ odd $(1,3,5)$
$C_{n_{2}}=\frac{2 p}{T^{2}}\left[\frac{-2 T}{j n \omega}+\frac{3 T}{2 j n \omega}-\frac{2}{n^{2} \omega^{2}}\right]$ Where $\mathrm{j}^{2}=-1$
$\therefore C_{n_{2}}=\frac{2 p}{T^{2}}\left[\frac{-T}{2 j n}-\frac{2}{n^{2} \omega^{2}}\right]$

So that $C_{n}=C_{n_{1}}+C_{n_{2}}$
$\therefore C_{n}=\left[\frac{2(-1)^{n}}{-2 j n \omega}+\frac{(-2)}{n^{2} \omega^{2}}+\frac{(-2)}{n^{2} \omega^{2}}-\frac{T}{-2 j n \omega}\right] \times \frac{-2 p}{T^{2}}$
$\Rightarrow C_{n}=\frac{2 p}{T}\left[0-\frac{4}{n^{2} \omega^{2}}\right]=\frac{-8 p}{T^{2} n^{2} \omega^{2}}=\frac{-8 p}{4 \pi^{2} n^{2}}=\frac{-2 p}{n^{2} \pi^{2}}$
$\therefore C_{n}=\frac{-2 p}{n^{2} \pi^{2}}$
Now substituting these coefficients into the Fourier series expression we get,
$f(t)=C_{o}+\sum_{-\infty}^{\infty} C_{n} e^{j n o t}=C_{o}+C_{n} \sum_{-\infty}^{\infty} e^{j n o t}$
But $C_{o}=\frac{p}{2}$ and $C_{n}=\frac{-2 p}{n^{2} \pi^{2}}$ therefore,
$f(t)=p / 2+\left(\frac{-2 p}{\pi^{2}}\right)\left[\ldots+\frac{e^{-j \omega \alpha}}{-1 \times n^{2}}+\frac{e^{-j \beta \omega}}{-3 \times n^{2}}+\frac{e^{-j 5 \omega}}{-5 \times n^{2}}+\ldots+\frac{e^{j \omega \alpha}}{1 \times n^{2}}+\frac{e^{j \beta \omega}}{3 \times n^{2}}+\frac{e^{j 5 \omega}}{5 \times n^{2}}\right]$

$$
\therefore f(t)=\frac{p}{2}-\frac{4 p}{\pi^{2}}\left[\frac{e^{j \omega t}-e^{-j \omega t}}{2 \times 1^{2}}+\frac{e^{j 3 \omega t}-e^{-j 3 a t}}{2 \times 3^{2}}+\frac{e^{j 5 a t}-e^{-j 5 \omega t}}{2 \times 5^{2}}+\ldots .\right]
$$

But $\frac{e^{j \omega t}-e^{-j \omega t}}{2}=\cos \omega t \quad($ Euler's formula)
$\therefore f(t)=\frac{p}{2}-\frac{4 p}{\pi^{2}}\left[\cos \omega t+\frac{1}{3^{2}} \cos 3 \omega t+\frac{1}{5^{2}} \cos 5 \omega t+\ldots ..\right]$
Interpretation of the physical significance of the triangular wave expression
(i). It consist of all cosine terms, apart from $\mathrm{P} / 2$ (average value)
(ii). The convergence is fast $\left(\frac{1}{n^{2}}\right)$ meaning by just adding a few terms you will get back the 'original' signal or function.
(iii). It is a discrete cosine series (ideal for image processing)

PROOF:
USING
TRIGONOMETRIC
APPROACH FOR THE TRIANGULAR WAVE:

From $f(t)=a_{o}+\sum_{n=1}^{\infty} a_{n} \operatorname{Cosn} \omega t+\sum_{n=1}^{\infty} b_{n} \operatorname{Sin} \omega t$
$a_{o}=\frac{1}{T} \int_{0}^{T / 2} \frac{2 p t}{T} d t+\frac{1}{T} \int_{T / 2}^{T} \frac{2 p(T-t)}{T} d t$
Integrating w.r.t t , we get
$a_{o}=\frac{2 p}{T^{2}}\left[\frac{t^{2}}{2}\right]_{0}^{\frac{T}{2}}+\frac{2 p}{T^{2}}[t]_{\frac{r}{2}}^{T}-\frac{2 p}{T^{2}}\left[\frac{t^{2}}{2}\right]_{\frac{T}{2}}^{T}$
Substituting the limits we get
$a_{o}=\frac{2 p}{T^{2}} \times \frac{T^{2}}{8}+\frac{2 p}{T^{2}} \times\left[T^{2}-\frac{T^{2}}{2}\right]-\frac{2 p}{T^{2}}\left[\frac{T^{2}}{2}-\frac{T^{2}}{8}\right]$
$=\frac{p}{4}+p-p+\frac{p}{4}=\frac{p}{4}+\frac{p}{4}=\frac{2 p}{4}=\frac{p}{2}$
$C_{o}=\frac{p}{2} \quad \therefore a_{o}=\frac{p}{2}$
Q.E.D

For the coefficient a_{n} using:
$a_{n}=\frac{2}{T} \int_{0}^{T / 2}\left(\frac{2 a t}{T}\right) \operatorname{Cosn} \omega t d t+\int_{T / 2}^{T} \frac{2 a(T-t)}{T} \operatorname{Cosn} \omega t d t$
Integration of the first term by parts and substituting the limits we get
$a_{n_{1}}=\frac{4 p}{T^{2} n^{2} \omega^{2}}\left[\operatorname{Cos} \frac{n \omega t}{2}-1\right]$
Part (1)

Integrating the second term by parts and substituting the limit we get
$a_{n_{2}}=\frac{4 p}{T}\left[\left.\frac{1}{n \omega} \operatorname{Sinn} \omega t\right|_{\frac{T}{2}} ^{T}-\left.\frac{4 p}{T^{2} n^{2} \omega^{2}}(\operatorname{Cos} n \omega t)\right|_{\frac{T}{2}} ^{T}\right.$
But Sinn $\omega t=0$ for any value of n
$\Rightarrow 0-\frac{4 p}{T^{2} n^{2} \omega^{2}}\left[\operatorname{Cos} \frac{n \omega t}{2}-1+\left(\frac{4 p}{T^{2} n^{2} \omega^{2}}\left[\operatorname{Cos} n \omega t-\operatorname{Cos} \frac{n \omega t}{2}\right]\right.\right.$
But $\omega t=2 \pi$
$\therefore a_{n}=\frac{p}{n^{2} \pi^{2}}[2 \operatorname{Cos} n \pi-\operatorname{Cos} 2 n \pi-1]$
For $\mathrm{n}=$ even, $0,2,4$ we get
$\mathrm{a}_{\mathrm{n}}=0$
$a_{n}=\frac{p}{n^{2} \pi^{2}}[2 \operatorname{Cos} \pi-\operatorname{Cos} 2 \pi-1]$
$\therefore a_{n}=\frac{p}{n^{2} \pi^{2}}[-2-1-1]=\frac{-4 p}{n^{2} \pi^{2}}=C_{n}$
Q.E.D
(2). SQUARE WAVEFORM (High Frequencies)

(Fig 2)
The above square wave can be defined by the function $\mathrm{f}(\mathrm{x})$ such that

$$
f(x)=0 \quad \text { from } \quad-\pi<x<0
$$

$$
f(x)=p \quad \text { from } \quad 0<x<\pi
$$

To analyze the properties of the square wave all we need is the Fourier coefficients given by;

$$
C_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-j n x} d x
$$

So that,
$C_{n}=\frac{1}{2 \pi} \int_{0}^{\pi} p \cdot e^{-j \cdot 0 x} d x=\frac{p}{2 \pi}[x]_{0}^{\pi}=\frac{p}{2 \pi} \times \pi=\frac{p}{2}$
$\therefore C_{o}=\frac{p}{2}$
For C_{n} using;
$C_{n}=\frac{1}{2 \pi} \int_{0}^{\pi} p \cdot e^{-j n x} d x=\frac{p}{2 \pi}\left[\frac{1}{-j n} \times e^{-j n x}\right]_{0}^{\pi}$
Substituting the limit we get,
$\therefore C_{n}=\frac{p}{2 \pi}\left[\frac{e^{-j n \pi}}{-j n}-\frac{e^{0}}{-j n}\right]=\frac{p}{2 \pi}\left[\frac{1}{-j n}\left(e^{-j n \pi}-1\right)\right]$
$\therefore C_{n}=\frac{p}{-2 \pi j n}\left[e^{-j n \pi}-1\right]=\frac{p}{-j n 2 \pi}\left((-1)^{n}-1\right)=0$ for $\mathrm{n}=$ even

But if $\mathrm{n}=$ odd $1,3,5$ we get
$C_{n}=\frac{p}{-j n 2 \pi}\left((-1)^{n}-1\right)=\frac{-2 p}{-j n 2 \pi}=\frac{p}{j n \pi}$
$\therefore C_{n}=\frac{p}{j n \pi}$
Writing the Fourier series we get
$f(x)=C_{o}+\sum_{-\infty}^{\infty} C_{n} e^{j n x}$
But $C_{o}=\frac{p}{2}$ and $C_{n}=\frac{p}{j n x}$
$\therefore f(x)=\frac{p}{2}+\frac{p}{\pi} \sum_{-\infty}^{\infty} \frac{e^{j n x}}{j n}$
$\Rightarrow f(x)=\frac{p}{2}+\frac{p}{\pi}\left[\frac{e^{-j x}}{-1 \times j}+\frac{e^{-3 j x}}{-3 \times j}+\frac{e^{-5 j x}}{-5 \times j}+\ldots+\frac{e^{j x}}{1 \times j}+\frac{e^{3 j x}}{3 \times j}+\frac{e^{5 j x}}{5 \times j}+\ldots\right]$
$\Rightarrow f(x)=\frac{p}{2}+\frac{2 p}{\pi}\left[\frac{e^{j x}-e^{-j x}}{2 \cdot j}+\frac{e^{3 j x}-e^{-3 j x}}{2 \times 3 \times j}+\frac{e^{5 j x}-e^{-5 j x}}{2 \times 5 \times j}+\ldots.\right]$
But $\frac{e^{j x}-e^{-j x}}{2 j}=\operatorname{Sin} x$ (Euler's formula)
$\therefore f(x)=\frac{p}{2}+\frac{2 p}{\pi}\left[\operatorname{Sin} x+\frac{1}{3} \operatorname{Sin} 3 x+\frac{1}{5} \operatorname{Sin} 5 x+\ldots.\right]$
(i). All the cosine have vanished showing that it may be used for audio compression.
(ii). The convergence is slow $\left(\frac{1}{n}\right)$ meaning a square wave have a lot of high frequencies. This implies that a lot of terms should be added together before obtaining the 'original' signal.

PROOF: USING TRIGONOMETRIC APPROACH FOR THE SQUARE WAVE

From $y(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \operatorname{Cos} n \omega t+\sum_{n=1}^{\infty} b_{n} \operatorname{Sinn} \omega t$
$a_{0}=\frac{1}{2 \pi} \int_{0}^{\pi} p d t=\frac{p}{2 \pi}[t]_{0}^{\pi}=\frac{p \pi}{2 \pi}=\frac{p}{2}$
$\therefore a_{0}=\frac{p}{2} \quad$ Q.E.D
$a_{0}=0$
$b_{n}=\frac{1}{\pi} \int_{0}^{\pi} p \operatorname{Sinntdt}=\frac{p}{n \pi}[1-\operatorname{Cos} n \pi]=\frac{2 p}{n \pi}$ for $\mathrm{n}=$ odd and 0 for $\mathrm{n}=\mathrm{even}$

$$
b_{n}=\frac{2 p}{\pi} \quad \mathrm{n}=1,3,5
$$

Q.E.D

(3) THE SAW TOOTH WAVEFORM:

For linear displacement w.r.t time then; $\mathrm{y}=\mathrm{P}$ at t $=0$ to $\mathrm{y}=0$ at $\mathrm{t}=\mathrm{T}$ and more. We can then safely write;

$$
\frac{y}{p}=\frac{T-t}{T} \text { or } y=p\left(\frac{T-t}{T}\right)=p\left(1-\frac{t}{T}\right)
$$

Recall that: by using the complex analysis we have, $f(x)=\sum_{-\infty}^{\infty} C_{n} e^{j n x}$ and in order to analyze this signal we need its Fourier coefficients by using;
$C_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-j n x} d x$
If $\quad C_{o}=\frac{p}{T} \int_{0}^{T}\left(1-\frac{t}{T}\right) e^{-j n \omega 0}=\frac{p}{T} \int_{0}^{T}\left(1-\frac{t}{T}\right) \cdot e^{0}$
$\therefore C_{o}=\frac{p}{T}\left[t-\frac{t^{2}}{2}\right]_{0}^{T}=\frac{p}{T}\left[T-\frac{T^{2}}{2 T}\right]=\frac{p}{T} \times \frac{T}{2}=\frac{p}{2}$
$\Rightarrow C_{o}=\frac{p}{2}$
For C_{n}, using;
$C_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-j n x} d x$
$\Rightarrow C_{n}=\frac{1}{T} \int_{0}^{T} p\left(1-\frac{t}{T}\right) e^{-j n o t} d t=\frac{p}{T} \int_{0}^{T} e^{-j n o t} d t-\frac{p}{T^{2}} \int_{0}^{T} t e^{-j n o t} d t \quad \square y(t)=\frac{p}{2}+\frac{2 p}{2 \pi}\left[\frac{e^{j o t}-e^{-j \omega t}}{2 j}+\frac{e^{2 j \omega t}-e^{-2 j \omega t}}{2 \times 2 j}+\frac{e^{3 j \omega t}-e^{-3 j a t}}{3 \times 2 j}+\ldots\right]$
Let $\quad C_{n_{1}}=\frac{p}{T} \int_{0}^{T} e^{-j n \omega t} d t=\frac{p}{T}\left[\left.\frac{e^{-j n \omega t}}{-j n}\right|_{0} ^{T}\right.$
Substituting the limit we get,
$C_{n_{1}}=\frac{p}{T}\left[\frac{e^{-j n o t}}{-j n}-\frac{1}{-j n}\right]=\frac{p}{-j n T}\left(e^{-j n o t}-1\right)=\frac{p}{-T j n}[1-1]=0$
Let
$C_{n_{2}}=\frac{-p}{T^{2}} \int_{0}^{T} t \cdot e^{-j n o t} d t \quad$ Integrating by parts we get,
$=\frac{-p}{T^{2}}\left[\frac{t \cdot e^{-j n o t}}{-j n}-\left.\frac{1 \cdot e^{-j n o t}}{j^{2} n^{2}}\right|_{0} ^{T}\right.$ Substituting the limit
we get

$$
C_{n_{2}}=\frac{-p}{T^{2}}\left[\frac{T \cdot e^{-j n \omega T}}{-j n}-\frac{e^{-j n \omega T}}{j^{2} n^{2}}-\left(0-\frac{1}{j^{2} n^{2}}\right)\right]
$$

$$
\begin{aligned}
& C_{n_{2}}=\frac{-p}{T^{2}}\left[\frac{T \cdot 1}{-j n}-\frac{1}{j^{2} n^{2}}+\frac{1}{j^{2} n^{2}}\right]=\frac{-p}{T^{2}}\left[\frac{T}{-j n}+0\right] \\
& \therefore C_{n_{2}}=\frac{p}{2 \pi j n} \\
& C_{n}=C_{n_{1}}+C_{n_{2}}=0+\frac{p}{2 \pi j n} \\
& \Rightarrow C_{n}=\frac{p}{2 \pi j n}
\end{aligned}
$$

Writing the Fourier series we get,
$y(t)=\sum_{n=1}^{\infty} C_{n} e^{j n x}$ but $C_{o}=\frac{p}{2}$ and $C_{n}=\frac{p}{2 \pi j n}$
$\therefore y(t)=C_{o}+C_{n} \sum_{n=1}^{\infty} e^{-j n o t}=\frac{p}{2}+\frac{p}{2 \pi} \sum_{-\infty}^{\infty} \frac{e^{+j n o t}}{n j}$
$\Rightarrow y(t)=\frac{p}{2}+\frac{p}{2 \pi}\left[\ldots+\frac{e^{-j \omega}}{-1 \times j}+\frac{e^{-2 j \omega \alpha}}{-2 \times j}+\frac{e^{-3 j j \omega}}{-3 \times j}+\ldots+\frac{e^{j \omega \alpha}}{1 \times j}+\frac{e^{2 j j \alpha}}{2 \times j}+\frac{e^{3 j \omega \alpha}}{3 \times j}+\ldots\right]$

But $\frac{e^{j \omega t}-e^{-j \omega t}}{2 j}=\operatorname{Sin} \omega t \quad$ (Euler's formula)
$\therefore y(t)=\frac{p}{2}+\frac{p}{\pi}\left[\operatorname{Sin} \omega t+\frac{1}{2} \operatorname{Sin} 2 \omega t+\frac{1}{3} \operatorname{Sin} 3 \omega t+\ldots\right]$
INTERPRETATION OF THE PHYSICAL
SIGNIFICANCE OF THE ABOVE SAWTOOTH ANALYSIS EXPRESSION
i. It contains Sine terms only
ii. It is a continuous Sine series (Ideal for audio compression)
iii. It shows a slow convergence $\left(\frac{1}{n}\right)$ which means it may require a lot of terms to add up to the 'original' signal.
iv. It also indicates that while amplitude decreases the frequency increases, which
implies that the convergence to the original signal is assured.

PROOF: USING THE TRIGONOMETRIC APPROACH FOR THE SAW-TOOTH WAVE

Using; $y(t)=\frac{a_{o}}{2}+\sum_{n=1}^{\infty} a_{n} \operatorname{Cos} n \omega t+\sum_{n=1}^{\infty} b_{n} \operatorname{Sin} \omega t$
To analyze the properties of this signal we need their Fourier coefficients, a_{0}, a_{n} and b_{n}
$a_{o}=\frac{1}{T} \int_{0}^{T} y(t) d t=\frac{p}{T} \int_{0}^{T}\left(1-\frac{t}{T}\right) d t$
By integrating w.r.t t we get,
$a_{o}=\frac{p}{T}\left[t-\frac{t^{2}}{2 T}\right]_{0}^{T}=\frac{p}{T}\left[T-\frac{T^{2}}{2 T}\right]=\frac{p}{T}\left[\frac{T}{2}\right]=\frac{p}{2}$
$\Rightarrow a_{o}=\frac{p}{2}=C_{o}$
Q.E.D
$a_{n}=\frac{2 p}{T} \int_{0}^{T}\left(1-\frac{t}{T}\right) \operatorname{Cosncotdt}$ by integrating we get,
$a_{n}=\frac{2 p}{T}\left[\left.\frac{1}{n \omega} \operatorname{Sinn\omega t}\right|_{0} ^{T}-\frac{1}{T}\left(\left.\frac{t}{n \omega} \operatorname{Sinn\omega t}\right|_{0} ^{T}+\frac{1}{T} \int_{0}^{T} 1 \cdot \frac{1}{n \omega} \operatorname{Sinn\omega tdt}\right)\right.$

Sinn $\omega t=0$ for any value of n
$\therefore a_{n}=\frac{2 p}{T}\left[0-0+\frac{1}{T} \int_{0}^{T} \frac{1}{n \omega}\right.$ Sinn $\omega t d t=\frac{2 p}{T n \omega} \int_{0}^{T} \operatorname{Sinn} \omega t d t$
$=\frac{2 p}{\operatorname{Tn}^{2} \omega^{2}}(1-\operatorname{Cos} n \omega t)$ But $\omega T=2 \pi$
$\therefore a_{n}=\frac{2 p}{{T n^{2} \omega^{2}}^{2}}(1-\operatorname{Cos} n 2 \pi) \Rightarrow a_{n}=0$
For coefficient b_{n} $b_{n}=\frac{2 p}{T} \int_{0}^{T}\left(1-\frac{t}{T}\right) \operatorname{Sinn} \omega t d t=\frac{2 p}{T}\left[\int_{0}^{T}\right.$ Sinn $\left.\omega t d t-\int_{0}^{T} \frac{t}{T} \operatorname{Sinn} \omega t d t\right]$

By integrating w.r.t to t we get,
$b_{n}=\frac{2 p}{T}\left[\frac{-1}{n \omega} \operatorname{Cos} n \omega t+\frac{1}{n \omega}+\frac{1}{n \omega} \operatorname{Cos} n \omega T\right]$
$\therefore b_{n}=\frac{2 p}{\operatorname{Tn} \omega}=\frac{2 p}{\operatorname{Tn} \times \frac{2 \pi}{T}}=\frac{p}{n \pi}$
$\therefore b_{n}=\frac{p}{n \pi}=C_{n} \quad$ Q.E.D

FOURIER ANALYSIS OF ELECTRONIC COMPONENTS (DIODE-VALVE)

HALF-WAVE RECTIFIER:

After passing through the diode (i.e a half wave rectifier) the sinusoidal current, $I(t)=I_{m} \operatorname{Sin} \omega t$ will be rectified. The rectified current function can be written as;
$\mathrm{I}(\mathrm{t})= \begin{cases}I_{m} \operatorname{Sin} \omega t & 0<t<T / 2 \\ 0 & -T / 2 \leq t<0\end{cases}$
As shown below;

- Input Voltage

With time period T. its Fourier expansion in complex form is:
$I(t)=C_{o}+\sum_{-\infty}^{\infty} C_{n} e^{j n o t}$
Hence the Fourier analysis of this signal involves finding the Fourier coefficients and then
substituting this coefficient into the general Fourier expansion like this:
$C_{o}=\frac{1}{2 \pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} I_{m} \operatorname{Sin} \omega t \cdot e^{-j \cdot 0 \cdot \omega t}=\frac{I_{m}}{\pi}\left[-\left.\operatorname{Cos} \omega t\right|_{-\frac{T}{2}} ^{\frac{T}{2}}\right.$
Substituting the limits we get,
$\Rightarrow C_{o}=\frac{I_{m}}{2 \pi}\left[-\operatorname{Cosw}^{T} / 2-(\operatorname{Cos} 0)\right]=[-\operatorname{Cos} \pi+\operatorname{Cos} 0]$
$=\frac{I_{m}}{2 \pi}[-(-1)+1]=\frac{I_{m}}{2 \pi} \times 2=\frac{I_{m}}{\pi}$
$\therefore C_{o}=\frac{I_{m}}{\pi}$
For the coefficient C_{n} we have
$C_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{m} \operatorname{Sin} \omega t d t=\frac{1}{2 \pi} \int_{-\pi}^{0} 0 \cdot e^{-j n \omega_{0} t} d t+\frac{1}{2 \pi} \int_{0}^{\pi} I_{m} \operatorname{Sin} \omega t \cdot e^{-j n \omega_{0} t} d t \quad \begin{aligned} & 2 \pi \\ & \therefore C_{n}=\frac{I_{m}}{\pi\left(1-n^{2}\right)}\end{aligned}$
$\therefore C_{n}=\frac{I_{m}}{2 \pi} \int_{0}^{\pi} \operatorname{Sin} \omega t \cdot e^{-j n \omega_{0} t} d t$
But by this identity;
$\int e^{2 x} \operatorname{Sin}(b x+c)=\frac{e^{2 x}}{a^{2}+b^{2}}(\operatorname{aSin}(b x+c)-b \operatorname{Cos}(b x+c))$

Where $\mathrm{a}=2, \mathrm{~b}=1$ and $\mathrm{c}=0$
Similarly,
$C_{n}=\frac{I_{m}}{2 \pi} \int_{0}^{\pi} \operatorname{Sin} \omega t \cdot e^{-j n \omega t} d t=\frac{I_{m}}{2 \pi} \cdot \frac{e^{-j n o t}}{a^{2}+b^{2}}(-j n \operatorname{Sin} \omega t-1 \cdot \operatorname{Cos} \omega t)$

So that substituting the limits we get,
But for $\mathrm{n}=1$ then,

$$
C_{1}=\frac{I_{m}}{\pi(1-1)}=\frac{I_{m}}{0} \text { Undefined }
$$

Therefore, since this is unacceptable for $\mathrm{n}=1$ we get

From $\omega=\frac{2 \pi}{T}$ but $T=\frac{T}{2} \quad \therefore T=\frac{2 \pi}{2}=\pi \quad \therefore T=\pi$
$\therefore \omega=\frac{2 \pi}{T}=2 \therefore T=2$
Using and after substituting the limits $(0, \pi)$ we get

$$
C_{1}=\frac{1}{2}\left[\frac{e^{-j \pi}}{-j^{2}+1^{2}}(-j n \operatorname{Sin} \pi-\operatorname{Cos} \pi)-\left(\frac{e^{0}}{-j^{2}+1^{2}}(-j \operatorname{Sin} 0-\operatorname{Cos} 0)\right] \times I_{m}\right.
$$

$C_{n}=\left[\frac{e^{-j n \pi}}{(-j n)^{2}+1^{2}}(-j n \operatorname{Sin} \pi-\operatorname{Cos} \pi)-\left[\frac{e^{-j n \omega 0}}{(-j n)^{2}+1^{2}}(-j \operatorname{Sin} 0-\operatorname{Cos} 0)\right] \times \frac{I_{m}}{2 \pi}\right.$

$$
\Rightarrow C_{1}=\frac{1}{2}\left[\frac{(-1)(0-1)}{1^{2}+1^{2}}-\left(\frac{1}{1^{2}+1^{2}}(0-1)\right] \times I_{m}\right.
$$

$\therefore C_{1}=\frac{1}{2}\left[\frac{1}{2}+\frac{1}{2}\right] \times I_{m}=\frac{I_{m}}{2}$
$\therefore C_{1}=\frac{I_{m}}{2}$
Therefore, $C_{0}=\frac{I_{m}}{\pi}, \quad C_{n}=\frac{I_{m}}{\pi\left(1-n^{2}\right)}$ and $C_{1}=\frac{I_{m}}{2}$

Therefore, the general Fourier expression is;
$I(t)=C_{0}+C_{n} \sum_{n=\infty}^{\infty} e^{-j n \omega t}+C_{1}$
$I(t)=\frac{I_{m}}{\pi}+\frac{I_{m}}{\pi}\left[\sum_{n=\infty}^{\infty} \frac{e^{-j n o t}}{1-n^{2}}\right]+C_{1}$
$\Rightarrow I(t)=\frac{I_{m}}{\pi}+\frac{2 I_{m}[\ldots}{\pi}\left[\cdots \frac{e^{-j 2 \alpha}}{2\left(1-2^{2}\right)}+\frac{e^{-j+\alpha \omega}}{2\left(1-4^{2}\right)}+\ldots+\frac{e^{j 2 \alpha}}{-2\left(1-2^{2}\right)}+\frac{e^{i 4 \alpha}}{-2\left(1-4^{2}\right)}+\ldots\right]+\frac{I_{m}}{2}$ Sin ωt
$\Rightarrow I(t)=\frac{I_{m}}{\pi}+\frac{2 I_{m}}{\pi}\left[\frac{e^{j 2 \omega t}+e^{-j 2 \omega t}}{2 \times 3}+\frac{e^{j 4 \omega t}+e^{-j 4 \omega t}}{2 \times 15}+\ldots\right]+\frac{I_{m}}{2} S$
$C_{n}=\frac{I_{m}}{\pi\left(1-n^{2}\right)}$ but $\frac{e^{j 2 \omega t}+e^{-j 2 \omega t}}{2}=$ Coswt (Euler's formula)
$\therefore I(t)=\frac{I_{m}}{\pi}+\frac{2 I_{m}}{\pi}\left[\frac{1}{3} \operatorname{Cos} 2 \omega t+\frac{1}{15} \operatorname{Cos} 4 \omega t+\ldots\right]+\frac{1}{2} I_{0} \operatorname{Sin} \omega t$
INTERPRETATION OF THE PHYSICAL SIGNIFICANCE OF THE ABOVE HALFWAVE RECTIFIER ANALYSIS EXPRESSION:

- The expression indicates discrete (even) cosine series.
- The convergence is fast $\left(\frac{1}{1-n^{2}}\right)$. Implies by just adding few terms we can get the original signal.
- The input sinusoidal current is I_{m} Sinwt but the output sinusoidal current is $1 / 2 I_{m}$ Sinwt. This means only half of this sinusoidal current was
converted into D.C. But this properly is useful especially where a smooth d.c. is not required. For example this circuit arrangement can be used in the construction of battery charger, which charges batteries which uses electrolyte.

PROOF: USING THE TRIGONOMETRIC APPROACH FOR THE HALF-WAVE RECTIFIER ANALYSIS:

From $I(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \operatorname{Cos}(n \omega t)+\sum_{n=1}^{\infty} b_{n} \operatorname{Sin}(n \omega t)$
For the coefficient a_{0} we have,
$a_{0}=\frac{I_{m}}{T} \int_{0}^{T / 2} \operatorname{Sin} \omega t d t=\frac{I_{m}}{T}\left[\frac{-\operatorname{Cos} \omega t}{\omega}\right]_{0}^{T / 2}=\frac{I_{m}}{T}\left[-\operatorname{Cos} \omega^{T} / 2-(-\operatorname{Cos} \omega 0)\right]$

But $T \omega=2 \pi$

$$
a_{0}=\frac{I_{m}}{2 \pi}[-\operatorname{Cos} \pi+1]=\frac{I_{m}}{2 \pi}[1+1]=\frac{I_{m}}{2 \pi} \times 2=\frac{I_{m}}{\pi}
$$

$\therefore a_{0}=\frac{I_{m}}{\pi}=C_{0}$ (Q.E.D)
For the coefficient a_{n} we have,
$a_{n}=\frac{2 I_{m}}{T} \int_{0}^{T / 2} \operatorname{Sin} \omega t \cdot \operatorname{Cos} n \omega t d t$
Using trig. Identities;
$\operatorname{Sin} u \operatorname{Cos} v=\frac{1}{2}[\operatorname{Sin}(u+v)+\operatorname{Sin}(u-v)]$
$\therefore a_{n}=\frac{2 I_{m}}{T} \int_{0}^{T / 2}[\operatorname{Sin}(\omega t+n \omega t)+\operatorname{Sin}(\omega t-n \omega t)]$
Integrating w.r.t t , and substituting the limit, we get

$$
a_{n}=\frac{2 I_{m}}{2 T \omega}\left\{\frac{1}{2}\left[\frac{-\operatorname{Cos}(1+n) \omega t}{\omega(1+n)}-\frac{-\operatorname{Cos}(1-n) \omega t}{2(1-n)}+\frac{\operatorname{Cos} 0}{(1-n)}\right]\right.
$$

But $\omega T=2 \pi$
$\therefore a_{n}=\frac{I_{m}}{2 \pi}\left[\frac{1-\operatorname{Cos}(\pi+n \pi)}{1+n}+\frac{1-\operatorname{Cos}(\pi-n) \pi}{1-n}\right]$
But from trigonometric identities we get,
$\operatorname{Cos}(A+B)=\operatorname{Cos} A \operatorname{Cos} B-\operatorname{Sin} A \operatorname{Sin} B$
$\therefore a_{n}=\left[\frac{1-\operatorname{Cos} \pi \operatorname{Cos} n \pi-\operatorname{Sin} \pi \operatorname{Sin} n \pi}{1+n}+\frac{1-\operatorname{Cos} \pi \operatorname{Cos} n \pi}{1-n}\right] \times \frac{I_{m}}{2 \pi}$
But $\operatorname{Sin} n \pi \operatorname{Sin} \pi=0$ for any value of n

$$
\begin{aligned}
& \therefore a_{n}=\frac{I_{m}}{2 \pi}\left[\frac{2 \cos n \pi+2}{\left(1-n^{2}\right)}\right]=\frac{I_{m}}{\pi}\left[\frac{\operatorname{Cos} n \pi+1}{\left(1-n^{2}\right)}\right]=\frac{I_{m}}{\pi}\left[\frac{(-1)^{n}+1}{1-n^{2}}\right] \\
& \Rightarrow a_{n}=\left[\frac{I_{m}}{\pi}\left[\frac{-1+1}{1-n^{2}}\right]=0 \text { for } \mathrm{n}=\text { odd } 1,3,5\right.
\end{aligned}
$$

But

$$
a_{n}=\frac{2 I_{m}}{\pi\left(1-n^{2}\right)}=C_{n} \quad \text { (Q.E.D) }
$$

For b_{1} using trigonometric we get
$b_{1}=\frac{2 I_{m}}{T} \int_{0}^{T / 2} \operatorname{Sin} \omega t \cdot \operatorname{Sinn} \omega t d t$ But $\mathrm{n}=1$
$\therefore b_{1}=\frac{2 I_{m}}{T} \int_{0}^{T / 2} \operatorname{Sin}^{2} \omega t d t$ But $\operatorname{Sin}^{2} \omega t=\frac{1}{2}[1-\operatorname{Cos} 2 \omega t]$
$\therefore b_{1}=\frac{2 I_{m}}{2 T}\left[\int_{0}^{T / 2}(1-\operatorname{Cos} 2 \omega t) d t\right]$
Integrating and substituting limits we get,
But $\omega T=2 \pi$

$$
b_{1}=\left[\frac{I_{m}}{T} \times \frac{T}{2}\right]-\frac{I_{m}}{2 \pi \cdot 2}\left[\frac{\operatorname{Sin} 2 \cdot 2 \pi}{2}-0\right]
$$

But $\operatorname{Sin} n \pi=0$ for any value of n

$$
\therefore b_{1}=\frac{I_{m}}{2}=0
$$

$\therefore b_{1}=\frac{I_{m}}{2}=C_{1}$ (Q.E.D)

FULL-WAVE RECTIER: here I want to use the Fourier analysis to see if the Full-Wave rectifier as it is been called converts A.C into a complete D.C.

The full wave rectifier can thought of as inverting the positive peaks to a negative troughs and vice-versa as shown below:

This is what the circuit diagram shows, but let us prove it if this true using theory and equation.

To analyze the properties of the full wave rectifier all we need is the Fourier coefficients from this expression;

$$
I(t)=C_{0}+C_{n} \sum_{-\infty}^{\infty} e^{+j n o t}
$$

For a full wave rectifier its defined by this expression;

$$
\begin{array}{rl}
I(t)=\operatorname{Sin} \omega t & 0<\omega t<\pi \\
-\operatorname{Sin} \omega t & -\pi<\omega t<0
\end{array}
$$

For the coefficient C_{0}, we have,
Since the given function is an even function then,

$$
C_{0}=\frac{1}{\pi} \int_{0}^{\pi} I(t) e^{-j n \omega t} d t=\frac{1}{\pi} \int_{0}^{\pi} \operatorname{Sin} \omega t \cdot e^{-j \cdot \cdot \cdot \omega t} d t
$$

$\Rightarrow C_{0}=\frac{1}{\pi} \int_{0}^{\pi} \operatorname{Sin} \omega t d t$ Integrating and substituting the limits we get,

$$
\begin{aligned}
& C_{0}=\frac{1}{\pi}[-\operatorname{Cos} \omega t]_{0}^{\pi}=\frac{1}{\pi}[-(-1)-(-1)]=\frac{1}{\pi}[1+1] \\
& \therefore C_{0}=\frac{2}{\pi}
\end{aligned}
$$

For the coefficient C_{n} we have, and since the function is an even function then,
$C_{n}=\frac{1}{\pi} \int_{0}^{\pi} \operatorname{Sin} \omega t \cdot e^{-j n \omega t} d t$
Using the identity;

$$
\int e^{2 x} \cdot \operatorname{Sin}(b x+c)=\frac{e^{a x}}{a^{2}+b^{2}}(a \operatorname{Sin}(b x+c)-b \operatorname{Cos}(b x+c)) \quad \Rightarrow I(t)=\frac{2}{\pi}-\frac{2 \times 2}{\pi}\left[\frac{e^{2 j \omega t}+e^{-2 j \omega t}}{2 \times 3}+\frac{e^{4 j \omega t}+e^{-4 j o t}}{2 \times 15}+\ldots\right]
$$

Where $\mathrm{a}=2, \mathrm{~b}=1$ and $\mathrm{c}=0$
Similarly by using this identity we get,
$\int e^{-j n o t} \cdot \operatorname{Sin} \omega t=\frac{e^{-j n \omega t}}{a^{2}+b^{2}}(a \operatorname{Sin} b x-b \operatorname{Cos} b x)$
Where $\mathrm{a}=-\mathrm{jn}, \mathrm{b}=1$ and $\mathrm{c}=0$

$$
\Rightarrow C_{n}=\frac{1}{\pi} \int_{0}^{\pi} e^{-j n o t} \cdot \operatorname{Sin} \omega t d t=\left.\frac{e^{-j n \omega t}}{(-j n)^{2}+1^{2}}(-j n \operatorname{Sin} 0-1 \cdot \operatorname{Cos} 0)\right|_{0} ^{\pi}
$$

Substituting the limit we get,

$$
C_{n}=\frac{1}{\pi}\left[\frac{e^{-j n \pi}}{1-n^{2}}(-j n \operatorname{Sin} \pi-\operatorname{Cos} \pi)-\left[\frac{1}{1-n^{2}}(-j n \operatorname{Sin} 0-1 \cdot \operatorname{Cos} 0)\right]\right.
$$

But $e^{-j n \pi}=\operatorname{Cos} n \pi-j \operatorname{Sin} n \pi$

$$
C_{n}=\frac{1}{\pi}\left[\frac{(-1)^{n}(-(-1)}{1-n^{2}}-\left[\frac{1}{1-n^{2}}(0-1)\right]\right.
$$

But $\frac{e^{j \omega t}+e^{-j \omega t}}{2}=\operatorname{Cos} \omega t$
$=\frac{1}{\pi}\left[\frac{(-1)^{n}+1}{1-n^{2}}\right]=\frac{1}{\pi}\left[\frac{2}{1-n^{2}}\right]$ if $\mathrm{n}=$ even, $0,2,4$
$C_{n}=\frac{-2}{\pi\left(n^{2}-1\right)}$
Hence the Fourier series of this analysis becomes;
$I(t)=C_{0}+C_{n} \sum_{n=\infty}^{\infty} e^{+j n o t}$
But $C_{0}=\frac{2}{\pi}$ and $C_{n}=\frac{-2}{\pi\left(n^{2}-1\right)}$
$\Rightarrow I(t)=\frac{2}{\pi}-\frac{2}{\pi}\left[\ldots+\frac{e^{2 j e t}}{\left(2^{2}-1\right)}+\frac{e^{4 j \omega t}}{\left(4^{2}-1\right)}+\ldots+\frac{e^{-2 j e t}}{\left(-2^{2}-1\right)}+\frac{e^{-4 j e \theta}}{\left(-4^{2}-1\right)}+\ldots\right]$
$\Rightarrow I(t)=\frac{2}{\pi}-\frac{4}{\pi}\left[\frac{1}{3} \operatorname{Cos} 2 \omega t+\frac{1}{15} \operatorname{Cos} 4 \omega t+\ldots\right]$
INTERPRETATION OF THE PHYSICAL
SIGNIFICANCE OF THE FOURIER ANALYSIS OF THE FULL WAVE RECTIFIER

EXPRESSION:

- The original frequency (ω) has been eliminated and now the lowest frequency of oscillation is 2ω. Indicating frequency of oscillation is always increasing by (2 n) where n is the position of the term in the series.
- The convergence is fairly fast $\left(\frac{1}{n^{2}-1}\right)$. It means the conversion of the A.C to D.C is instantaneously.
- The expression contains cosine terms only, showing that a full wave rectifier does a good job of approximating an A.C to a D.C.

PROOF:	USING	TRIGONOMETRIC	
	APPROACH	FOR	THE

RECTIFIER.

From $I(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \operatorname{Cosn} \omega t+\sum_{n=1}^{\infty} b_{n} \operatorname{Sinn} \omega t$
Since the function is even function then,
$a_{0}=\frac{1}{\pi} \int_{0}^{\pi} \operatorname{Sin} \omega t d(\omega t)=\frac{1}{\pi}[-\operatorname{Cos} \omega t]_{0}^{\pi}=\frac{1}{\pi}[-(-1)-(-1)]$
$\Rightarrow a_{0}=\frac{2}{\pi}=C_{0}$
(Q.E.D)

For the coefficient a_{n}
$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \operatorname{Sin} \omega t \cdot \operatorname{Cos} n \omega t d(\omega t)$

$$
\begin{aligned}
& \text { Using } \\
& \operatorname{Sin} u \operatorname{Cos} v=\frac{1}{2}[\operatorname{Sin}(u+v)+\operatorname{Sin}(u-v)] \\
& \therefore a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2}[\operatorname{Sin}(\omega t+n \omega t)+\operatorname{Sin}(\omega t-n \omega t)]
\end{aligned}
$$

Integrating w.r.t t and substituting the limit we get,
$a_{n}=\frac{2}{\pi \times 2}\left[\frac{1-\operatorname{Cos}(\pi+n \pi)}{(1+n)}+\frac{1-\operatorname{Cos}(\pi-n) \pi}{1-n}\right]$
Using: $\operatorname{Cos}(\mathrm{A}+\mathrm{B})=\operatorname{Cos} \mathrm{A} \operatorname{Cos} \mathrm{B}-\operatorname{Sin} \mathrm{A} \operatorname{Sin} \mathrm{B}$
$\Rightarrow a_{n}=\left[\frac{1-\operatorname{Cos} \pi \operatorname{Cos} n \pi-\operatorname{Sin} \pi \operatorname{Sin} n \pi}{(1+n)}+\frac{1-\operatorname{Cos} \pi \operatorname{Cos} n \pi}{1-n}\right] \times \frac{2}{2 \times \pi}$

But $\operatorname{Sin} \pi \operatorname{Sin} n \pi=0$ for any value of n

$$
\begin{aligned}
& \therefore a_{n}=\frac{2}{\pi}\left[\frac{2 \operatorname{Cos} n \pi+2}{\left(1+n^{2}\right)}=\frac{2}{\pi}\left[\frac{\operatorname{Cos} n \pi+1}{\left(1+n^{2}\right)}\right]=\frac{2}{\pi}\left[\frac{(-1)^{n}+1}{\left(1+n^{2}\right)}\right]\right. \\
& \Rightarrow a_{n}=\frac{2}{\pi}\left[\frac{(-1)^{n}+1}{1+n^{2}}\right]=\frac{2}{\pi}\left[\frac{2}{1+n^{2}}\right] \text { if } \mathrm{n}=\text { even, } 0,
\end{aligned}
$$

2, 4
$\therefore a_{n}=\frac{-4}{\pi\left(n^{2}-1\right)}=C_{n}$ (Q.E.D)

CONCLUSION

The most important parameter in the Fourier series is the Fourier coefficients. In this work, because of the flexibility of the Fourier series I have used two 'flavours' in finding the Fourier coefficients viz: The complex exponential method and trigonometric approach to find the Fourier coefficients and then use these Fourier coefficients to generate the Fourier series to analyze and interpret the physical significance of the Fourier series generated. Here I have covered both the triangular, square, saw-tooth waves forms as well as the half and full wave rectifiers diodes and went ahead to interpret their physical significance. For example the discrete Cosine series obtained from the analysis of the triangular wave form is good tool for image processing. The continuous Sine series from the analysis of the saw-tooth wave form is also a good tool for audio compression. While the half wave rectifier analysis shows that it can be used for the construction of battery chargers which uses electrolyte and the full wave rectifier analysis is ideal for the construction of battery chargers which do not use electrolyte. As this work is just an 'opening' for the analysis and interpretation of signals using Fourier analysis, I recommend that readers should also strive to look for other uses of this analysis. Above all thank you very much, Jean-Baptiste Fourier, the founder of the Fourier series.

REFERENCES:

Birkhauser (2006). Journal of Fourier analysis and application ISSN 10695869. New York: McGraw Hill

Boashash B. ed (2003). Time frequency signal analysis and processing. A comprehensive reference, oxford: Elsevier science 0-08-044335-4

Campbell, George, Foster, Ronald (1989). Fourier integrals for practical applications.

Chatfield, Chris (2004). The analysis of time series: An Introduction Test.

Douandi Keotxea, Javier (2001), Fourier analysis, American mathematical society, ISBN 0-8218-2172-5

Dym. H; McKean H. (2009), Fourier series and integrals, academic press, ISBN 978-0-12-2264511

Folland, G. B. (1992) Fourier analysis and its application, pacific Groove CA: Brooks.

Folland, Gerald (2006) Harmonic analysis in phase space, Princeton University press

Gupta, B. D. (2010) mathematical physics (Fourth Edition).

Grafakos, Loukas, (2004) Classical and modern Fourier analysis, Prentice-Hall ISBN 0-13-035399-X.

Hans G. Feichtinger (2015). The journal of Fourier analysis and applications 10(4): 516-610. CRC Press

Jason D. (2004) Excellent, Elementary and Concise introduction to Fourier analysis. (June 12)

Morriso N. (1994). Introduction to Fourier analysis: New York, Wiley online library

Kammler, David (2000), A first course in Fourier analysis Princeton Hall, ISBN 0-13-578782-3

Rudin, Walter (2007) Real and complex analysis ($3^{\text {rd }}$ edition) Singapore: McGraw Hill. ISBN 0-07-100276-6

Stein, Elias, Weiss, Guido (2001) Introduction to Fourier analysis on Euclidean spaces, Princeton university press, ISBN 978-0-691-08078-9

Sogge, C.D (2003) Fourier integrals in classical analysis. New York: Cambridge university press.

Stoica, Petre; Mosses, Randolph (2005) Spectral analysis of signals. Nj: Prentice Hall.

Spiegel, M.R. (2004). Theory and problems of Fourier analysis of signals. Nj: Prentice Hall.

