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Abstract 

Fourier  analysis amount to finding the Fourier coefficient of the signal in question and then substituting these 

coefficients into the general complex Fourier series 
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no eCC  expression, from which the properties of 

the signal been analyzed can be deduced. Through this analysis, it was found that the saw-tooth wave form 

consists of a continuous sine series: 
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and in the same manner the 

triangular wave form was analyzed and found to consist of discrete sine series: 
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. Through this work I have used the complex exponential  jnxe  

method in finding the Fourier coefficients 
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1  and e then used trigonometric approach to 

authenticate my results. At the end of this work I have also used the Fourier analysis to analyze how well do the 

half and the full wave rectifier diode valve converts an A.C to a D.C. And for the half-wave rectifier diode the 

expression was: .
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  While that of a full-wave rectifier 
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 Hopefully by the end of this work, the reader 

can be able to analyze a signal or an electronic gadgets such as the diode-valve and the like, by the use of 

Fourier analysis and predict with precision their behavior by just looking at the final expression, also called the 

design equation. 

Keywords:  

Fourier analysis, Fourier coefficients, complex exponentials, discrete sine series, discrete cosine series, full and 

half wave rectifier, diode valve, square wave, triangular wave, and the saw-tooth wave 

DISCUSSIONS 

Any periodic function or signal can be expressed 

as a sum of sinusoids e.g 

.
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)( SinnxbCosnxa
a

xf nn
o   To explain this 

expression in a layman’s language. Suppose you 

have a full loaf of bread and then divide this loaf 

of bread into two equal halves. Each half of the 

bread can be thought of as the average value of the 

signal, D.C, ao/2, value (zero-frequency). Now 

keep one half of the bread as it is, but divide the 

other half into unequal pieces. Now if you 

continue to add the divided pieces of the bread to 

the other half of the bread, you will eventually get 

back full loaf of bread. And if you want to modify 

the shape of the bread, you will simply refuse to 

add the some divided pieces of the bread to the 

other half. Obviously now, you can modify the 
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shape of this bread into an infinite number of 

different shapes. Now you can think of the sine 

and cosine as the divided pieces of the bread. The 

same procedure is applied during audio 

compression, take or record a voice as a signal e.g 

an audio speech, decompose these into the average 

and the sine terms. You can now drop or neglect 

some of these sine terms and them recombined the 

remaining terms to give back the original signal. 

The argument is that, the human ear cannot be able 

to notice any difference between the original and 

the modified (sound). All these procedures are a 

function of the Fourier coefficients therefore all 

the reason why the concepts of finding the Fourier 

coefficients are important.  

FOURIER ANALYSIS OF SIGNALS: 

1. THE TRIANGULAR WAVE 
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 (Fig. 1) 

The triangular wave is defined by: 

Y = 0 at t = 0 

Y = p at t = T/2 

Y = 0 at t = T 

And this repeats every period T, as shown in fig. 

(1) from which we can deduce; 
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Recall that: the Fourier series in complex form is: 
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Where Co and Cn are the coefficients to be 

calculated. 
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Substituting the limits we get, 





























82

2

2

2

8

2 22

2

2
2

2

2

2

TT

T

pT
T

T

pT

T

p
Co

 

4

2

4
2

4

pp
ppp

p
Co   

2

p
Co   

For Cn using 

dtetT
T

p
dtet

T

p
C tjn

T

tjn

n

T

T

   
2

2

)(
22

2

0

2
 

    
1nC    

2nC  

So that 
21 nnn CCC   

From, 

dtet
T

p
C

T

tjn

n 


2

1

0

2

2 
 (using integration by parts) 

That is     VUVUI 1  

GSJ: Volume 9, Issue 5, May 2021 
ISSN 2320-9186 823

GSJ© 2021 
www.globalscientificjournal.com



3 
 

2

1

0

2222

12
T

tjntjn

n e
nj

e
jn

t

T

p
C 











  


 

Substituting the limit we get, 
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For n = even 
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For n = odd (1, 3, 5) 














222

2

2

322
2  njn

T

jn

T

T

p
Cn

 Where j
2
 = -1 














222

2

2

2
2 njn

T

T

p
Cn

 

So that 
21 nnn CCC   

22222

2

2

)2()2(

2

)1(2

T

p

jn

T

nnjn
C

n

n


























 

222222222

2

4

884
0

2

 n

p

n

p

nT

p

nT

p
Cn

















  

22

2

n

p
Cn


  

Now substituting these coefficients into the 

Fourier series expression we get, 
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Interpretation of the physical significance of the 

triangular wave expression 

(i). It consist of all cosine terms, apart from P/2 

(average value) 

(ii). The convergence is fast 







2

1

n
meaning by just 

adding a few terms you will get back the ‘original’ 

signal or function. 

(iii). It is a discrete cosine series (ideal for image 

processing) 

PROOF: USING TRIGONOMETRIC 

APPROACH FOR THE TRIANGULAR WAVE: 
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Integration of the first term by parts and 

substituting the limits we get 
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Integrating the second term by parts and 

substituting the limit we get 
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(2). SQUARE WAVEFORM (High Frequencies) 

 

 

 

 

            (Fig 2) 

The above square wave can be defined by the 

function f(x) such that 

0)( xf  from  0 x  

and 

pxf )(  from  x0  

To analyze the properties of the square wave all 

we need is the Fourier coefficients given by; 
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(i). All the cosine have vanished showing that it 

may be used for audio compression. 

(ii). The convergence is slow 
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1
 meaning a 

square wave have a lot of high frequencies. This 

implies that a lot of terms should be added 

together before obtaining the ‘original’ signal. 

PROOF: USING TRIGONOMETRIC 

APPROACH FOR THE SQUARE WAVE 
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(3) THE SAW TOOTH WAVEFORM: 

      Y 
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For linear displacement w.r.t time then; y = P at t 
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Recall that: by using the complex analysis we 

have, 
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INTERPRETATION OF THE PHYSICAL 

SIGNIFICANCE OF THE ABOVE SAW-

TOOTH ANALYSIS EXPRESSION 

i. It contains Sine terms only 

ii. It is a continuous Sine series (Ideal for audio 

compression) 

iii. It shows a slow convergence 








n

1
which 

means it may require a lot of terms to add up 

to the ‘original’ signal. 

iv. It also indicates that while amplitude 

decreases the frequency increases, which 
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implies that the convergence to the original 

signal is assured. 

PROOF: USING THE TRIGONOMETRIC 

APPROACH FOR THE SAW-TOOTH WAVE 
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FOURIER ANALYSIS OF ELECTRONIC 

COMPONENTS (DIODE-VALVE)  

HALF-WAVE RECTIFIER: 

After passing through the diode (i.e a half wave 

rectifier) the sinusoidal current, tSinItI m )(  

will be rectified. The rectified current function can 

be written as; 

       tSinIm   20 Tt   

I(t) =  

       0  02  tT  

As shown below; 
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With time period T. its Fourier expansion in 

complex form is:  
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Hence the Fourier analysis of this signal involves 

finding the Fourier coefficients and then 
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substituting this coefficient into the general 

Fourier expansion like this: 
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INTERPRETATION OF THE PHYSICAL 

SIGNIFICANCE OF THE ABOVE HALF-

WAVE RECTIFIER ANALYSIS EXPRESSION: 

- The expression indicates discrete (even) cosine 

series. 

- The convergence is fast .
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just adding few terms we can get the original 
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- The input sinusoidal current is SinwtIm but the 
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1 . This 

means only half of this sinusoidal current was 

converted into D.C. But this properly is useful 

especially where a smooth d.c. is not required. 

For example this circuit arrangement can be 

used in the construction of battery charger, 

which charges batteries which uses electrolyte. 

PROOF: USING THE TRIGONOMETRIC 

APPROACH FOR THE HALF-WAVE 

RECTIFIER ANALYSIS: 

From  
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For the coefficient an we have, 
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Using trig. Identities;  
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Integrating w.r.t t, and substituting the limit, we 
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Output DC signal 
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But from trigonometric identities we get, 
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For b1 using trigonometric we get 
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Integrating and substituting limits we get, 
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FULL-WAVE RECTIER: here I want to use the 

Fourier analysis to see if the Full-Wave rectifier as 

it is been called converts A.C into a complete D.C. 

 The full wave rectifier can thought of as 

inverting the positive peaks to a negative troughs 

and vice-versa as shown below: 

 

 

 

 

 

 

 

 

 

This is what the circuit diagram shows, but let us 

prove it if this true using theory and equation. 

To analyze the properties of the full wave rectifier 

all we need is the Fourier coefficients from this 

expression; 






 tjn

n eCCtI 
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For a full wave rectifier its defined by this 

expression; 

tSintI )(    t0  

        tSin  0 t  

For the coefficient C0, we have, 

Since the given function is an even function then, 
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dttSinC 
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1
 Integrating and substituting 

the limits we get, 
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For the coefficient Cn we have, and since the 

function is an even function then, 
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Using the identity; 
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Where a = 2, b = 1 and c = 0 

Similarly by using this identity we get, 
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Substituting the limit we get, 
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Hence the Fourier series of this analysis becomes; 
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INTERPRETATION OF THE PHYSICAL 

SIGNIFICANCE OF THE FOURIER ANALYSIS 

OF THE FULL WAVE RECTIFIER 

EXPRESSION: 

- The original frequency ( ) has been 

eliminated and now the lowest frequency of 

oscillation is 2 . Indicating frequency of 

oscillation is always increasing by (2n) where 

n is the position of the term in the series. 

- The convergence is fairly fast 








1

1
2n

. It 

means the conversion of the A.C to D.C is 

instantaneously. 

- The expression contains cosine terms only, 

showing that a full wave rectifier does a good 

job of approximating an A.C to a D.C. 
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PROOF: USING TRIGONOMETRIC 

APPROACH FOR THE FULL-WAVE 

RECTIFIER. 

From 
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For the coefficient an 
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Using trig. Identities; 
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Integrating w.r.t t and substituting the limit we get, 
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Using: Cos(A+B) = CosA CosB – SinA SinB 
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CONCLUSION 

The most important parameter in the Fourier series 

is the Fourier coefficients. In this work, because of 

the flexibility of the Fourier series I have used two 

‘flavours’ in finding the Fourier coefficients viz: 

The complex exponential method and 

trigonometric approach to find the Fourier 

coefficients and then use these Fourier coefficients 

to generate the Fourier series to analyze and 

interpret the physical significance of the Fourier 

series generated. Here I have covered both the 

triangular, square, saw-tooth waves forms as well 

as the half and full wave rectifiers diodes and went 

ahead to interpret their physical significance. For 

example the discrete Cosine series obtained from 

the analysis of the triangular wave form is good 

tool for image processing. The continuous Sine 

series from the analysis of the saw-tooth wave 

form is also a good tool for audio compression. 

While the half wave rectifier analysis shows that it 

can be used for the construction of battery 

chargers which uses electrolyte and the full wave 

rectifier analysis is ideal for the construction of 

battery chargers which do not use electrolyte. As 

this work is just an ‘opening’ for the analysis and 

interpretation of signals using Fourier analysis, I 

recommend that readers should also strive to look 

for other uses of this analysis. Above all thank you 

very much, Jean-Baptiste Fourier, the founder of 

the Fourier series. 
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