

1

GSJ: Volume 10, Issue 3, March 2022, Online: ISSN 2320-9186

www.globalscientificjournal.com
Improved GraphQl Model Query Processing of

Distributed Databases

Obasi E.C.M
Department of Computer
Science and Informatics

Federal University Otuoke
Bayelsa State, Nigeria

anchinos@yahoo.co.uk

 Eke B
Department of Computer

Science
 University of Port Harcourt
Choba, Rivers State Nigeria

bathoyol@gmail.com

Egbono F
Department of Computer

Science
 University of Port Harcourt
Choba, Rivers State Nigeria
fubaraegbono@gmail.com

Abstract: There are numerous means to access multiple databases in a distributed environment. The relational query language SQL
usually acts as a language to access data. The performance of a relational databases drops as the datasets increase. Problems arise in
relational databases when it is required to create multiple relationships between data saved in computer storage. The large datasets
involves multiples tables and multiple joins and querying such database becomes a complex operation. Graph databases on the other
hand are better in managing datasets that contain many links. Application programming interfaces (API’s) simplifies the job of the
web developers when developing applications for they enable interaction of softwares among themselves. This research work is based
on designing a GraphQL Model to query a graph database. Querying graph database with GraphQl improves query result. GraphQL
presents a profound transformation in how API providers enable access to their data, and can bring a lot of useful advantage to
organizations. Keywords: GraphQl, REST, Relational Database, Graph Database, Query Processing, Application Programme
Interface

1. INTRODUCTION
The emergence of computer network technology and database
system technology has given birth to the advancement of
distributed database. Distributed databases are defined as
databases located at different machines at the same or
different locations that look like one centralized database to
the end user. A set of machines share an entire load instead of
one centralized database. Distributed database (DDB) is a
collection of multiple, logically interrelated databases
distributed over a computer network (Idowu and Maitanmi,
2014). Retrieval of data from different sites in a DDB is
known as distributed query processing. . Srinath (2016)
looked at Query Processing Issues in Data Warehouses.
According to him; “major query processing issues ranges
from poor query plans, inadequate data extraction processes
and inefficient data transformation concept”. Query
processing is an important concern in the field of distributed
databases. Notwithstanding the numerous benefits of
relational databases, however, they don’t produce good results
with the continuous increase in the volume connected data. To
handle a growing volume of connected data, Neo4j database
can be used. Neo4j is a non-relational graph database that’s
optimized for managing relationships. Data structures today
are more complex, they are better thought of as graphs (multi-
dimensional) instead of tables (two-dimensional).Querying
those graphs requires a standard query language, and dynamic
result structures which reflect what was actually queried for.
The Neo4j database helps in building high performance and
scalable application that uses large volumes of connected
data.

2. BACKGROUND
2.1. Related Works

Naresh (2017) proposed a Graph-based User Interface
architecture which was integrated into a Bluemix system that
was already on use and the major execution advancement of
the real-time dashboards was explored. This boosted the
performance of the existing web applications by returning
faster only those data that was explicitly defined by the client.
The client specified the server about the precise data to return.
This prevented fetching more than sufficient data that was
needed or less.

Njoku Donatus el al (2016) proposed a solution for query
execution and responses time and optimization in distributed
database systems done by means of modified and enhanced
Interactive Dichotomizer 3 (ID3) algorithm. A modified ID3
algorithm was developed to generate the decision tree, which
created simple and efficient tree with the smallest depth. The
learning agents ID3 must search through the hypothesis space
and locates the best hypothesis when given the test sets.
Result showed the ID3 query response time was minimal
compared to that of the search engine.

GRAPHiQL (Jindal and Madden, 2014) has been introduced
as another SQL-like general purpose graph processing
language. GRAPHiQL provides its user with the ability to
reason about graphs in terms of the intuitive abstraction of
vertices and edges. It also provided optimized graph querying
constructs such as recursion, looping, neighborhood access.
The GRAPHiQL execution engine compiled the user query

GSJ: Volume 10, Issue 3, March 2022
ISSN 2320-9186 877

GSJ© 2022
www.globalscientificjournal.com

mailto:anchinos@yahoo.co.uk
mailto:bathoyol@gmail.com
mailto:fubaraegbono@gmail.com
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899405/#CR29

2

into SQL query that was executed by a standard relational
engine and relied on query optimization techniques to tune the
performance of these queries.

Jing et al (2017) looked at GraphCache: A Caching System
for Graph Queries. The authors put forth GraphCache (GC),
the first full-fledged caching system for general sub-
graph/super-graph queries. They contributed the overall
system architecture and implementation of GC. They also
studied a number of novel graph cache replacement policies
and show that different policies win over different graph
datasets and/or queries; In addition, the authors contributed a
novel hybrid graph replacement policy that was always the
best or near-best performer.
M.B.Thuraisingham (2010) proposed Secure Query
Processing In Intelligent Database Management Systems. He
looked at methods for safe query processing in a different
intelligent database system. Specifically, these systems were
looked into. (i) relational systems (ii) systems focussed on
distributed architecture (iii fuzzy system (iv) object oriented
/semantic systems .His future plan was to develop a setup in
such a way that he could perform an experiment and assess
the techniques he had designed. Initially he would be carrying
out an augmented relational database system for secure query
processing .He planned to use a commercial relational
database system which will be interfaced with a knowledge
base and an inference engine. The knowledge base would use
rules to represent the constraints and information on the reply
that was made. Queries would be requested in logic. The
query would be amended by the inference engine. A translator
would change the amended query in logic by the relational
database system. Evaluations can be done on converted query
by the relational database system

Bhavani and Ammiel (2010) proposed Secure Query
Processing In Distributed Database Management Systems -
Design And Performance Studies. Their work concerned with
query processing in a trusted distributed database
management systems. .It wss based on two focal points. The
main concern in the design of most TDBMS was the
characteristics of hiding information from individuals that
were not authorized. Another important area was the
characteristics of performance. In many computer programs in
command and control surrounding, it is necessary for a
database system to work in a protected mode and in addition
to satisfy real-time or at a minimum near-real-time execution.
For the purpose of carrying out execution improvement to a
TDDBMS, a baseline study was essential in the first place.
Their paper was focused on early implementation of query
processing in a TDDBMS and that was the first approach in
their study. It provided a plain description of a query
processing plan of action and the implementation of the
design was discussed. Verifying the security principle and
resolving the execution of query processing algorithm was the
objective of the implementation. Their paper described the
issues involved in secure distributed query processing. Next
they described a simple design of a TDDBMS and have
discussed the implementation of the design for query
processing. The TDDBMS that they implemented consisted of
two nodes interconnected via a communication channel. Each
node had a local TDBMS and a distributed query processor.
The local TDBMS was implemented by augmenting a
commercial relational database system with a front-end
component. Their objectives in this implementation were (i)
to validate the security policy, and (ii) to analyze the
performance of secure query processing algorithms. From
their simple analysis, they were able to show that poly

instantiation as well as transfer of tuples between nodes has a
significant impact on performance. The following are the
major limitations of the TDDBMS that we have implemented
(1) the nodes were not connected over a communication
network; (2) the local TDBMS was implemented on top of an
untrusted commercial DBMS; (3) the system consisted of only
two nodes. In order to develop a more realistic system, the
distributed system should consist of more than two nodes
whichweare interconnected via a communication network.
Furthermore, a secure commercial TDBMS should be used as
the local TDBMS-. Their future work will include such an
implementation.

Saurabh G. et al (2015) proposed a Survey on Query
Processing and Optimization in Relational Database
Management System. In their paper, they have made an
attempt to present a detailed review of query optimization
techniques. The main idea behind this research was to review
various techniques to implement query processing and
optimization in an effective manner. Though the traditional,
single-pass, optimize-then-execute strategy for query
execution has served the database community quite well since
the 1970. As queries have become more complex and
widespread, however, they have started to run into limitations.
Query optimization techniques and approaches primarily
focus centralized and distributed databases. The paper also
highlighted merits of these techniques by critically analyzing
them with respect to their utility and efficacy. Schemes for
robust optimization, parametric optimization, and inter-query
adaptivity alleviate some of these difficulties by reducing
sensitivity to errors. A significant virtue of these methods is
that they impose little runtime overhead on query execution
perhaps even more importantly; they serve as a simple
upgrade path for conventional single pass query processor.
Selection ordering was a much simpler problem than
optimization complex multi-way join queries, and this
simplicity not only enabled design of efficient algorithms for
solving this problem. .They have discussed the existing
techniques and their implementation for the sake of
optimizing query. They have identified some of the proposed
techniques that led towards achieving the key benefits of an
optimized query as compare to an un-optimized query in
terms of its throughput and response time.

2.2. Graph Databases/Relational
Databases

Graph databases store data in vertices and edges or nodes and
relationships as shown in figure.1 versus tables, as found in
relational databases. Graph databases are the most efficient
way of looking for relationships between data items, patterns
of relationships or interactions between multiple data items.
You can think of a relational database as made up of several
tables, rectangular grids of information, each one looking
much like a spreadsheet. Graph databases are well-suited for
analyzing interconnection, which is why there has been a lot
of interest in using graph databases to mine data from social
media. Graph databases are also useful for working with data
in business disciplines that involve complex relationships and
dynamic schema such as supply chain management.

GSJ: Volume 10, Issue 3, March 2022
ISSN 2320-9186 878

GSJ© 2022
www.globalscientificjournal.com

3

Figure 1: Basic Structure of a Graph Database
(Source: Smita and Patel, 2016)

With the traditional relational database systems, many series
of composite joins are required. It is quite complicated
constructing these queries and the high cost of executing these
queries constitutes to the short falls. Trying to scale these
large queries in order for them to return real-time data is
almost not possible in majority of the cases due to low
expectations because as the query increases, execution drops
due to more parameters are included. Graph databases offer
great advantage in overcoming these difficulties as using the
relationships to traverse the graph is an optimal solution.
Real-time queries can be made at the point an odd transaction
occurs giving the financial institution a unique ability to
utilize various fraud patterns in real- time which can apply
different individuals or groups. Financial institutions can
benefit from this in detecting fraudulent behavior before
serious crimes take place thereby making them to be alert.

2.3. Application Programming Interface
(API)

An API is a group of protocols and definitions used to
integrate different components of a system. It defines a
contract between a “provider” and a “consumer”, and all the
parameters involved in the communication between them:
1.The requests to be made
2.How to make them
3.The different responses
4.Data types
It is a cost effective means that allows product
communications without having to know how they were
implemented. With an API we can reuse existing services
from other components of our app, with an abstraction layer
over the details of how those services are implemented.
REST(Representational State Transfer), an API specification
is a group of architecture principles followed to create web
services that work using the HTTP protocol. , REST is any
interface between systems using transport protocols like
HTTP to obtain service and generate operations on it in all
possible formats, such as extensible Markup Language (XML)
and Java Script Object Notation (JSON).

Graphql, another specification of API is the query protocol of
an application layer developed by Facebook. It is developed to
give more responsibility for clients to enhance flexibility and
efficiency. GraphQl was created out of the needs of todays,
especially the needs of mobile clients, Low powered devices
transferred data with not ideal networks. Thus, Graph does
minimize the amount of data transferred and enables new
features to be added without removing the old ones (Buna,
2016).All in all, GraphQL forces queries and removes many

design questions. With GraphQL, clients can write their own
queries and use the language of their choice instead of forcing
the developers make custom endpoints, representations or
APIs to solve issues with different clients and their
needs(Sturgeon,2017). GraphQl is often confused with being
a database technology (Stubailo, 2016). This is a
misunderstanding. GraphQL is a query language for APIs and
not even for databases. GraphQL is the modern way to build
declarative, efficient and performant APIs that developers
love to work with. In GraphQL, the client determines
precisely the data it wants from the server. With this, clients
can make more efficient queries to a server by trimming down
the response to meet their needs. This speeds up rendering
time by reducing the payload size. GraphQL Server can be
integrated with a graph database as shown in figure 2.

Figure 2: GraphQL Server with Connected Database
(Graphcool, 2017)

Integrating GraphQl server with graph database makes it
easier for the server to pull the data from the database and
displays it for the client. GraphQl , a data querying language
that is available for everyone is used for developing
Application Program Interface for web and mobile computer
programs. It is a very big alternative to Representational State
Transfer and other web service structure and design. It allows
the client side of the app to get the data in any structure. But
GraphQl is just a query language. To carry out GraphQL
instruction, we need a platform that can provide a lot of
assistance for us and example of such platform is Apollo. The
Apollo platform is an implementation of GraphQL that can
transfer data between the cloud (server) to the user interface
of your application. Actually, Apollo develops its
environment in a flexible way that allows GraphQL to be used
on both clients and server side of the computer program.
Apollo platform contains things like the Apollo server, IDE
plugins, the Apollo CLI (command line interface). A
Javascript GraphQL server is a core part of Apollo platform.
It specifies the structure and the set of resolvers that executes
every part of the specified structure. The server has capability
to extend in such a way that it can link to any request directed
to it through the commercial plugins. When a query is sent to
a GraphQL server, the query will be parsed into an Abstract
Syntax tree which is validated against the schema defined by
the GraphQL server. Validation checks for correct query
syntax and existence of the fields. If the query passes the
validation, the query is executed. The runtime walks through
the AST, starting from the root of the tree, invokes resolver,
collects up results, and emits JSON

GSJ: Volume 10, Issue 3, March 2022
ISSN 2320-9186 879

GSJ© 2022
www.globalscientificjournal.com

4

3. ARCHITECTURE DESIGN

3.1. Research Methodology
The methodology employed for this research work is Object-
Oriented Analysis and Design (OOAD) Methodology. Object-
oriented programming (OOP) is a programming paradigm that
uses “objects” and their interactions to design applications and
computer programs. It has been touted as the great advance in
software engineering. It promises to reduce development time,
reduce the time and resources required to maintain existing
applications, increase code reuse, and provide a competitive
advantage to organizations that use it.
3.2. Analysis of Existing System
Graph query processing is essential for graph analytics, but
can be very time-consuming as it entails. Eeda (2017)
proposed a GraphQL-based UI Architecture which was
integrated into the existing Bluemix system to boost an
application’s performance. The key performance
improvement of the real-time dashboards was explored. The
performance of the existing web applications was boosted by
fetching only the client-specific data faster. To avoid fetching
more or less of the needed data, the client strictly dictates to
the server the kind and amount of data to fetch. The
architecture was created by developing a GraphQL layer and
placing it above already existing data sources at the backend
the system was using. These data sources could be a relational
database, NOSQL database, REST endpoint, SOAP endpoint,
message bus or a combination of any or all of these data
sources. The architecture incorporates GraphQl to brings in all
the advantages of GraphQL which includes returning the
result of a query through a single endpoint, making fast and
simple queries. Making a simple query improves the stability
of a query process. When a client issues request to a GraphQL
server, the request is splitted into multiple forms on reaching
the GraphQL layer as proposed in the architecture. They
designed and stored the states of all the components that were
to be rendered on the UI using Redux and the different parts
of React were binded with its value as shown in figure 3. A
caching mechanism and subscription channel were also
incorporated in their design.

Figure 3: Existing Architecture of Rendering real–time
dashboards using a GraphQL–based UI
(Source: Eeda, Naresh, 2017)

Contrary to the old method of loading all the data at once,
data was gradually loaded onto the user interface without
waiting for overall completion of the execution of other
queries. They binded parts of the User Interface to the exact
queries and loaded them immediately response was gotten.
This allowed them to asynchronously load the data onto the
UI. The fact that early component skeleton was kept in the
redux, helped them in loading the user interface elements
without the real data to be rendered as soon as the request was
received. This improved the user experience by displaying the
web page almost instantaneously.

3.2.1. Disadvantages of the Existing System
The following disadvantages of the Existing System are:
ii) Inadequate modeling of highly interconnected data: The
efficient modeling of data was lacking in the Existing System.
ii) Complexities involved in writing graph queries: This is
also a major issue associated with the existing system which
arises from how efficiently we can find an unknown graph
using distance or shortest path queries between its vertices

3.3 Analysis of the Proposed System
The GrapQL Model is deployed in a political party database
and a graph database is built for a party administration
system. In the proposed system, records of party members are
collected and stored in a database as shown in figure 4. The
various local governments regularly generate data of
membership and various financial and non-financial activities
which are stored in local databases in their offices. The states
also have party offices which equally keep record of party
officials and party activities at the state level. The parties also

GSJ: Volume 10, Issue 3, March 2022
ISSN 2320-9186 880

GSJ© 2022
www.globalscientificjournal.com

5

have a National Secretariat which equally has databases of
members, officials, contestants and party officials. There are
equally financial records at each level of the data store at the
local government and states. The databases of the party
members are kept separate from each other in many states.
This leads to data redundancy as the same data are repeated in
the relations. Accessing the databases requires generation of
multiple queries. In other states where a relational databases
are used, challenges are encountered as the records get larger.

Querying a large dataset is tedious and time consuming. The
fact is that it involves multiple joins of the table leading to
complex query formation. This has negatively affected the
administration of political party system as query processing
seems to be a very difficult task. Expanding a relational model
is difficult as a result of strict schema maintained by the
relational model. One of the relational model’s design motives
was to achieve a fast row-by-row access (Codd,
1970).Although relational model manages related records,
many joins operations involve complex queries as many
attributes of different tables are considered. Resolving
relationships in relational model involves creating multiple
joins with the tables. In working with relational models,
foreign key constraints should be considered when retrieving
relationships and this constitutes to the challenges faced by
relational model. The cost and time of the query operation is
on the increase too.
In the proposed system, the different records from the wards,
local governments and states are collected and relationships
among them are created. These records are stored in the graph
database for easy access and query operation. Graph database
is preferred because of its ability to handle big volume of data.

Figure 4: Proposed System Architecture of an improved
Graph Query Language Model

Graph database overcomes some of the limitations of related
databases. When it comes to a dataset that associates, graph
database is faster. Graph database connects straight to the
form of object-oriented programs. Normally, they are well
suited to datasets that are very big as they do not not make use
of computations involving joins. Join operations are very
expensive. As they depend more on flexible schema, they are
promoted as convenient to handle adhoc and developing
schema.
A database is an important aspect of a software application.
Apart from the fact that it stores information, it positively
affect the general accomplishment of a software. In spite of

the numerous benefits of relational database, however, they
don’t perform well with continuous increase in the volume of
related data. So, selecting a database suitable for political
party system is crucial. Using a graph database for a political
party administration will make way for easy and fast query of
records of party members.

The proposed architecture uses GraphQL to query the
database of a political party system. The database has to be
structured in form of graph for fast query. Graph databases
perform well when the databases gets larger compared to
relational databases. As the complexity in data and value in
relationships increases, the ability of relational databases to
address the data requirements decreases and use of graph
database increases, which leads to the adoption of improved
GraphQL system for a graph database in the proposed system.
This will enable an easy and most private way to
communicate with unit members in the whole state and also
most promising channel of communication within party
executives.

3.3.2 Advantages of the Proposed System
The following advantages of the proposed system are:

i) Easy Query: GraphQl query is easy to manage
because of its flexibility. API does not require
too much maintenance or modification.

ii) The ability to make fast query: The client can
make only one request to retrieve only
information they need. A backend server only
needs to fetch and prepare what is being asked
for, so the entire response can be delivered in a
single network delivery.

iii) Flexible Graph-Query Platform in the Neo4j
Environment: Neo4j uses property graphs to
extract added value of data of any company
with great performance and in an agile, flexible
and scalable way. In terms of performance
Graph databases such as Neo4j perform better
than relational (SQL) and non-relational
(NoSQL) databases.

4. IMPLEMENTATION AND SAMPLE
RESULTS

To implement the improved GraphQl model for political party
distributed database administration, detailed analysis were
extensively done on the existing system to identify the major
drawbacks faced in the storage method of political party
information and to compare and contrast it with the new
system. A graph database (Neo4j) is used in the new system
instead of relational database system. Graph database helped
us to model, query and expand data in a faster and more
intuitive way when compared with a traditional SQL
approach. For easy accessibility, the Neo4j database was
hosted on the cloud. As the party member registers as shown
in Figure 5, the information is store in the cloud.

GSJ: Volume 10, Issue 3, March 2022
ISSN 2320-9186 881

GSJ© 2022
www.globalscientificjournal.com

6

Figure 5: Registration Form of the Party members

Neo4j is a non- relational graph database that is optimized for
managing relationships. Neo4J database can help in building
high performance and scalable applications that use large
volumes of connected data. To add neo4j-based functionality
to the proposed system, Django-neomodel plugin was used.
Django neomodel is an Object Graph Mapper (OGM) for the
neo4j graph database built on the awesome neo4j_driver. This
module allowed us to use the neo4j graph database with
Django using neomodel. With this, data displayed will be
obtained from an API.

To handle the relationship between the database, the python
models and other aspects of web development, an object
mapper, Django was incorporated. A Django module allowed
us to use the Neo4j database with Django using neomodel.
Django made it possible to create the entire site and database
backend, along with the plugins used. Django is based on the
idea of models. A model is a class of objects directly linked to
objects in a database. To connect to the Neo4j database, Bolt
protocol URL was used. Bolt connected only to the server
with the IP specified. It will not route anywhere else. All
queries over this protocol would go only to this machine,
whether they’re read or write queries. GraphQL was used as
an abstraction layer to hide the database internals. Request
sent by Client to GraphQL server would always be validated
and executed by collecting the information from the Neo4j

database. The data should be requested from the API. To
create some level of abstraction, the results are displayed in
tabular form. Figure 6 shows sample results of the query.

Figure 6: Sample of GraphQL Query Results of all Party
Members

5. CONCLUSION
Relational Database is a mature way of storing records, the
building block is table. Graph database is also another storage
mechanism. The building block is graph. There is gradual
increase in dataset as the day goes by. Hence the need for a
database system that can accommodate the massive increase
in data. As the amount of related data increases, the ability of
a relational database to handle such data drops. Relational
database is not efficient in handling highly interconnected
data. Graph database on the hand displays great performance
in handling highly interconnected data. GraphQL, which
provides some level of abstraction is very efficient in
querying graph database. Although it is not a graph database
query language but an Application Program Language. It
delivers query result within the shortest possible time.
Querying Graph database with GraphQL helps in generating
faster and easy query. The improved GraphQL model for a
political party distributed database administration uses of a
Neo4j database as a graph database . Based on the findings of
the research work, the new system generates better results.
Querying the database is faster and easy as GraphQL returns
the result of a query through a single endpoint unlike its
alternative REST that returns the result of a query through
multiple endpoints. There is no under fetching and over
fetching of data in graphql query.

GSJ: Volume 10, Issue 3, March 2022
ISSN 2320-9186 882

GSJ© 2022
www.globalscientificjournal.com

7

6. ACKNOWLEDGMENTS
Our thanks go to the Almighty God for His grace and
sustenance. We are also grateful to the lecturers in Computer
Science Department, University of Port Harcourt, Choba,
Rivers State, Nigeria for their inputs and support during the
course of this research work.

7. REFERENCES
[1] Bhavani T. and Ammiel K. (2010). Secure Query

Processing in Distributed Database Management

[2] Buna, S. (2017). REST APIs are REST-in-Peace APIs.
Long Live GraphQL URL: https://medium.freecodecamp
.org/rest-apis-are-rest-in-peace-apis-long-live-graphql

[3] Codd E.F. (1970). A relational model of data for large
 shared data banks. Communications of the ACM.
 13(6). 377-387

[4] Eeda, Naresh (2017) "Rendering real-time dashboards
 using a GraphQL-based UI Architecture".Electronic
 Thesis and Dissertation Repository. 5136.

[5] Idowu, S.A, Maitanmi S.O. (2014) “Transactions-
 Distributed Database Systems: Issues and
 Challenges” International Journal of Advances in
 Computer Science and Communication Engineering
 (IJACSCE) 2(I), ISSN 2347-6788,24-26, Ilisan Remo,
 Ogun State, Nigeria.

[6] Jindal A, Madden S (2014) .GRAPHiQL: A graph
 intuitive query language for relational databases. In:2014
 IEEE international conference on big data, big data,
 Washington, DC, USA, October 27–30,441–450

[7] Jing W., N. Nikos, T. Peter (2017), GraphCache: A
 Caching System for Graph Queries, Open Proceedings,
 10.5441/002/edbt.2017.03, 13 – 24

[8] Njoku Donatus O., Nwokorie Chioma E., Madu

Fortunatus U(2016). An Enhanced Query Processing
Algorithmfor Distributed Database Systems,International
Journal of Scientific & Engineering Research, 7(10)

[9] Smita A. and A. Patel (2016), A Study on Graph Storage
 Database of NoSQL, International Journal of Soft
 Computing, AI and Applications (IJSCAI), 5(1), 33 – 39

[10] Srinath S. (2016), Query Processing Issues in Data Ware
Houses,Research gate Publications,
https://www.researchgate.net/publication/2618638,1–
13

[11] Stubailo, S. 2017. GraphQL vs. REST. URL: https://dev-
blog.apollodata.com/graphql-vs�rest-5d425123e34b
Accessed 22 November 2017

[12] Sturgeon, P. 2017. GraphQL vs REST: Overview. URL:
https://philstur�geon.uk/api/2017/01/24/graphql-vs-rest-
overview/ Accessed 20 November 2017

[13] Thuraisingham M. (2010). Secure Query Processing in
Intelligent Database Management Systems.The MITRE
Corporation, Burlington Road, Bedford.

GSJ: Volume 10, Issue 3, March 2022
ISSN 2320-9186 883

GSJ© 2022
www.globalscientificjournal.com

https://medium.freecodecamp/
https://www.researchgate.net/publication/2618638,1–

	1. INTRODUCTION
	2. BACKGROUND
	2.2. Graph Databases/Relational Databases
	Graph databases store data in vertices and edges or nodes and relationships as shown in figure.1 versus tables, as found in relational databases. Graph databases are the most efficient way of looking for relationships between data items, patterns of relationships or interactions between multiple data items. You can think of a relational database as made up of several tables, rectangular grids of information, each one looking much like a spreadsheet. Graph databases are well-suited for analyzing interconnection, which is why there has been a lot of interest in using graph databases to mine data from social media. Graph databases are also useful for working with data in business disciplines that involve complex relationships and dynamic schema such as supply chain management.

	1.The requests to be made
	2.How to make them
	3.The different responses
	4.Data types
	6. ACKNOWLEDGMENTS
	7. REFERENCES

